
Early-Deciding Consensus is Expensive

Danny Dolev
Hebrew University of Jerusalem

Edmond Safra Campus
91904 Jerusalem, Israel
dolev@cs.huji.ac.il

Christoph Lenzen
Massachusetts Institute of Technology

32 Vassar Street
02139 Cambridge, USA

clenzen@csail.mit.edu

ABSTRACT
In consensus, the n nodes of a distributed system seek to
take a consistent decision on some output, despite up to t
of them crashing or even failing maliciously, i.e., behaving
“Byzantine”. It is known that it is impossible to guarantee
that synchronous, deterministic algorithms consistently de-
cide on an output in fewer than f + 1 rounds in executions
in which the actual number of faults is f ≤ t. This even
holds if faults are crash-only, and in this case the bound can
be matched precisely. However, the question of whether this
can be done efficiently, i.e., with little communication, so far
has not been addressed.

In this work, we show that algorithms tolerating Byzan-
tine faults and deciding within f + 2 rounds must send
Ω(nt + t2f) messages; as a byproduct, our analysis shows
that decision within f+1 rounds is impossible in this setting
(unless f = t). Moreover, we prove that any crash-resilient
algorithm deciding in f + 1 rounds has worst-case message
complexity Ω(n2f). Interestingly, this changes drastically if
we restrict the fault model further. If crashes are orderly,
i.e., in each round, each node picks an order in which its
messages are sent, and crashing nodes successfully transmit
a prefix of their sequence, deciding in f + 1 rounds can be
guaranteed with O(nt) messages.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance Of
Systems—Fault-Tolerance; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems

General Terms
Algorithms, Reliability, Theory

Keywords
lower bounds; cubic message complexity; Byzantine faults;
crash faults; early-stopping

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PODC’13, July 22–24 2013, Montréal, Québec, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

1. INTRODUCTION & RELATED WORK
In consensus, each node of a distributed system has an

input value, and all nodes that do not fail need to decide
on the same output value. To make this output meaningful,
it is required that the output must be input of at least one
node.1 This easily stated task is very fundamental, as it
captures the essence of exploiting redundancy to establish
resilience to faults of (some of) the components of a system.

Consequently, consensus has been studied very deeply and
extensively in the last three decades. There are scores of
lower bounds on many aspects of the problem in a variety of
models. In the current paper, we come back to the question
of early-deciding and study its message complexity. Infor-
mally, an algorithm is early-deciding if, in each execution, it
minimizes the number of rounds until all nodes have decided
depending on the number of actual faults f , as opposed to t,
the maximal number of faults it can tolerate, or the number
of nodes n. This property is highly desirable, as in most sce-
narios it is reasonable to assume that most of the executions
will experience few or no faults. It is closely related to the
concept of early-stopping algorithms, where the requirement
is to not only decide on the output, but also stop sending
messages. Roughly speaking, early decision and termina-
tion go hand in hand; to the best of our knowledge, in all
published early-deciding algorithms, after taking a decision
nodes can stop communicating once they have shared their
decision value with all other nodes, i.e., at most one round
after taking a decision.

The question of early decision so far has not been con-
sidered for randomized algorithms. With randomization
and/or asynchrony involved (and the resulting variety of
adversarial models) the current understanding of both time
and message complexity is much poorer than in the syn-
chronous, deterministic case. For this reason, we consider
synchronous, deterministic algorithms only, for which at the
least one parameter—the time complexity—has been ana-
lyzed in great detail and precision. The basic time lower
bound in this setting states that min(f + 2, t + 1) rounds
are required for termination, even if we consider crash faults
only [7, 8]; showing that f + 1 rounds are required for de-
cision (in the worst case) follows from standard bivalency
arguments in virtually any reasonable fault model [11]. A
message complexity lower bound of Ω(nt) has been known
for long [6]. The question whether stopping early is more

1The precise requirement depends on the considered model.
The common theme is that pre-existing agreement must be
maintained; in particular, the trivial algorithm always re-
turning a default value is not a feasible solution.

costly in terms of communication was not considered up to
the present date.

Contribution
In the current paper, we show a lower bound of Ω(t2f) on
the number of messages sent, in the worst case, by any pro-
tocol that decides within f + 2 rounds and tolerates up to t
Byzantine faults. Doing so, we also see that in the case of
Byzantine faults, decision before round f + 2 is not always
possible. Moreover, we establish a lower bound of Ω(n2f)
on the worst-case message complexity of crash-resilient algo-
rithms that decide within f+1 rounds. In other words, there
are executions in which, essentially, in each round all pairs of
operational nodes need to exchange messages. In contrast,
we provide a simple algorithm that decides in f + 1 rounds
(and stops in f + 2) using O(nt) messages, provided that
crashes are orderly. A crash is orderly if the crashing node
succeeds in sending exactly the messages in some prefix of a
priority list; this list is chosen by the algorithm.

Related Work
The message complexity of achieving consensus (without the
constraint of deciding or stopping early) was studied exten-
sively, with many efforts in matching and circumventing the
known lower bounds. Reischuk looked at improving the ef-
ficiency by looking at average complexity [25]. Perry and
Toueg [23] focused on marching the number of rounds in
weaker fault models. This approach was later followed by
Parvedy and Raynal [21] as well.

Fitzi and Martin [12] skirted the message complexity lower
bound of Ω(nt) by introducing a small probability of error.
King and Saia [16, 17] used randomization to simultane-
ously beat the time and message complexity lower bounds
that hold for deterministic algorithms, with “practical and
scalable protocols”. Many sublinear-time randomized algo-
rithms have been published before, but all of them are much
more costly in terms of communication; we make no attempt
to cover the related work on randomized algorithms here.

Researchers looked at the difference between early-deci-
sion and early-stopping mainly in the context of uniform
consensus. In uniform consensus, the decision value needs
to be the same for all nodes that decide, even those that fail
after deciding. Keidar and Rajsbaum [15] proved a slightly
stronger lower bound for crash-resilient algorithms for uni-
form consensus: deterministic protocols cannot always de-
cide before round min{f + 2, t}. We show essentially the
same bound, but for Byzantine-tolerant algorithms without
requiring uniformity. Charron-Bost and Schiper [2] proved
that this bound does not hold for crash-tolerant consensus
algorithms, where it is possible to decide by the end of round
f+1. Michel Raynal [24] presents a thorough study of early-
deciding algorithms in a crash-fault model.

Matching the round complexity lower bound of min{f +
2, t+1} for the general case of Byzantine faults was solved by
Berman et al. [1].2 Omission faults, where besides crashing
nodes may also fail to send (or receive) messages non-faulty
nodes would send (or receive), but continue executing the
algorithm afterwards, strictly contain crash faults. Hence, in
particular all lower bounds for crash faults apply. Parvedy
and Raynal [21] give an algorithm for uniform consensus

2The extended abstract contains a proof sketch; no full ver-
sion is available.

that matches the decision and stopping time lower bounds
of min{f + 2, t+ 1}. The algorithm has message complexity
O(n2f), but its optimality is not immediate since our lower
bound for crash faults requires decision in f + 1 rounds. We
conjecture, however, that it is straightforward to adapt the
techniques we introduce to establish a matching lower bound
for uniform consensus.

Finally, the communication costs of early-deciding and
early-terminating algorithms must be contrasted against the
ones of algorithms that sacrifice these properties or incur
suboptimal bounds in exchange for a smaller number of
sent messages. Coan and Welch [4, 5] considered the spe-
cial case of n = 3t + 1, achieving asymptotically optimal
O(t2) communicated bits. Hadzilacos and Halpern devised
algorithms that ensure optimality of fault-free runs [14], for
an entire spectrum of fault models. Dwork and Moses [9]
and later Mizrahi and Moses [19, 20] considered continu-
ous agreement, where one can exploit that over time faulty
processes may be identified and ignored. Lately, Liang and
Vaidya attained asymptotically optimal bit complexity for
very long output (or a sequence of outputs) [18]; Patra [22]
leverages randomization to obtain the same bound in a con-
stant expected number of rounds. None of these algorithms
are early-deciding or -stopping, in the sense that they may
run for at least t + 1 rounds even if there are few faults.
In contrast, Galil et al. [13] manage to achieve a strong
combination of early-decision and message complexity: they
present a crash-resilient algorithm that solves consensus in
O((f + 1)81/ε) rounds with O(n + fnε) messages, for ar-
bitrary ε > 0. Slightly better bounds are known if the re-
quirement of early-stopping is dropped altogether: In O(t)
rounds, consensus can be solved with up to t ∈ n − Ω(n)
crash faults using O(n log2 t) messages [3]. The authors
of [1] claim that a nearly round-optimal and Byzantine toler-
ant solution exists that is also asymptotically bit (and thus
message) optimal, i.e., sends O(nt) bits.3

2. MODEL AND PROBLEM
We are given a fully connected system of n nodes, up to

t of which may become faulty. In each synchronous round
1, 2, . . ., each node (i) performs deterministic local compu-
tations, (ii) sends (possibly different) messages to (a subset
of) the other nodes, and (iii) receives the messages sent to
it by other nodes. Since we are concerned with a worst-
case lower bound on the number of messages sent by non-
faulty nodes, we assume that nodes have unique identifiers
V = {1, . . . , n}, the recipient of a message can identify the
source of a message (i.e., messages are authenticated), and
we put no bound on the size of messages or the amount of
local computations performed. Clearly, the derived lower
bound then extends to any weaker system model. An al-
gorithm can thus be interpreted as a collection of functions
that, for each round r ∈ N, maps the input of each node
v and the history Hv(r) of messages it received up to and
including round r − 1 (including the information who sent
which message) to (i) the messages it sends in round r and
(ii) whether it decides on an output ov. We do permit v to
send messages also after deciding on ov, but v may decide
on an output only once, i.e., such a decision is final.

An execution E of a binary consensus Algorithm A is spec-
ified by (i) the input values bEv ∈ {0, 1}, (ii) the sets of faulty

3No proof of this result has been published.

nodes F E1 ⊆ F E2 ⊆ . . . in each round, where |F Er | ≤ t ∈ N
for all rounds r ∈ N, and (iii) the messages sent by faulty
nodes in F Er to non-faulty nodes in V \ F Er in each round
r. The faulty nodes may send arbitrary messages, whereas
the messages sent by non-faulty nodes as well as when they
decide on what output are determined by the algorithm. By
fE := maxr∈N{|Fr|} ≤ t we denote the number of (actual)
faults in execution E . For ease of notation, we may omit the
superscript E denoting the execution whenever it is clear
from the context. We remark that considering the nodes in
the sets Fr non-faulty until they actually fail merely serves
to facilitate intuition; the same asymptotic lower bound on
the number of messages sent by non-faulty nodes follows
from our arguments if we consider the set

⋃
r∈N Fr faulty for

the entire execution. We may also talk of an r-round exe-
cution, which is the restriction of an execution to its first r
rounds, and extensions, which add further rounds to a given
execution.

We say that an execution E is indistinguishable at node v

from an execution E ′ (before round r + 1), if bEv = bE
′
v and

HEv (r′) = HE
′

v (r′) for all r′ ∈ N (for r′ = r). Note that since
the actions of node v until round r and the messages it sends
in round r + 1 are a function of bv and Hv(r) only, v will
behave identically in E and E ′ until receiving messages in
round r+ 1 of these executions if they are indistinguishable
before round r + 1.

For A to be a correct binary consensus algorithm, it must
satisfy the following properties in all feasible executions E .

Termination: Nodes v that remain non-faulty eventually
output some ov ∈ {0, 1}.

Agreement: There is a value o such that ov = o for all
non-faulty nodes v.

Validity: There is some node v ∈ V so that bv = o.

3. BYZANTINE FAULTS
As deterministic consensus is impossible if n ≤ 3t and

faults are arbitrary (i.e., Byzantine), we assume that n > 3t
throughout this section. In the introduction we discussed
that for all deterministic binary consensus algorithms and
all 0 ≤ f < t, there are executions so that a non-faulty node
stops sending messages in a round r ≥ f + 2 [7, 8]. This
bound can be matched for any t < n/3, i.e., there is an
early-stopping algorithm that guarantees that all non-faulty
nodes stop by round min{f + 2, t + 1} [1]. We consider
a weaker constraint in that we require that nodes decide
quickly, but may continue to send messages in support of
the yet undecided nodes.

Definition 3.1 (Early-Deciding and -Stopping).
A consensus algorithm is d-deciding if in each execution E
of the algorithm with fE = f , each node v ∈ V \ Fd(f) has
decided in some round rv ≤ d(f). It is called d-stopping, if
it is d-deciding and non-faulty nodes do not send messages
in rounds r > d(f) of executions with f faults.

As a byproduct of our analysis, we will show that also early-
deciding algorithms must run for at least f + 2 rounds for
all nodes to decide on the output, for any 0 ≤ f < t.
Our main result in this section, however, is the following
lower bound on the number of messages sent by determinis-
tic early-deciding consensus algorithms.

Theorem 3.2. For any (f+2)-deciding binary consensus
algorithm and any 1 ≤ f ≤ t/2, there is an execution E of
the algorithm in which fE = f and non-faulty nodes send at
least t2f/44 messages.

In the remainder of this section we will prove Theorem 3.2.
Let us start with an outline of the key ideas of the proof.

Proof outline for Theorem 3.2. Clearly, as possibly
t ∈ Θ(n) and in any round O(n2) messages are exchanged,
we must construct executions that have Ω(f) rounds. In
fact, it will be vital that in each round exactly one node
fails, as this guarantees that if no further faults happen after
round r, all nodes must decide by the end of round r + 2.
Similar to the classic lower bound [7, 8] of f + 2 on the
round complexity of deterministic consensus algorithms, we
will achieve this by failing, in each round, a “pivotal” node
that is decisive for whether the execution would result in
output 0 or output 1, so that some of the nodes perceive
an execution that would end up in output 0 and others one
that would produce output 1 (without further faults and for
a certain behavior of the faulty nodes).

However, the simple proof of existence of such nodes from
[7, 8] is insufficient for our purposes, as we also need to
make sure that in each round Ω(t2) messages are sent. To
this end, we leverage the argument from [6] yielding the well-
known lower bound of Ω(t2) on the message complexity of
consensus algorithms. Essentially, we argue that not only
Ω(t2) messages need to be exchanged to achieve consensus,
but (i) this has to happen in round r + 1 if we fail no node
in rounds r and r + 1 (as the algorithm needs to verify the
decision it must take by the end of round r+1), and (ii) this
can be exploited to do the “pivoting” such that indeed also
in the modified execution with more faults many messages
are sent in round r + 1. While in general it can not be
guaranteed that many messages must be sent right away,
(f + 1)-deciding algorithms are forced to act quickly, as in
each round r, each node must be able to prove that at least
r − 1 faults occurred or decide by the end of the round.
This enables to repeat the argument inductively to show
that indeed Ω(t2) messages must be sent in each of f rounds
of some execution with f ≤ t/2 faults. Bounding f ≤ t/2
here ensures that still potentially Ω(t) additional nodes may
fail, which makes it expensive (in terms of messages) for the
algorithm to, if necessary, prove to all nodes that there have
been further faults.

We need to capture the properties we require from execu-
tions in order to follow the approach outlined above. We call
the node vr that is “pivotal” in round r critical, since fail-
ing it can delay the decision process further. The definition
is phrased such that vr must act as the arbiter that sug-
gests an output of the execution and therefore determines
the output provided faulty nodes do not interfere further.
For an (f +1)-deciding algorithm, this must happen exactly
in round r, since round r+ 1 must be used to check whether
vr failed in round r and suggested different outputs to dif-
ferent subsets of nodes.

Definition 3.3 (Critical Executions).
For r ∈ N, a pair of executions E0, E1 of a binary consensus
algorithm A is called r-critical if there is a critical node vr
such that the following properties are satisfied:

PPPPPPPsend
receive

Fr W V \ (W ∪ Fr)

Fr (faulty) as in E(r)0 as in E(r)1

W
as in E(r)0 and E(r)1

V \ (W ∪ Fr)

(a) Messages sent in round r of execution E(W).

PPPPPPPsend
receive

Fr W V \ (W ∪ Fr)

Fr (faulty) as in E(r)0 as in E(r)1

W as in E(r)0

V \ (W ∪ Fr) as in E(r)1

(b) Messages sent in round r + 1 of execution E(W).

Figure 1: Rounds r and r + 1 of execution E(W). Nodes in V \ Fr cannot distinguish E(r)0 , E(r)1 , and E(W) before round r
and therefore send the same messages in round r of all three executions. If W ′ = W ∪̇{vr+1}, the only non-faulty node that
can distinguish E(W) and E(W ′) in round r is vr+1, and only through its messages in round r+ 1 other non-faulty nodes can
distinguish these executions in round r + 1.

• vr is non-faulty in both executions,

• the restrictions of E0 and E1 to the first r − 1 rounds
differ only at vr ∈ V ,

• in round r, all pairs of nodes not involving vr exchange
the same messages in both executions,

• no nodes fail in round r′ ≥ r of either execution,

• nodes in F E0r−1 = F E1r−1 do not send messages in rounds
r′ > r,

• there are r − 1 faulty nodes in both executions,

• in E0 non-faulty nodes will output 0, and

• in E1 non-faulty nodes will output 1.

We are going to show that for such executions, an (f + 1)-
deciding algorithm is forced to exchange many messages in
round r + 1, as otherwise some nodes would have to decide
on an output without being certain that there are no other
nodes taking the opposite decision in some execution. At
the same time, we will be able to fail the critical node in a
way that maintains that many messages are sent, yet keeps
the output of the execution uncertain.

The construction proceeds inductively. The induction an-
chor is given by the well-known fact that for any (binary)
consensus algorithm, there is a way to assign the inputs such
that flipping just one of them will change the output of the
algorithm [10].

Lemma 3.4. Let A be any binary consensus algorithm.
Then there is a critical pair of 1-round executions of A.

Proof. A 1-round execution is fully specified by the set
of non-faulty nodes and their inputs, plus the messages sent
by faulty nodes in round 1. For each input assignment B :
V → {0, 1} define o(B) as the output in the unique execution
without faults. By the validity property, o(v 7→ 0) = 0 and
o(v 7→ 1) = 1. Hence there must be some inputs B and B′

that differ only at a single node v1, such that o(B) = 0 and
o(B′) = 1. Trivially, the corresponding pair of executions
is indistinguishable before round 1 at all nodes except v1,
as Hv(1) is, by definition, empty for all nodes v ∈ V and
B(v) = B′(v) for all V \ {v1}. By designating v1 as the
critical node, the definition of a critical pair is thus met
by the two executions defined by B and B′ (where we set
F0 := ∅ for both executions).

In the following, we fix an (f + 1)-deciding binary con-

sensus algorithm A and denote by E(1)0 , E(1)1 a critical pair
of 1-round executions of A. The hypothesis of the induc-
tion we want to perform is that, for some r ∈ {1, . . . , f}
with f ≤ t/2, a critical pair E(r)0 , E(r)1 of r-round executions
of A exists satisfying that Ω(t2(r − 1)) messages are sent
by the non-faulty nodes in both executions. To complete
the induction, it thus suffices to construct a critical pair of

(r + 1)-round executions E(r+1)
0 , E(r+1)

1 and show that in
round r + 1 of these executions, Ω(t2) messages are sent by
non-faulty nodes.

The construction itself is fairly straightforward; the harder
part will be to show the lower bound on the number of sent
messages. We first show that we indeed can construct crit-
ical pairs of (r + 1)-round executions from critical pairs of
r-round executions.

Lemma 3.5. Suppose for 1 ≤ r ≤ t we are given an r-

critical pair of executions E(r)0 , E(r)1 . Then an (r+1)-critical
pair of executions exists.

Proof. The proof is similar in spirit to the reasoning for
Lemma 3.4, where the messages sent by the critical node vr
of E(r)0 , E(r)1 in round r take the role of the “inputs”. Denote

for each node v ∈ V \ {vr} by m
(r′)
0 (v) and m

(r′)
1 (v) the

messages vr sends to v in round r′ ∈ N of E(r)0 and E(r)1 ,
respectively.

Recall that F
E(r)0
r−1 = F

E(r)1
r−1 for critical pairs; thus we may

simply write Fr−1, Fr, etc. in the following. We set Fr :=
Fr−1 ∪ {vr}, which is feasible since |Fr−1| = r − 1 < t. For
any set W ⊆ V \ Fr, define E(W) as follows. Take an r-
round execution that all non-faulty nodes can distinguish

from neither E(r)0 nor E(r)1 except by the message vr sends to
them in round r (such an execution exists by the definition

of r-critical pairs). We rule that this message is m
(r)
0 (v) in

case v ∈W and m
(r)
1 (v) if v ∈ V \ (Fr ∪W) (see Figure 1a).

Likewise, in round r+1 (see Figure 1b) it will send m
(r+1)
0 (v)

respectively m
(r+1)
1 (v) to v;4 it does not send any messages

in rounds r′ > r + 1. Other faulty nodes do not send mes-
sages in rounds r′ > r. Observe that this fully specifies
the messages sent from faulty nodes to non-faulty nodes; as
non-faulty nodes follow the deterministic algorithm A, we

4This ensures that it does not give away to non-faulty nodes
in W (resp. V \(W ∪Fr)) that the execution is different from

E(r)0 (resp. E(r)1).

XXXXXXXXXsend
receive

Fr ∪ S V \ (Fr ∪ S ∪ {v, w}) v w

Fr ∪ S (faulty) as in E(r)0 as in E(r)1

V \ (Fr ∪ S ∪ {v, w})
(irrelevant)

none

(as in E(r)0 and E(r)1)
v

w

Figure 2: Round r+ 1 of the contradictive execution constructed in Lemma 3.7, which is indistinguishable from E(r)0 and E(r)1

before round r + 1. If too few messages are sent in E(r)0 and E(r)1 in round r + 1, we can find a small set S that might fail,
permitting to construct the shown execution.

thus obtain E(W) as the unique extension of the r-round
execution we started with in which no further nodes become
faulty and faulty nodes send the messages we just specified.

Observe that, by construction, E(V \Fr) and E(∅) cannot

be distinguished from E(r)0 and E(r)1 , respectively, by non-
faulty nodes before round r + 2. Hence, non-faulty nodes
must decide by the end of round r + 1 in these executions
since |Fr−1| = r − 1 and A is (f + 1)-deciding. Since the

output value of E(r)0 is 0, the same must hold true for E(V \
Fr); analogously, E(∅) outputs 1. Consequently, there must
be some W ⊂ V \ Fr and vr+1 ∈ V \ (W ∪ Fr) such that
E(W) and E(W ∪{vr+1}) have outputs 1 and 0, respectively.
In both executions the set of faulty nodes is Fr, there are
no new faults in rounds r′ ≥ r + 1, and, since vr is faulty,
the only non-faulty node that can distinguish between the
two executions in round r (or earlier) is vr+1. Therefore,
all non-faulty nodes except vr+1 send the same messages
in round r + 1 of both executions. The same is true for
faulty nodes, with the exception of the message from vr to
vr+1: all faulty nodes except vr do not send messages, and
we defined the executions such that vr behaves identical in
round r + 1 towards all nodes but vr+1. Finally, no faulty
node sends any messages in rounds r′ > r+ 1. Note that in
the (r + 1)-critical pair, vr+1 is (still) non-faulty. Overall,
E(W ∪ {vr+1}) and E(W) are an (r + 1)-critical pair with
critical node vr+1, completing the proof.

An observation that can be derived immediately is that
the time complexity lower bound of min{f+2, t+1} rounds
also applies to (f + 1)-deciding algorithms. This is stronger
than the result from [7, 8] which only applies if nodes must
also stop sending messages when deciding, but also requires
more restrictive assumptions, as [7, 8] holds for crash faults
(cf. Definition 4.1). This is of particular interest as with
crash faults it is possible to achieve that all nodes decide
within f + 1 rounds [24].

Theorem 3.6. For any consensus protocol and any f,
0 ≤ f ≤ t − 1, there are executions where some non-faulty
node decides in or after round f + 2.

Proof. By inductive application of Lemma 3.5, anchored
by Lemma 3.4, we obtain an (f+1)-critical pair of executions

E(f+1)
0 , E(f+1)

1 . In both executions, the same set Ff of f < t
nodes fails. As in Lemma 3.5, failing vf+1 (in round f + 1)
permits to create an execution E(W) (for some ∅ 6= W ⊂
V \ (Ff ∪ {vf+1})) that is indistinguishable before round

f+2 from E(f+1)
0 by nodes in W and from E(f+1)

1 by nodes in

V \ (W ∪Ff ∪{vf+1}). Hence, assuming that both in E(f+1)
0

and E(f+1)
1 all non-faulty nodes decide in or before round

f + 1, the same would be true for E(W). However, nodes in

W 6= ∅ would decide 0 (as in E(f+1)
0) and nodes in V \ (W ∪

Ff ∪ {vf+1}) 6= ∅ would decide 1 (as in E(f+1)
1), violating

the agreement property. Hence, in one of the executions

E(f+1)
0 and E(f+1)

1 , which both have f faults, there must be
a non-faulty node that decides in round f + 2 or later.

Note that a similar result was proven by Keidar and Ra-
jsbaum [15] and Charron-Bost and Schiper [2] for uniform
consensus.

The construction from Lemma 3.5 leaves some flexibility.
Depending on the algorithm, there might be many choices
of W and vr+1. Our task is now to identify one that ensures
a large number of messages exchanged. Our argument will
proceed in two steps. First we will show that many messages
are sent in round r + 1 of at least one of the executions
E(r)0 and E(r)1 . Then we will use this information to identify
a set W0 of size dt/2e that sends many messages (say, in

E(r)0 and thus also E(V \ Fr)) and show that E(W0) cannot
have output 0. A critical pair then can be obtained as in
the proof of Lemma 3.5 by inductively adding nodes to W0,
since E(V \ Fr) outputs 0. The lower bound on the number
of sent messages then follows since the nodes in W0 must

send the same messages in round r + 1 as they do in E(r)0 ,
since they cannot distinguish these executions before round
r + 2.

The next lemma deals with showing that many messages

are sent in E(r)0 or E(r)1 .

Lemma 3.7. Suppose we are given a pair of r-critical ex-

ecutions E(r)0 , E(r)1 for some 1 ≤ r ≤ t/2. Then in at least
one of the two executions, at least nt/22 messages are sent
by non-faulty nodes in round r + 1.

Proof. We use the notation from Lemma 3.5. Recall
that whether some non-faulty node sends a message to some
other node in round r + 1 of execution E(W) for any W ⊆
V \ Fr solely depends on the message it receives from node
vr in round r of E(W) (or the fact that it does not receive

one). Hence, node v ∈ V \ Fr behaves identically as in E(r)0

(if v ∈W) or in E(r)1 (if v ∈ V \ (W ∪ Fr)).
Assume for contradiction that fewer than nt/11 < n2/33

messages are sent in total in both executions by non-faulty
nodes. Since there are at least |V \ Fr| · (|V \ Fr| − 1)/2 >
2n2/9 pairs of non-faulty nodes, for more than 2n2/9 −
n2/33 > 2n2/11 such pairs {v, w} it holds that v and w

exchange messages in neither E(r)0 nor E(r)1 . Hence, they do
not exchange messages in E(W) either, irrespectively of the

PPPPPPPsend
receive

Fr W0 v V \ (Fr ∪W0 ∪ {v})

Fr (faulty) as in E(W0) and E(r)1

W0 as in E(W0)

v
as in E(W0) and E(r)1

V \ (Fr ∪W0 ∪ {v})

Figure 3: Round r + 1 of execution E0, which is identical to round r + 1 of E(W0). See Lemma 3.5 and Figure 1 for the
definition of E(W0).

PPPPPPPsend
receive

Fr W0 v V \ (Fr ∪W0 ∪ {v})

Fr
(faulty)

as in E(W0) and E(r)1

W0 as in E(r)1 as in E(W0)

v
as in E(W0) and E(r)1

V \ (Fr ∪W0 ∪ {v})

Figure 4: Round r+ 1 of execution E1. Node v cannot distinguish E1 from E(r)1 in round r+ 1. Since E(r)1 has r− 1 faults and
outputs 1, v must thus decide on 1 at the end of round r + 1 of E1.

choice of W .
We claim among these pairs there are v, w ∈ V \Fr which,

summed over both nodes and executions, receive at most

t/2 messages from non-faulty nodes in E(r)0 nor E(r)1 . Oth-
erwise, summing over all pairs (that do not exchange mes-
sages) and both executions, we had at least n2t/11 received
messages, where for each individual execution and node we
have counted a message up to |V \ Fr| − 1 < n times. This
makes for a total of more than nt/11 messages, which by
assumption is not reached. Consequently, the claim holds
and we have a pair {v, w} that is non-faulty, does not ex-
change messages in E(W), and receives at most t/2 messages
from non-faulty nodes in E(W), independently of the specific
choice of W .

We fix some W such that v ∈ W and w /∈ W . Denote by
S ⊂ V \ Fr the set of non-faulty nodes that sends messages

to v or w in round r + 1 of E(r)0 or E(r)1 . By the choice of v
and w, we have that |S| ≤ t/2. Since in E(W) the number
of faulty nodes is r ≤ t/2, we can construct an (r+1)-round
execution that is identical to E(W) before round r+1, while
in round r+1 (see Figure 2) all nodes in S fail. Faulty nodes

send the same messages as in round r + 1 of E(r)0 to v and

the same messages as in round r + 1 of E(r)1 to w (the re-
maining messages are chosen arbitrarily). By construction,

v and w cannot distinguish this execution from E(r)0 and E(r)1 ,

respectively, before round r + 2. Thus, as in E(r)0 and E(r)1

only r − 1 nodes fail and the algorithm is (f + 1)-deciding,
v and w must decide on 0 and 1, respectively. This violates
the agreement property, implying that the assumption that
fewer than nt/11 messages are sent by non-faulty nodes in

round r + 1 of E(r)0 and E(r)1 together must be wrong. We
conclude that indeed in one of the executions, at least nt/22
messages are sent in round r + 1.

We now move on to the last step in the proof of Theo-
rem 3.2, which consists of showing that in the construction
from Lemma 3.5, we can choose a critical pair for which

many messages are sent in round r + 1.

Lemma 3.8. Suppose for 1 ≤ r ≤ t/2 we are given an r-

critical pair of executions E(r)0 , E(r)1 . Then an (r+1)-critical
pair of executions exists where the non-faulty nodes—exclud-
ing vr+1—send at least t2/44 messages in round r+1 of both
executions.

Proof. Again, we use the notation from Lemma 3.5. By
Lemma 3.7, in round r + 1 of at least one of the executions

E(r)0 and E(r)1 , nt/22 messages are sent by non-faulty nodes.

Suppose w.l.o.g. that this holds for E(r)0 (the other case is
symmetrical). Order the nodes V \ Fr in descending order
according to the number of messages they send in round

r+1 of E(r)0 , and label them by v(1), . . . , v(n−r) according to
this order. Clearly, the nodes v(1), . . . , v(dt/2e) will together
send at least

t/2

n− r ·
nt

22
>
t2

44
(1)

messages in round r + 1 of E(r)0 .
Denote W0 := {v(1), . . . , v(dt/2e)}. We claim that E(W0)

has output 1. Assuming otherwise, in E(W0) all non-faulty
nodes decide 0 by the end of round r+ 2. We will construct
two executions E0 and E1 that cannot be distinguished by a
node that is non-faulty in both executions, yet have conflict-
ing outputs. Both executions are identical to E(W0) before
round r + 1. In round r + 1 of E1 (see Figure 4), all nodes
in W0 fail, which is feasible since r ≤ t/2 and |W0| = dt/2e.
In this round of E1, faulty nodes behave like in E(∅) towards
some fixed non-faulty node v ∈ V \ (W0 ∪ Fr), but like in
E(W0) towards all remaining nodes. Hence, v cannot distin-

guish E1 from E(∅) (and therefore also not from E(r)1 with
only r − 1 faults) before round r + 2, and must decide 1
by the end of round r + 1. We define round r + 1 of E0
to be identical to round r + 1 of E(W0) (see Figure 3); in
particular, we do not fail any additional nodes in this round
of E0.

Observe that E0 and E1 are indistinguishable from each

PPPPPPPsend
receive

Fr W0 v V \ (Fr ∪W0 ∪ {v})

Fr (faulty) (faulty)

W0 as in E(W0)

v (faulty) (faulty) as in E(r)1

V \ (Fr ∪W0 ∪ {v})

Figure 5: Round r + 2 of execution E0. W0 cannot distinguish this execution from E(W0) in this round. Since E(W0) has r
faults, nodes in W0 must thus decide on the same value in E0 and E(W0) by the end of round r + 2.

PPPPPPPsend
receive

Fr W0 v V \ (Fr ∪W0 ∪ {v})

Fr
(faulty) (irrelevant) as in E(W0)

W0

v as in E(r)1

V \ (Fr ∪W0 ∪ {v}) as in E(W0)

Figure 6: Round r + 2 of execution E1. Figures 3–6 show that nodes in V \ (Fr ∪W0 ∪ {v}) cannot distinguish E0 and E1
before round r + 3.

other and from E(W0) at all nodes in V \ (W0 ∪ {v} ∪ Fr)
before round r + 2 by construction. Consequently, these
nodes send the same messages in round r + 2 of all three
executions. We let the nodes in Fr send no messages in
rounds r′ ≥ r+2 of executions E0 and E1, just like in E(W0).
In round r+2 of E0 (see Figure 5), we fail node v, and make
it send the same messages as in round r+ 2 of E(W0) to the
nodes in W0. In E0, the (non-faulty) nodes in W0 will send
the same messages as in E(W0) in this round as well, since
E0 is identical to E(W0) before round r + 2. Consequently,
the nodes in W0 cannot distinguish E0 from E(W0) (with r
faults) before round r + 3 and must decide 0 by the end of
round r + 2 in E0. Towards the nodes in V \ (W0 ∪ Fr ∪
{v}), v mimics its behavior in round r+ 2 of E1 (where it is
non-faulty and thus computes its messages according to the
algorithm). In turn, in round r + 2 of E1 (see Figure 6) the
nodes in W0 mimic their behavior in execution E0. Hence,
nodes in V \ (W0∪{v}∪Fr) receive the same messages from
all other nodes in round r + 2 of both E0 and E1.

In summary, at the end of round r+2, we have that (i) in
E0 the non-faulty node v decided 0, (ii) in E1 the non-faulty
nodes in W0 decided 1, and (iii) no node in V \(W0∪{v}∪Fr)
can distinguish between E0 and E1 before round r+3. There-
fore, in order to force an erroneous decision by some non-
faulty node (in one of the executions), it is sufficient to
extend E0 and E1 without further faults so that nodes in
V \ (W0 ∪{v}∪Fr) 6= ∅ cannot distinguish between the two
executions. This is done by induction on r′ ≥ r + 3, where
the hypothesis is that nodes in V \ (W0 ∪ {v} ∪ Fr) cannot
distinguish E0 and E1 before round r′. The statement holds
for r′ = r+3 by the previous observations. By the hypothe-
sis, nodes in V \(W0∪{v}∪Fr) will send the same messages
in round r′ of both executions, as is true for Fr which sends
no messages. With respect to W0 and v, recall that these
nodes are non-faulty in only one of the two executions. In
the execution where they are faulty, we thus rule that they
simply send the same messages as their non-faulty counter-
parts in the respective other execution. It follows that nodes

in V \ (W0 ∪ {v} ∪ Fr) receive the same messages in round
r′ of both executions and thus cannot distinguish between
them before round r′ + 1. This concludes the induction.

As non-faulty nodes eventually decide, each node in V \
(W0∪{v}∪Fr), which must behave identically in executions
E0 and E1, will violate the agreement property in at least
one of the executions due to (i) and (ii). It follows that
the assumption that E(W0) outputs 0 must be wrong. From
here, we proceed as in Lemma 3.5 by adding nodes to W0

one by one until we finally end up with an (r+1)-critical pair
of executions E(W ∪{vr+1}), E(W) satisfying that W0 ⊆W .
Finally, because the nodes inW0 will send the same messages
in round r+ 1 of E(W ∪{vr+1}) and E(W) as in round r+ 1

of E(V \ Fr) and thus also E(r)0 , Inequality (1) shows that
the constructed (r + 1)-critical pair meets the requirements
of the lemma.

Theorem 3.2 now follows by straightforward application
of the derived results.

Proof of Theorem 3.2. Fix any (f + 1)-deciding bi-
nary consensus algorithm A. By Lemma 3.4, there is a
1-critical pair of executions of A. We inductively apply
Lemma 3.8 f ≤ t/2 times to obtain an (f + 1)-critical pair
of executions, where in all rounds 2, . . . , f +1, at least t2/44
messages are sent by non-faulty nodes; here we make use of
the fact that when applying Lemma 3.8, in both executions
of the constructed (r + 1)-critical pair, all non-faulty nodes
behave identically in round r+ 1 as they do in the r-critical
pair we started from. Since in the constructed executions f
nodes fail, we obtain the desired worst-case lower bound of
t2f/44 on the number of messages sent by non-faulty nodes
in executions with f faults.

Taking into account the lower bound from [6], we arrive at
the following result.

Corollary 3.9. For any (f+2)-deciding consensus algo-
rithm A that tolerates t faults and each 0 ≤ f ≤ t, there are
executions of A in which non-faulty nodes send Ω(t2f + nt)
messages.

4. CRASH FAULTS
In this section, we focus on the following restricted fault

model.

Definition 4.1 (Crash Faults).
Node v ∈ F Er \ F Er−1 crashes in round r of execution E, if
there is a subset W \ V of the nodes such that the following
holds.

• In round r, v sends the same message to each w ∈ W
as it would have if it was non-faulty.

• In round r, v sends no messages to nodes w ∈ V \W .

• In rounds r′ > r, v sends no messages.

A consensus algorithm is resilient to t crash faults, if it sat-
isfies termination, agreement, and validity in all executions
with at most t crashing nodes and no other faults.

Crash faults are much easier to handle and permit (f+1)-
deciding algorithms [2]. We will show now that (f + 1)-
deciding algorithms essentially require all non-faulty nodes
to exchange messages in each round of the algorithm.

Lemma 4.2. Let E(r)0 , E(r)1 be an r-critical pair of execu-
tions of an (f + 1)-deciding algorithm A resilient to t > r
crash faults, where t ≤ n − 2. Then an (r + 1)-critical pair
of executions of A exists, satisfying that in both executions
at least (n− r− 1)2 messages are sent in round r+ 1 by the
nodes in V \ (Fr ∪ {vr+1}).

Proof. Set Fr := Fr−1 ∪ {vr}. First, we are going to
show that non-faulty nodes will have to send a lot of mes-
sages in round r+1, no matter when exactly vr crashes. Af-
terwards it will be simple to construct an (r+1)-critical exe-
cution in which many messages are sent just as in Lemma 3.5.

Consider the execution E1 in which vr crashes before send-
ing any message in round r and no further faults occur.
Suppose w.l.o.g. that E1 outputs 1 (the other case is sym-
metrical). No further faults happen in E1, so it is a valid
execution as r < t. Moreover, all live nodes must decide 1
by the end of round r + 1.

For each v ∈ V \ Fr, we define an execution E0(v) as

follows. E0(v) is identical to E(r)0 before round r. In round
r, vr crashes, successfully sending only its message to v. No
further faults happen in E0(v), thus it is a valid execution.

Observe that v cannot distinguish E0(v) from E(r)0 , which
has r− 1 faults, and thus must decide 0 at the end of round
r of E0(v). No further faults occur in E0(v), implying that
by the end of round r + 1, all live nodes must decide. Since
v already decided 0 and does not crash, it follows that the
output of all nodes must be 0.

We claim that in all these executions, each non-faulty node
sends a message to each other non-faulty node. Assume
for the sake of contradiction that there is a pair of nodes
v, w ∈ V \ Fr such that v does not send a message to w
in E0(v) or E1. We examine first the case where v does not
send a message to w in E1. Consider the execution that is
identical to E0(v) before round r + 1, while in round r + 1
node v crashes, sending all its messages except for the one
to w; this is feasible since r+ 1 ≤ t. Clearly, no node but w
can distinguish this execution from E0(v) before round r+2.
Hence, as t ≤ n − 2, it holds that V \ (Fr ∪ {v, w}) 6= ∅,
implying that there is some node that decides 0 by the end
of round r + 1 of this execution. However, since w does not

receive a message from v, just like in E1, it must decide 1 by
the end of round r+1 of this execution, violating agreement.
We conclude that indeed v must send a message to w in E1.
Analogously, if v does not send a message to w in round r+1
of E0(v), we can make it fail in round r + 1 of E1 to enforce
violation of the agreement property.

From here we argue analogously to Lemma 3.5. We con-

sider executions E(W) that are identical to E(r)0 and E1 be-
fore round r, where vr crashes in round r such that node
w ∈ V \ Fr receives the message from vr exactly if w ∈
W ⊆ V \ Fr. Starting from the empty set, adding nodes to
W one by one will eventually lead to a critical pair, since
E(∅) = E1 outputs 1 and E(V \ Fr) outputs 0. Because
in all these executions, each non-faulty node must send the

same messages as in E(r)0 or E1, we conclude that at least
|V \ Fr|(|V \ Fr| − 1) = (n − r)(n − r − 1) messages are
sent in both executions of the critical pair. Not counting
the messages sent by the critical node vr+1, we have at least
(n− r − 1)2 messages.

Applying this lemma inductively, we arrive at the following
bound.

Theorem 4.3. Let A be an (f + 1)-deciding algorithm
resilient to t > 1 crash faults. Then for each f < t there is
an execution of A with f faults in which nf(n−f) + f3/3−
O(nf) ⊂ Ω(n2f) messages are sent.

Proof. W.l.o.g. assume that t ≤ n − 2. By Lemma 3.4,
there is a 1-critical pair of executions of A (since this execu-
tion has no faults, the lemma applies also to the restricted
fault model). We inductively apply Lemma 4.2 f times, re-
sulting in an execution with f faults in which at least

f∑
i=1

(n− i− 1)2

=
(n− 2)(n− 1)(2n− 3)

6

− (n− f − 3)(n− f − 2)(2(n− f)− 5)

6

∈ 6n2f − 6nf2 + 2f3 + 6n2 −O(nf)

6

⊆ nf(n− f) +
f3

3
−O(nf)

messages are sent.5

Orderly Crash Faults
Interestingly, there is a straightforward algorithm that is
much more efficient if the fault model is constrained further
in that nodes may choose the order in which they (attempt
to) send messages in a given round.

Definition 4.4 (Orderly Crashes). Assume that an
algorithm A specifies for each round and node also in which
order the node sends its messages to other nodes. Denot-
ing for some round and a crashing node v this sequence by
v1, . . . , vn−1, the crash is orderly if the subset W of nodes

5Like in the proof of Theorem 3.2, we exploit here that ap-
plying Lemma 4.2 will, in round r, change only the behavior
of node vr in comparison to the previous critical pair, and
therefore still many messages are sent in round r of the new
pair.

receiving messages from v is a prefix of this sequence. An
algorithm is resilient to t orderly crashes, if termination,
agreement, and validity hold in any execution where there
are at most t faulty nodes, all of which crash orderly.

It should be noted that the lower bound of min{f+2, t+1}
on the number of rounds until all nodes stop applies even if
crashes are orderly [26]. In this work it is also shown that
(f + 1)-stopping becomes feasible if one further allows that
nodes may send multiple messages to the same recipient in
one round, as confirmation messages may be used to prove
that all other nodes have received a previously sent batch of
messages.

The following variant of the simple (not early-stopping)
crash-tolerant algorithm given in [24] that sends O(nt) mes-
sages is (f + 1)-deciding and resilient to t orderly crashes.

1. If node i ∈ V receives a message containing value b, it
decides b.

2. If node i ∈ {1, . . . , t + 1} does not receive a message
before round i, it decides on its input value at the
beginning of round i (i.e., before sending messages).

3. If node {1, . . . , t+1} decides on value b at the beginning
of round r or at the end of round r − 1, it sends b to
all nodes i+ 1, . . . , n (in this order) in round r.

Theorem 4.5. The above algorithm is resilient to t or-
derly crash faults, is (f + 1)-deciding and (f + 2)-stopping,
and sends at most (n− t/2− 1)(t+ 1) < n(t+ 1) messages.

Proof. Decision and Stopping: Denote by i ≤ f + 1
the node with smallest ID that does not fail. It will decide
on and send some value b to all nodes i′ > i at the latest in
round f+1. Hence all live nodes decide by the end of round
f + 1 and stop by the end of round f + 2.

Correctness: If node i ∈ V decides b before round i,
it has received b from some other node i′ < i that already
decided b. If node i decides in round i, it decides on its input
and all nodes i′ < i must have crashed (otherwise i would
have received a message before round i). Thus, there is a
unique node i0 deciding in round i0 on its input, all nodes
i < i0 crash, and all nodes i > i0 decide on the same value
as i0.
Message complexity: Nodes i ∈ {1, . . . , t+ 1} send up

to n− i messages, while nodes i ∈ {t+ 2, . . . , n} never send
a message.

5. OPEN PROBLEMS
We conclude with a brief list of open problems regarding

the trade-offs between early decision and message complex-
ity.

• Can we have (f +O(1))-deciding algorithms that have
optimal resilience and use O(nt) messages?

• Are (f + O(1))-deciding algorithms possible that are
resilient to crash or omission faults and send o(nt) mes-
sages for all n and t?

• Can we show strong lower bounds beyond (f +1)- and
(f + 2)-decision in any of the models?

• Is the message complexity of the (f + 1)-deciding al-
gorithm resilient to orderly crashes that we present
asymptotically optimal?

• Of what use is cryptography to early-deciding algo-
rithms, in terms of the trade-off between round and
message complexity?

• Can randomized algorithms be made more efficient in
runs with few faults, in terms of the trade-off between
round and message complexity?

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant Nos. CCF-AF-0937274,
CNS-1035199, 0939370-CCF and CCF-1217506, the AFOSR
under Contract No. AFOSR Award number FA9550-13-1-
0042, the Swiss National Science Foundation (SNSF), the
Swiss Society of Friends of the Weizmann Institute of Sci-
ence, the German Research Foundation (DFG, reference
number Le 3107/1-1), the Israeli Centers of Research Excel-
lence (I-CORE) program, (Center No. 4/11), grant 3/9778
of the Israeli Ministry of Science and Technology, and the
Google Inter-university center for “Electronic Markets and
Auctions”. Danny Dolev is incumbent of the Berthold Badler
Chair.

6. REFERENCES
[1] P. Berman, J. Garay, and K. J. Perry. Optimal Early

Stopping in Distributed Consensus. In Proc. 6th
Workshop on Distributed Algorithms (WDAG), pages
221–237, 1992.

[2] B. Charron-Bost and A. Schiper. Uniform Consensus
is Harder than Consensus. Journal of Algorithms,
51(1):15–37, 2004.

[3] B. S. Chlebus and D. R. Kowalski. Robust Gossiping
with an Application to Consensus. Journal of
Computer and System Sciences, 72(8):1262–1281,
2006.

[4] B. A. Coan. A Communication-Efficient Canonical
Form for Fault-tolerant Distributed Protocols. In
Proc. 5th Symposium on Principles of Distributed
Computing (PODC), pages 63–72, 1986.

[5] B. A. Coan and J. L. Welch. Modular Construction of
a Byzantine Agreement Protocol with Optimal
Message bit Complexity. Information and
Computation, 97(1):61–85, 1992.

[6] D. Dolev and R. Reischuk. Bounds on Information
Exchange for Byzantine Agreement. Journal of the
ACM, 32:191–204, 1985.

[7] D. Dolev, R. Reischuk, and H. R. Strong. ’Eventual’ is
Earlier than ’Immediate’. In Proc. 23rd Symposium on
Foundations of Computer Science (FOCS), pages
196–203, 1982.

[8] D. Dolev, R. Reischuk, and H. R. Strong. Early
Stopping in Byzantine Agreement. Journal of the
ACM, 37(4):720–741, 1990.

[9] C. Dwork and Y. Moses. Knowledge and Common
Knowledge in a Byzantine Environment: Crash
Failures. Information and Computation,
88(2):156–186, 1990.

[10] M. Fischer, N. Lynch, and M. Patterson. Impossibility
of Distributed Consensus with one Faulty Process.
Journal of the ACM, 32(2):374–382, 1985.

[11] M. J. Fischer and N. A. Lynch. A Lower Bound for
the Time to Assure Interactive Consistency.
Information Processing Letters, 14:183–186, 1982.

[12] M. Fitzi and M. Hirt. Optimally Efficient Multi-valued
Byzantine Agreement. In Proc. 25th Symposium on
Principles of Distributed Computing (PODC), pages
163–168, 2006.

[13] Z. Galil, A. Mayer, and M. Yung. Resolving Message
Complexity of Byzantine Agreement and Beyond. In
Proc. 36th Symposium on Foundations of Computer
Science (FOCS), pages 724–733, 1995.

[14] V. Hadzilacos and J. Y. Halpern. Message-optimal
Protocols for Byzantine Agreement. Mathematical
Systems Theory, 26:41–102, 1993.

[15] I. Keidar and S. Rajsbaum. A Simple Proof of the
Uniform Consensus Synchronous Lower Bound.
Information Processing Letters, 85(1):47–52, 2003.

[16] V. King and J. Saia. Scalable Byzantine Computation.
SIGACT News, 41(3):89–104, 2010.

[17] V. King and J. Saia. Breaking the O(n2) Bit Barrier:
Scalable Byzantine Agreement with an Adaptive
Adversary. Journal of the ACM, 58:18:1–18:24, 2011.

[18] G. Liang and N. H. Vaidya. Complexity of Multi-Value
Byzantine Agreement. CoRR, abs/1006.2422, 2010.

[19] T. Mizrahi and Y. Moses. Continuous Consensus via
Common Knowledge. Distributed Computing,
20:305–321, 2008.

[20] T. Mizrahi and Y. Moses. Continuous Consensus with
Failures and Recoveries. In Proc. 22nd Symposium on
Distributed Computing (DISC), pages 408–422, 2008.

[21] P. R. Parvédy and M. Raynal. Optimal Early
Stopping Uniform Consensus in Synchronous Systems
with Process Omission Failures. In Proc. 16th
Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 302–310, 2004.

[22] A. Patra. Error-free Multi-valued Broadcast and
Byzantine Agreement with Optimal Communication
Complexity. In Proc. 15th Conference on Principles of
Distributed Systems (OPODIS), pages 34–49, 2011.

[23] K. Perry and S. Toueg. Distributed Agreement in the
Presence of Processor and Communication Faults.
IEEE Transactions on Software Engineering,
SE-12(3):477–482, 1986.

[24] M. Raynal. Fault-tolerant Agreement in Synchronous
Message-passing Systems. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool,
2010.

[25] R. Reischuk. A New Solution for the Byzantine
Generals Problem. Information and Control,
64(1–3):23–42, 1985.

[26] R. Zhang, Y. M. Teo, Q. Chen, and X. Wang. Lower
Bounds for Achieving Synchronous Consensus with
Orderly Crash Failures. In Proc. 27th Conference on
Distributed Computing Systems Workshops
(ICDCSW), pages 61–68, 2007.

	Introduction & Related Work
	Model and Problem
	Byzantine Faults
	Crash Faults
	Open Problems
	References

