
On Specifications and Proofs of Timed Circuits
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Abstract. Given a discrete-state continuous-time reactive system, like
a digital circuit, the classical approach is to first model it as a state tran-
sition system and then prove its properties. Our contribution advocates
a different approach: to directly operate on the input-output behavior
of such systems, without identifying states and their transitions in the
first place. We discuss the benefits of this approach at hand of some
examples, which demonstrate that it nicely integrates with concepts of
self-stabilization and fault-tolerance. We also elaborate on some unex-
pected artefacts of module composition in our framework, and conclude
with some open research questions.

1 Motivation and Overview

Many physical systems dealt with by computational methods today do not op-
erate on discrete values. Examples range from electronic circuits to mechanical
systems to chemical processes, which all share that analog information is con-
tinuously processed. Whereas natural and engineering sciences, in particular,
control theory, have been successful in finding and using accurate models for
such continuous systems, primarily based on systems of differential equations,
the complexity both involved in model development and model usage is often
prohibitive: Model composition and hierarchical modeling is usually difficult, and
large simulation times and memory consumption as well as numerical instability
typically limit the applicability of the resulting models in practice.
Discrete-valued abstractions. Applying discrete-valued abstractions for modeling
continuous-valued systems is hence an attractive alternative, and much of the
big success of computer science is owed to their introduction. Apart from being
easily specified and understood, discrete abstractions usually involve all-digital
information and finite (typically small) state-spaces that can be efficiently pro-
cessed, transmitted, and stored. Among the many success stories of this approach
is digital circuit design, which is one of the key enablers of modern computer
systems (and also our main source of application examples): While it is out of
question to perform analog simulations of the billions of transistors and other
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analog electronic components that implement the logic gates in a modern very-
large scale integration (VLSI) circuit, applying digital timing simulations and
verification techniques is common practice.
The need for accurate timed circuit models. Given the tremendous advances in
VLSI technology, with clock speeds in the GHz range and voltage swings well
below 1V [31], modeling accuracy becomes a concern [10]. Additionally, man-
ufacturing process, temperature, and supply-voltage (PVT) variations cause a
large variability in switching and signal propagation delays. Furthermore, re-
duced critical charges make the circuits more susceptible to ionizing particles [7,
13] and electromagnetic interference [40], and feature sizes in the 10 nm range
also increase the likelihood of permanent errors due to manufacturing defects
and wear-out [33, 43]. All these effects together make non-conservative delay
predictions, which are required for digital modeling of fast synchronous circuits,
difficult to obtain.

Indeed, none of these effects is adequately captured by existing timed digi-
tal circuit models. Besides the lack of modeling and analysis support for fault-
tolerance, it was shown in [26] that none of the classic digital channel models,
including the widely used pure and inertial delay channels [49], faithfully model
the propagation of short pulses. The same is true for more advanced models
like PID channels [8] (with the notable exception of involution channels [24],
though). Since existing digital simulators exclusively use classic delay models,
their predictions are hence not always accurate. Moreover, existing digital design
tools lack an adequate support for metastability4 [39] modeling and analysis.
Modeling approaches: state-based and state-oblivious. A natural and powerful
tool for modeling such systems are transition systems. A transition system is
defined by a set of states, transitions between these states, and rules how execu-
tions, i.e., (timed) state sequences, are generated by such a system. Transition
systems can be white-box or black-box: white-box approaches try to follow the
actual implementation and model the dynamics of a system’s state, while black-
box models just try to capture the dynamics of the system’s inputs and outputs.
In the latter case, states are merely used as equivalence classes of execution pre-
fixes (histories), to abstract away individual execution prefixes that do not need
to be further distinguished when capturing the system’s behavior. We will refer
to both variants as state-based specifications in the following.

On the other hand, the correct behavior of a system can be directly specified
by the set of valid executions. For convenience, this is typically done in terms of
an input-output function that maps a (timed) input state sequence to a set of

4 Metastable upsets can occur in any state-holding device with discrete stable states,
such as memory cells. If a new state transition is triggered before the state change
caused by the previous one has settled, an intermediate output value may be observed
arbitrarily late. Even Byzantine (i.e., “worst-case”) fault-tolerance techniques are
incapable of containing the effects of metastable upsets perfectly [22], since a signal
outside the (discrete) value domain is not just an arbitrary regular signal. Note
that metastability is not restricted to electrical systems. For example, an engineered
genetic toggle switch [28], acting as a memory cell storing 0 or 1, was observed to
exhibit metastable behavior besides its two stable states.
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allowed (timed) output state sequences. We will refer to this as a state-oblivious
specification.

While the distinction is not strict, as a state-oblivious specification is eas-
ily translated to a state-based specification with the set of states being the set
of all execution prefixes, i.e., trivial equivalence classes taken as states, the ap-
proaches tend to lead to quite different formalizations and proofs. In computer
science, state-based specifications have received lots of attention, and can nowa-
days draw from a rich set of techniques, e.g., for showing that one system im-
plements another system via simulation relations, or reasoning about properties
of compositions of systems.

A take on a state-oblivious modeling framework. In this work, we advocate the
considerably less popular alternative of state-oblivious specifications and discuss
some of its properties, building on the framework originally presented in [16].

In Section 2–Section 5, we review5 the cornerstones of state-oblivious formal-
izations of continuous-time, discrete-valued circuits as introduced in [16]. Like in
some existing approaches for reactive systems, such as Broy and Stølen’s FOCUS
[9], a module is specified directly in terms of the output behaviors that it may
exhibit in response to a given input signal. As already said, this is very different
from existing frameworks that follow a state-based approach, including Alur-Dill
Timed Automata [4], Lamport’s TLA [35], Timed IO Automatons by Keynar
et. al. [32], and discrete abstractions for hybrid systems [3], as well as state-
space-based control theory [36], which all act on the (sometimes uncountable)
state-space of the underlying system.

We demonstrate that typical timing constraints and fault-tolerance prop-
erties (e.g. Byzantine behavior [42]) are easily expressed and dealt with in a
state-oblivious framework. In Section 6, we also demonstrate that self-stabilizing
systems [18], in which the initial internal state is assumed to be completely ar-
bitrary after a catastrophic (but transient) event, can be described and proved
correct appropriately.

In Section 3, we address the important issue of composition of modules.
Composition has been extensively studied in state-based approaches. In general,
however, it is even difficult to decide whether behavioral specifications match at
interface boundaries [2]. While one can prove some generic properties about com-
position of state-oblivious specifications, they apply to quite restricted settings
only. In Section 7, we will show that there are indeed some unexpected module
composition artefacts for state-oblivious specifications when one considers more
general settings. In particular, the eventual short pulse filter (eSPF) module in-
troduced in [26, Sec. 7] reveals that composing modules with bounded delay in a
feedback loop may result in a module with finite delay. Even worse, whereas the
feedback-free composition of bounded-delay modules is always bounded delay,
it turns out that the feedback-free composition of finite-delay modules need not

5 A note to the reviewers: We not only strived for making our paper self-contained,
but also tried to explain the concepts introduced in [16] in a more accessible way. We
can adapt its length to the final page limit, however, once it has been determined.
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always be finite-delay. Some conclusions and problems open for future research
are provided in Section 8.
Applications beyond VLSI circuits. Although our framework emerged in the con-
text of digital circuits [16], its applicability extends to other domains also. It
needs to be stressed, though, that we do not aim at typical application domains
of classic control theory. Despite some similarities, like considering systems as
function transformers, our continuous-time discrete-value (typically binary) sig-
nals and their properties of interest are very different from the signals considered
in either continuous or discrete control theory.

However, the idea to model continuous dynamical systems by discrete-state
timed circuits has been successfully applied to genetics as well: Rather than an-
alyzing dependencies of transcription and protein levels by means of differential
equations, genetic circuit models have been used for descriptive [1, 48] and syn-
thetic [28, 30, 46, 6] purposes. In the meantime, a body of genetic circuit design
principles has been established [41, 29, 44]. For a discussion on differences be-
tween classical circuits in silicon and genetic circuits, we refer the reader to [25].
Further, as many biological systems are fault-tolerant and even self-stabilizing
to a certain extent, a unified model bears the promise of cross-fertilization be-
tween different application domains. Earlier work on biologically inspired self-
stabilizing Byzantine fault-tolerant clock synchronization [11, 45] is a promising
example of the benefit of this approach.

2 Timed Circuit Models

Before discussing basic properties of state-oblivious specifications via some ex-
amples, we very briefly recall the standard synchronous, asynchronous, and par-
tially synchronous timing models for specifying distributed systems. Obviously,
they can be also used for modeling gates in a circuit that communicate with
each other via interconnecting wires.

In synchronous systems, components act in synchronized lock-step rounds,
each comprising a communication phase and a single computing step of every
component. The strict constraints on the order of computing steps thus facilitate
algorithms that are simple to analyze and implement, yet can leverage time to,
e.g., avoid race conditions and implement communication by time [34]. Unfor-
tunately, implementing the synchronous abstraction, e.g., by central clocking or
causal relations enforced by explicit communication [5], can be too inefficient or
plainly infeasible.

This fact fuels the interest in asynchronous systems, for which no assump-
tions are made on the order in which computation and communication steps are
executed. The standard way of modeling asynchronous executions is to associate
a local state with each component, and let a (fair) scheduler decide in which
order components communicate and update their states (i.e., receive information
and perform computation). Viewing synchrony as the temporally most ordered
execution model of distributed computations, asynchronous systems are at the
other extreme end of the spectrum. Since it is impossible to distinguish very slow
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components from such that have suffered from a crash fault, however, proving
correct asynchronous distributed algorithms is difficult and often impossible.6

To circumvent this problem, a number of intermediate partially-synchronous
state-based models have been defined (e.g. [14, 19]). However, such models are
less popular, and typically serve either special applications or as a vehicle to
better understand the fundamental differences between synchronous and asyn-
chronous systems.

2.1 When state-based formalizations are unnecessarily complicated

While synchronous and asynchronous systems are easy to specify within state-
based frameworks, the situation becomes different for systems with more com-
plicated timing constraints like partially synchronous systems. The challenge in
allowing for general timing constraints is that the elegant and convenient separa-
tion of time and the evolution of the system state cannot be maintained. The sit-
uation becomes even more involved when the goal is to model circuits, as opposed
to software-based computer systems. A major difference is that software-based
systems typically reside at a level of abstraction where discrete, well-separated
actions are taken naturally by an underlying machine. The evolution of the in-
ternal state of this machine is then modeled as a transition system. By contrast,
real circuits are analog devices that continuously transform inputs into outputs.

We demonstrate the differences between the state-based and the state-oblivi-
ous approach at the example of the arguably simplest circuit, namely, a bounded-
delay channel, as instantiated e.g. by an (ideal) wire.
A channel. We consider a binary bounded-delay first-in first-out (FIFO) channel,
which has a single input port (= connector) and a single output port. Whereas
such channels are also employed in various state-based models, they are usu-
ally part of the model and typically also the only means of communication. By
contrast, we describe the channel as an object in a (to-be-defined) model.

Informally, we require the following: The input port is fed by an input signal
given as a function in : R → {0, 1}. Note that the restriction to binary-valued
signals is for simplicity only and could be replaced by arbitrary discrete ranges.
The reason why the domain of in is R instead of, e.g., the non-negative reals
R+

0 , will be explained later. Typically, some further restrictions are made on
(input) signals for modeling real circuits, e.g., only a finite number of transitions
within each finite interval. For each input signal, the output port produces an
output signal such that: (i) for each input transition there is exactly one output
transition within some time d > 0, and (ii) output transitions occur in the same
temporal order as their corresponding input transitions.
The state-based approach: the channel as a transition system. A state-based
description would model the state of the channel at some time t, as well as
the rules for transitioning between states. Obviously, this would allow us to infer
the correct behavior of the channel at times greater than t as valid traces of this

6 Consensus [42], a basic fault-tolerance task, can be solved deterministically in syn-
chronous systems, but not in asynchronous systems [21].
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transition system. However, a state-based description would be at odds with our
goal of a simple and modular specification of the system:
– Both a physical wire connecting sender and receiver and reliable multi-hop

wireless channel are implementations of our channel. Specifications with one
of them in mind may differ significantly.

– The state space of the channel would be infinitely large, as it must be able
to record an arbitrarily long sequence of alternating input transitions that
may have occurred within [t− d, t]

– The strategy of breaking down a difficult-to-describe state-based description
into smaller building blocks does not help here.
The above problems become even more pronounced when it comes to more

interesting modules. Even if we were not discouraged by the above difficulties
and went for a state-based definition of the channel, e.g. in terms of Timed I/O
Automata [32], we argue that the original advantage of a state-based approach
would be lost: the canonical description of the global state of the system as the
product of the components’ states.
The state-oblivious approach: the channel as an input-output function. We con-
clude that our preferred option is (i) to treat the channel as a blackbox, and
(ii) not to bother with finding states, i.e., equivalence classes of histories, in the
first place. That is, we infer the possible output not from some internal state,
but rather directly from the input history. By the nature of a channel, however,
the feasible output values at time t cannot be determined from in alone: the
output at times smaller than t enters the bargain as well. Hence, we naturally
end up directly relating input and output signals: For each (possible) input sig-
nal in, there must be a non-empty set of feasible output functions ϕ(in), where
the module specification ϕ maps inputs signals to such feasible output signals.
Note that we allow the adversary to choose which of the feasible output signals a
module generates in some execution, i.e., we just assume non-determinism here.7

This also allows to express any given restriction on the inputs, e.g., one that is
considered suitable for a given module, simply by permitting any output signal
for input signals that violate such a restriction.

A state-oblivious specification of our channel can be given in terms of an
input-output function ϕ. For every input signal in, the output signal out is
feasible, i.e., out ∈ ϕ(in) if out(t) = in

(
δ−1(t)

)
, where the delay function

δ : R → R is continuous, strictly increasing (hence invertible), and satisfies
t ≤ δ(t) ≤ t+ d for all t ∈ R.

Note carefully that, as we model signals as functions of real-time, we do not
need special signal values (as in FOCUS [9]) that report the progress of time,
and relating different (input, output) signals to each other becomes simple.

It remains to explain why we chose the whole set of reals R as the (time)
domain of our input and output functions. Again, in principle, nothing prevents
us from using functions R+

0 → {0, 1}. For the considered channel, it would be
reasonably easy to adapt the description: out ∈ ϕ(in) is arbitrary on [0, δ(0))

7 Whereas one could extend our framework to restrict the adversary here, e.g., to
capture probabilistic choice, we will not consider this possibility in this paper.
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and out(t) = in(δ−1(t)) on [δ(0),∞), for some continuous, strictly increasing
delay function δ : R+

0 → R+
0 satisfying that t ≤ δ(t) ≤ t+ d for all t ∈ R+

0 .
However, given that our “equivalent” to the channel’s state is its input his-

tory, it is more natural to rely on input signals with a time domain that contains
[−d,∞) when specifying feasible outputs on R+

0 . Extending the range by a finite
value only would not cover all possible values of d, though. Moreover, there are
modules whose output may depend on events that lie arbitrarily far in the past,
e.g., a memory cell. For simplicity and composability, picking R as domain is
thus preferred here. We remark that this convention does not prevent suitable
initialization of a module, say at time t = 0, however.

3 Composition

In the previous section, we demonstrated the use of state-oblivious specifications
in terms of directly providing input-output functions ϕ for a simple channel. In
general, we define:

Definition 1 (Module). A signal is a function from R to {0, 1}. A module M
has a set of input ports I(M) and a set of output ports O(M), which are the
connectors where input signals are supplied to M and output signals leave M .
The module specification ϕM maps the input signals (inp : R → {0, 1})p∈I(M)

to sets of allowed output signals (outp : R → {0, 1})p∈O(M). An execution of a
module is a member of the set{(

(inp)p∈I(M), ϕM ((inp)p∈I(M))
)
| (inp : R → {0, 1})p∈I(M)

}
.

Note that we typically assume that modules are causal, i.e., that images of ϕM

for two inputs that are identical until time t are identical until time t.
Specifying a module M this way, i.e., by providing ϕM , can either be viewed

as stating an assumption, in the sense that it is already known how to build a
module with the respective behavior, or as stating a problem, i.e., expressing
a desired behavior of a module that still needs to be built. We call a module
specified this way a basic module.

Implementing such a module can be done in two different ways: (i) directly
within a target-technology, which leaves the scope of our modeling framework,
or (ii) by decomposition into smaller modules within the modeling framework.

Let us now formalize what the latter means in the context of our approach.
Intuitively, we will take a set of modules and connect their input and output
ports to form a larger compound module, whose inputs and outputs are subsets
of the ports of these modules (cp. Figure 1). The input-output function of the
compound module is then derived from the ones of the submodules and their
interconnection.

Definition 2 (Compound module). A compound module M is defined by:
1. Decide on the sets of input ports I(M) and output ports O(M) of M .
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2. Pick the set SM of submodules of M . Each submodule S ∈ SM has input
ports I(S), output ports O(S), and a specification ϕS that maps tuples (inp :
R → {0, 1})p∈I(S) of functions to sets of tuples (outp : R → {0, 1})p∈O(S)

of functions, satisfying the following well-formedness constraints:
– For each output port p ∈ O(M), there is exactly one submodule S ∈ SM

such that p ∈ O(S).
– For each input port p ∈ I(S) of some submodule S ∈ SM , either p ∈

I(M) or there is exactly one submodule S′ ∈ SM so that p ∈ O(S′).
3. For each (inp : R → {0, 1})p∈I(M), we require (outp : R → {0, 1})p∈O(M) ∈

ϕM

(
(inp)p∈I(M)

)
iff there exist functions (fp : R → {0, 1})p∈⋃

S∈SM
I(S)∪O(S)

with
– ∀S ∈ SM : (fp)p∈O(S) ∈ ϕS((fp)p∈I(S));
– ∀p ∈ I(M) : fp = inp; and
– ∀p ∈ O(M) : fp = outp.

Note that choices are made only in Steps 1 and 2, whereas ϕM is defined implic-
itly and non-constructively in Step 3. Informally, the latter just says that any
execution, i.e., any pair of input and output signals, of M that leads to feasible
executions of all submodules, must be in ϕM .

Example 1 (Oscillator). Figure 1 shows an example compound module: a simple
resettable digital oscillator. It is composed of an inverter, an And gate, and a
fixed unit delay channel, i.e., a FIFO channel with δ(t) := t + 1. Both gates
operate in zero-time, i.e., all delays have been lumped into the FIFO channel.

d
y

en

InvChn And

Fig. 1: Compound oscillator module.

The module’s behavior is characterized by the fact that it oscillates at its
output y = Chn in while input en is 1, and outputs a constant 0 while en
is 0. Up to time 4, the signal trace depicted in Figure 2 shows part of a correct
execution of the oscillator module.

The same conceptual design of a negative feedback-loop with delay was used
by Stricker et al. [46] in the context of genetic circuits, for synthesizing a genetic
oscillator in Escherichia coli with an output period in the order of an hour.
Figure 3 depicts the genetic design of the feedback-loop of the simplified (second)
design proposed by Stricker et al. It shows the DNA segement that is introduced
into the bacterial host. The DNA comprises of a promoter (bold arrow in the
figure) and a downstream lacI gene (flanked by a ribosome binding site and a
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out
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d

Fig. 2: Execution of oscillator module with transient channel fault (signal mis-
match marked red).

terminator that are not shown for simplicity). The lacI gene is transcribed and
translated into LacI protein. The promoter is activated if no inhibiting LacI
proteins are present (shown as an inhibitory arrow from lacI to the promoter)
and externally introduced IPTG molecules are present (not shown in the figure,
and assumed to be present throughout). The activation of the promoter leads to
transcription and subsequent translation of the downstream lacI gene, resulting
in increasing LacI protein levels, which then inactivate the promoter. Only when
the concentration of the LacI protein has fallen to a sufficiently low level due to
degradation and dilution, the promoter becomes active again. The result is an
oscillation of the LacI protein concentration.

A note on state-oblivious specifications: the absence of an initial state. In the
previous section, we have argued that, when specifying the channel input-output
behavior in a state-oblivious way, we resort to input output signals as functions
R → [0, 1]. In this section, we followed this approach in Definitions 2 and 1.
We will later see (in Section 5) that such specifications are also well-suited for
specifying so-called self-stabilizing systems.

However, state-oblivious specifications also introduce difficulties that lead to
open research questions. More specifically, a useful vehicle for showing that some
module implements another one in classical state-based frameworks is by induc-
tion on a sequence of input events, starting from some initial state. Simulation
and bi-simulation relations are proved this way, with implications on what can
be said about using one module instead of the other. These proof techniques fail
in our case, however, since signals are defined on the time domain R, without
an initial time and “state”. While one can argue that induction from a common

promoter lacI

Fig. 3: Negative feedback loop of a genetic oscillator presented by Stricker et al.
[46].
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time, say 0, can be done into the positive an negative direction, questions about
what this means for one module replacing/implementing another are open.

4 Modeling Permanent Faults

Viewed from an outside perspective, all that a faulty module can do is deviating
from its specification. Depending on the type of faults considered, there may or
may not be constraints on this deviation. In other words, a faulty module M
simply follows a weaker module specification than ϕM , i.e., some module speci-
fication ϕ̄M such that ∀(inp)p∈I(M) : ϕ̄M

(
(inp)p∈I(M)

)
⊇ ϕM

(
(inp)p∈I(M)

)
.

Definition 3 (Crash and Byzantine fault types). For the fault type crash
faults [20], a faulty component simply ceases to operate at some point in time. In
this case, ϕ̄M ((inp)p∈I(M)) can be constructed from ϕM ((inp)p∈I(M)) by adding,
for each (outp)p∈O(M) ∈ ϕM ((inp)p∈I(M)) and each t ∈ R, the output signal(

t′ ∈ R 7→

{
outp(t

′) if t′ < t

outp(t) else

)
p∈O(M)

to ϕ̄M ((inp)p∈I(M)). This just keeps (“stuck-at”) the last output value before the
crash.

The fault-type of Byzantine faults [42] is even simpler to describe: The be-
havior of a faulty module is arbitrary, i.e., ϕ̄M is the constant function returning
the set of all possible output signals, irrespective of the input signal.

Having defined a faulty type ϕ̄S for a module S accordingly, it seems obvious
how to define a fault-tolerant compound module: A compound module M with
submodules SM tolerates failures of a subset F ⊂ SM , iff ϕM = ϕ̄M,F , where
ϕ̄M,F is the specification of the compound module in which we replace each
submodule S ∈ F by the one with specification ϕ̄S .

Example 2 (Fault-tolerant 1-bit adder module). Figure 4 shows an example of a
1-bit adder module. It is built from three (zero-time) 1-bit adder submodules,
a (zero-time) majority voter, and FIFO channels with maximal delay d con-
necting the module’s inputs to the adder submodules. The channels account for
the module’s propagation delay and potentially desynchronized arrivals of input
transitions at the submodules. If the module inputs have been stable for d time,
however, its output yields the sum of the two inputs, tolerating failure of any
one of its three adder submodules and the associated input channels.

While this definition of a fault-tolerant compound module can be useful, it
is very restrictive. For instance, our adder compound module cannot tolerate
a failure of the majority voter that computes the output. More generally, no
matter how a compound module M is constructed, it can never tolerate even a
single crash failure of an arbitrary submodule S, unless M is trivial: If S has an
output port in common with M , i.e., if S generates this output for M , the only
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Fig. 4: Fault-tolerant 1-bit adder.

possible guarantee M could make for this output port is a fixed output value at
all times, as this is what the crash of S would lead to.

To address this issue, we introduce the concept of a fault-tolerant implemen-
tation of a module.

Definition 4 (Fault-tolerant implementation). We say that module M im-
plements module M ′ iff

∀(inp)p∈I(M) : ϕM

(
(inp)p∈I(M)

)
⊆ ϕM ′

(
(inp)p∈I(M ′)

)
.

This requires that I(M) = I(M ′) and O(M) = O(M ′). Similarly, for a given
fault type ·̄, M is an implementation of M ′ that tolerates failures of F ⊂ SM iff

∀(inp)p∈I(M) : ϕ̄M,F

(
(inp)p∈I(M)

)
⊆ ϕM ′

(
(inp)p∈I(M ′)

)
,

where ϕ̄M,F is defined according to the fault type. Finally, M is an f -tolerant
implementation of M ′, iff it tolerates faults of F ⊂ SM for any F satisfying
|F | ≤ f .

Example 3 (Fault-tolerant adder). For an adder implementation that is 1-toler-
ant to Byzantine faults (and thus also any other fault type), triple-modular
redundancy (TMR) can be used. Here, not just the adders, but also the pair of
input and output signals is triplicated. Moreover, the single majority voter at
the adder outputs is replaced by three majority voters at the adder inputs: Since
they vote on the replicated input signals, we can guarantee that all three adders
receive identical inputs if no voter fails, whereas two adders receive identical
inputs and produce identical outputs if one voter is faulty. Note that relaxing the
specification and using an implementation relation is necessary here, as otherwise
the same reasoning as before would prevent a 1-tolerant solution.

The problem of developing a fault-tolerant implementation of an oscillator
was addressed in the DARTS project [23, 27]: Using a predecessor of the proposed
modeling framework, it was shown that a circuit comprising 3f+1 tick generator
nodes, in which the output of each node is fed back as input to all nodes (in-
cluding the node itself), tolerates up to f Byzantine faulty nodes. The circuitry
of a single tick generator node for n = 4 and f = 1 is depicted in Figure 5.
Informally, it counts the difference of clock transitions generated by itself (Local
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Fig. 5: Node of the fault-tolerant DARTS oscillator.

Pipe) and those received from other nodes (Remote Pipe) by means of Counter
Modules implemented via elastic pipelines [47]. When sufficiently many nodes
(not all, since there might be a fault) are not too far behind (determined by the
Threshold Gates), it generates a new local clock transition (Tick Generation).

5 Modeling Transient Faults and Self-Stabilization

Transient faults are assumed to be temporary in nature, in the sense that the
cause of the fault eventually vanishes. Suitable recovery techniques can hence
be used to resume correct operation later on. The most extreme requirement is
self-stabilization [12], where the system must eventually resume correct operation
even after all of its components experienced arbitrary transient faults. Since the
latter results in arbitrary states, this is equivalent to requiring that the system
re-establishes correct operation from arbitrary initial states in finite time. The
maximal time it may take to do so is called stabilization time.

Self-stabilization plays a crucial role in mission-critical systems, where even
the assumption that a certain fraction (e.g., less than a third, as in DARTS)
of the subcomponents can fail is too optimistic, or for applications that cannot
afford the amount of redundancy needed for fully masking faults. Unsurprisingly,
self-stabilization and related concepts also play a vital role in biological systems.
For example, Albert and Othmer [1] modeled part of the control circuit that
regulates gene expression in the fruit fly Drosophila Melanogaster by a binary
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circuit, and observed that a considerable number of initial circuit states finally
lead to the wild-type stable state. For the lobster heart, it has been established
that it is, in essence, self-stabilizing even in the presence of ongoing Byzantine
behavior [11, 45].

Transferring the idea of self-stabilization to our state-oblivious framework
requires some effort, but we will demonstrate that it can be integrated very well.
Most notably, there is no notion of a state (besides from trivial states), which
means that we cannot define self-stabilization in the conventional state-based
manner.

The first important observation underlying input-output functions in a state-
oblivious specification of self-stabilization is that, since a basic module specifi-
cation describes the desired behavior from the viewpoint of an external observer,
we consider a module correct even if it merely seems to be operating correctly in
terms of its input-output behavior. In other words, it does not matter whether
the module internally operates as intended, as long as it produces correct results.

Second, when defining basic modules (Definition 1), we only resorted to input
and output signals from R → [0, 1]. The input-output function ϕM of a moduleM
then maps input signals to allowed output signals. For modules that are intended
to be self-stabilizing (or that suffer from transient faults), this is not anymore
convenient since they are not either correct or faulty during all of the execution.
Merely, we would like to define how they should behave if they were correct
during a time interval [t−, t+].
Redefining correctness for transient faults. An immediate solution to this is to
define ϕM on all signal restrictions to all sub-intervals I = [t−, t+] ⊆ R. To
make such interval-restrictions explicit, we will sometimes write σI , inI , outI ,
EI etc. Note that such intervals I could also be open (t−, t+), closed [t−, t+], or
half-open, but are always contiguous.

Definition 5 (Basic module—interval-restricted specification). An in-
terval-restricted execution EI of a basic module is correct during I = [t−, t+] if
its interval-restricted output signals outI are within the image ϕM (inI) of its
interval-restricted input signals.

We termed this the interval-restricted specification, since it requires the definition
of ϕM on all these sub-intervals.

However, care has to be taken: the input-output function ϕM has to be re-
stricted to ensure that it adheres to an intuitive notion of correctness. For exam-
ple, we expect an execution of M that is correct within [t−, t+] to be also correct
within all subintervals of [t−, t+]. One possibility is to add all those restrictions
explicitly. Indeed, such specifications are powerful in expressiveness [16], but at
the same time our experience in the early stages of [16] was that using this
approach is tedious for simple modules, and practically guarantees mistakes for
complex modules. The reason for this is that the subset-closedness of the cor-
rectness definition is easily violated in an interval-restricted specification even
for simple modules like channels.

We thus primarily resort to another definition, which does not change the
domain of ϕM , i.e, where the domain of all signals is R, which we call a definition
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by extension. With this definition, correctness is subset-closed for time intervals
by construction (see [16, Lem. 3.3]), such that the natural notion of correctness
is also guaranteed by construction.

Definition 6 (Basic module, correct during time interval—definition
by extension). An interval-restricted execution EI of a basic module M is
correct during I = [t−, t+], iff there is a (complete, i.e., with time domain R)
execution E′ of a basic module M such that: (i) the input and output signals of
EI and E′ are identical during [t−, t+], and (ii) for execution E′, letting i be the
input signals and o the output signals of E′, o ∈ ϕM (i).

If not stated otherwise, we will resort to the definition by extension for basic
modules. For ease of notation, we will, however, extend ϕM to input and output
signals with time domains that are sub-intervals [t−, t+] of R in the following:
Writing outI ∈ ϕM (inI) where inI ,outI have time domain I = [t−, t+] is just
a short-hand notation for: For any execution E of M that behaves according to
inI ,outI during I, basic module M is correct during I.

Definition 7 (Extendible module). We say that a basic module is ex-
tendible, if its input-output function ϕM has the properties of a definition by
extension. That is, executions that are correct on a subinterval can be extended
to executions that are correct on R.

The above definition of correctness introduced above also implies that a
sub-execution on some interval [t−, t+] ⊂ R that is considered correct can be
extended to a (complete) correct execution on R. This is natural for basic mod-
ules, but inappropriate for self-stabilizing compound modules: these take the role
of algorithms, and making this a requirement would be equivalent to disallow-
ing transient faults—or, more precisely, to implicitly turn them into persistent
faults. To illustrate this issue, consider again the compound module implement-
ing the oscillator shown in Figure 1 and the signal trace shown in Figure 2: The
execution segment during time interval [6, 8] must be considered correct, since
it fulfills all input-output constraints of the involved circuit components during
this interval. We know, however, that such a high-frequency oscillation can never
occur in a (complete) correct execution of the compound module on R, for which
the only possible oscillator frequency is one transition per time unit.

To allow for a meaningful notion of self-stabilization, we will hence treat
compound modules differently: When analyzing their stabilizing behavior, we
assume that all sub-modules themselves operate correctly, whereas the “conver-
gence” of the compound module’s externally visible behavior to a correct one
must be enforced. This is captured by defining correct executions of compound
modules on time intervals [t−, t+] ⊂ R by the same process as in Definition 2,
except that we replace R by [t−, t+].

Definition 8 (Compound module—interval-restriced specification).
For any I = [t−, t+] and any interval-restricted input signal (inI

p)p∈I(M), we re-

quire that the interval-restricted output signal (outI
p)p∈O(M) ∈ ϕM ((inI

p)p∈I(M))
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iff there exist interval-restricted input and output signals (f I
p )p∈

⋃
S∈SM

I(S)∪O(S)

for all submodules S of M so that all the properties below hold:
– ∀S ∈ SM : (f I

p )p∈O(S) ∈ ϕS((f
I
p )p∈I(S))

– ∀p ∈ I(M) : fp = inI
p

– ∀p ∈ O(M) : fp = outI
p

Note that this definition is recursive; we can iteratively extend all module
specifications to inputs on arbitrary intervals [t−, t+] ⊆ R, starting from the
specifications of basic modules for inputs on R.

With these definitions in place, we can now proceed to defining a suitable
notion of self-stabilization in our framework.

Definition 9 (Self-stabilizing implementation). A module M is called a
T -stabilizing implementation of module M ′, iff I(M) = I(M ′), O(M) = O(M ′)
and, for all I = [t−, t+] ⊆ R with t+ ≥ t− + T , I ′ = [t− + T, t+] and each
(outI

p)p∈O(M) ∈ ϕM

(
(inI

p)p∈I(M)

)
, it holds that

(outI′

p )p∈O(M) ∈ ϕM ′

(
(inI′

p )p∈I(M ′)

)
.

Informally, cutting off the first T time units from any interval-restricted execu-
tion of M must yield a correct interval-restricted execution of M ′.

Module M is a self-stabilizing implementation of M ′, iff it is a T -stabilizing
implementation of M ′ for some T < ∞.

Example 4 (Self-stabilization). According to Definition 9, the oscillator imple-
mentation from Figure 1 is not self-stabilizing, as illustrated by Figure 2: After
a transient fault of the channel component during time [5, 6], all circuit compo-
nents operate correctly again from time 6 on, but the behavior of circuit output
y = Chn in never returns to the behavior of y that could be observed in an
execution on R.

For a positive example, recall the 1-bit adder depicted in Figure 4. Its self-
stabilization properties follow, without the need of a custom analysis, from a
general principle (called forgetfulness), which will be introduced in the next
section.

6 Example: A Self-Stabilizing Oscillator

In view of the state-obliviousness and generality of our modeling framework, one
might ask whether it indeed allows to derive meaningful results. As a proof of
concept, we will thus elaborate more on self-stabilizing compound modules.

First, we will formalize the statement that if a compound module M is made
up of submodules S whose output at time t depends only on the input during
[t − TS , t] (for TS ∈ R+

0 ) and contains no feedback-loops (like, e.g., the adder
in Figure 4, but unlike the oscillator in Figure 1), then M is self-stabilizing.
Interestingly, this result sometimes does also apply to systems that do have
internal feedback loops; this holds true whenever we can contain the loop in a
submodule and (separately) show that it is self-stabilizing.
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Definition 10 (Forgetfulness). For F ≥ 0, module M is F -forgetful iff:
1. For any I = [t−, t+] ⊆ R with t+ ≥ t− + F , pick any interval-restricted

output (outI
p)p∈O(M) ∈ ϕM

(
(inI

p)p∈I(M)

)
.

2. For each input port p ∈ I(M), pick any input signal in′
p : R → {0, 1} so that

in′
p restricted to I equals inI

p.

3. Then
(
out′

p : R → {0, 1}
)
p∈O(M)

∈ ϕM

(
(in′

p : R → {0, 1})p∈I(M))
)
exists so

that for all output ports p ∈ O(M) the restrictions of outp and out′
p to the

interval [t− + F, t+] are equal.

In other words, the output of a F -forgetful module during [t− + F, t+] reveals
no information regarding the input during (−∞, t−).

Example 5. A simple example of a d-forgetful module is a FIFO channel with
maximum delay d.

Definition 11 (Feedback-free module). Let the circuit graph of a com-
pound module M be the directed graph whose nodes are the submodules SM of
M , and for each output port p of S ∈ SM that is an input port of another submod-
ule S′ ∈ SM , there is a directed edge from S to S′. We say M is feedback-free
iff all its submodules are forgetful and its circuit graph is acyclic.

One can then show that feedback-free compound modules made up of for-
getful submodules are self-stabilizing:

Theorem 1 ([16], Theorem 3.7). Given a feedback-free compound module
M , denote by P the set of paths in its circuit graph. Suppose that each submodule
S ∈ SM is FS-forgetful for some FS ∈ R+

0 . Then, M is F -forgetful with

F = max
(S1,...,Sk)∈P

{
k∑

i=1

FSi

}
.

Using this theorem (possibly recursively applied, in the case of compound
modules made up of compound submodules), one can show that a given feedback-
free compound module is forgetful. Moreover, for such a moduleM , it is sufficient
to show that it behaves like another module M ′ in correct executions (i.e., those
on R, rather than on certain time intervals) for proving thatM is a self-stabilizing
implementation of M ′.

Corollary 1. Suppose that compound module M satisfies the prerequisites of
Theorem 1. Moreover, for a module M ′ with I(M ′) = I(M) and O(M ′) = O(M),
assume that: For all input signals (inp : R → {0, 1})p∈I(M), it holds for its output

signals that ϕM

(
(inp)p∈I(M)

)
⊆ ϕM ′

(
(inp)p∈I(M)

)
. Then, M is a self-stabilizing

implementation of M ′.

These results ensure that self-stabilization follows without further ado not
only in trivial cases where an erroneous state is instantaneously forgotten and
overwritten by new input. By using compound modules in a hierarchical manner,
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one can encapsulate the heart of a proof of self-stabilization in the appropriate
system layer and separate aspects from different layers that are unrelated. This
plays along nicely with the standard approach for proving self-stabilization of
complex systems, which is to establish properties of increasing strength and
complexity in a bottom-up fashion, advancing from very basic aspects to high-
level arguments.
Beyond feedback-free compound modules. Unfortunately, however, it is not hard
to see that if (the circuit graph of) a compound module M is not feedback-free,
self-stabilization of M does not necessarily follow from the fact that all sub-
modules are forgetful. An example of such a circuit is the oscillator in Figure 1.
There are, however, circuits with feedback loops that stabilize.

Example 6. Figure 6 shows a self-stabilizing variant of the oscillator from Fig-
ure 1 (without enable input). The module consists of (i) a watchdog-timed
memory-cell Mem whose output Mem Out = Y ; the output is 1 at time t
iff there is a time t′ ∈ (t−T, t) where output Y (t′) = 0 and input X(t′) = 1, (ii)
a succeeding fixed delay channel with delay d ≤ T , and (iii) an inverter. Note
that (i) implies that the set {t ∈ R+

0 |Y (t) = 0} is closed.

We now demonstrate how to formalize this example and its proof in our state-
oblivious framework. The (basic) module osc has no input and one output Y .
Recall that, for basic modules, specifications involve defining ϕM on executions
on R only. Hence, the module specification ϕosc is fully defined by deciding
whether some function (outY : R → R) ∈ ϕosc(∅) or not. We define this to be
the case for all functions satisfying that ∃δ ∈ [0, T + d) so that

outY (t) =

{
1 if ∃z ∈ Z,∃τ ∈ (0, T ) : t = δ + z(T + d) + τ

0 else .

Intuitively, δ denotes the fixed time offset of the signal, and τ the time the signal
is 1 during the period t+ d.

If restricted to times [0, 5], Figure 7 shows the execution for δ = 0, d = 1
and T = 1.5d = 1.5. The channel incorrectly forwards the red signal at its input
during time [4, 5] to the red signal at its output during [5, 6], i.e., is not correct
during [5, 6]. However, the module quickly recovers: Starting from time 6.3, the
circuit has returned to a feasible periodic behavior with δ = 0.3 and τ = T . We
next show that this stabilizing behavior is guaranteed.

Lemma 1. If T ≥ d, the compound module given in Figure 6 is a (T + 2d)-
stabilizing implementation of osc.

d
�

y

InvChn
Mem

X

Fig. 6: Self-stabilizing oscillator module.
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Fig. 7: Execution part of self-stabilizing oscillator module with transient channel
fault (incorrect propagation in red).

Proof. Wlog., assume that the compound module follows its specification during
[t−, t+) = [0,∞).
1. There is some time t∗ ∈ [0, T + d] when Y (t∗) = 0. (Otherwise, the input to

Mem at every time t ∈ [d, T + d] would be X(t) = Y (t − d) = 0 (with Y
denoting negation), entailing Y (T + d) = 0 by the specification of Mem—a
contradiction.)

2. Let t0 ∈ [t∗, t∗ + d] be maximal with the property that Y (t) = 0 for all
t ∈ [t∗, t0] (t0 exists because Y (t∗) = 0 and {t ∈ R+

0 |Y (t) = 0} is closed).
3. X(t) = 0 ∨ Y (t) = 1 for every t ∈ (t0 − T, t0) (specification of Mem).
4. (a) t0 < t∗ + d: Then, Y (t+0 ) = limε→0+ Y (t0 + ε) = 1 by maximality of t0;

hence X(t0) = 1 by the specification of Mem and 3.
(b) t0 = t∗ + d: Then, the channel ensures X(t0) = Y (t∗) = 1.

5. Y (t) = 1 for t ∈ (t0, t0 + T ) (specification of Mem).
6. X(t) = Y (t − d) = 0 for t ∈ (t0 + d, t0 + T + d) ⊇ (t0 + T, t0 + T + d) (as

T ≥ d).
7. Y (t) = 0 for t ∈ [t0 + T, t0 + T + d] (specification of Mem).
We can now determine Y for larger times inductively, showing for ti := t0 +
i(T + d), i ∈ N, that Y (t) = 1 for t ∈ (ti + d, ti + T + d) and Y (t) = 0 for
t ∈ [ti + T, ti + T + d]. Hence, the execution is feasible for module osc during
[t0,∞). As t0 ≤ t∗ + d ≤ T + 2d, the claim follows.

By contrast, choosing d > T leads to a circuit that does not necessarily self-
stabilize.

While the circuit in Figure 6 is a self-stabilizing implementation of osc, it is
not fault-tolerant. A single permanent fault will stop it from operating correctly.
However, the principle of using “forgetful” memory to achieve self-stabilization
of oscillatory circuits can be carried over to fault-tolerant distributed oscillators
like DARTS: In [16, 17], we leveraged the approach in the design of fault-tolerant
and self-stabilizing solutions to clock generation (and clock distribution [15]).
FATAL+, the proposed clock generation scheme, is essentially a distributed os-
cillator composed of n ≥ 3f + 1 clock generation nodes, which self-stabilizes in
time O(n) with probability 1−2−Ω(n) even in the presence of up to f Byzantine
faults [17].
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7 Module Composition Artefacts: The Weird Module

In this section, we will show that module composition in our framework some-
times leads to surprising effects. As a consequence, one has to be careful when
composing innocently looking modules that hide their true complexity behind
deceptively simple specifications.

Like in Section 5, we will restrict signals and feasible executions in module
specifications from R to arbitrary subintervals I = [t−, t+] ⊆ R. To make such
interval-restrictions explicit, we will sometimes write σI , inI , outI , EI etc. Note
that such intervals I could also be open (t−, t+), closed [t−, t+], or half-open,
but are always contiguous.

A sequence of signals (σi)i∈C defined on intervals I1 ⊆ I2 ⊆ . . . with Ii ⊆ Ii+1

for all i ∈ C, for C = {1, . . . , n} or C = N, is called a covering of a signal σ
defined on I =

⋃
i∈C Ii if, for all i ∈ C, σi = σIi . Clearly, any sequence of signals

(σi)i∈C on I1 ⊆ I2 ⊆ . . . with the property that σi = σIi
i+1 for all i ∈ C defines

a unique σ on I =
⋃

i∈C Ii such that (σi)i∈C is a covering of σ. For C = N,
we can hence set limi→∞ σi = σ, where σ is defined on limi→∞ Ii = I. These
definitions and results naturally carry over to interval-restricted executions, i.e.,
pairs of sets of input and output signals of a module.

Definition 12 (Limit-closure). Module M is limit-closed iff, for every cov-
ering (Ei)i∈N consisting of interval-restricted executions Ei in the set EM of all
interval-restricted executions of M , it holds that limi→∞ Ei ∈ EM .

Not every module is limit-closed, as the following example demonstrates.

Example 7. Consider the module specification WM, subsequently called the
weird module: It has no inputs and only a single output, which is required to
switch from 0 to 1 within finite time and have no other transitions.

The WM can be seen as an archetypal asynchronous module, as the transition
must occur in finite time, but there is no known bound on the time until this
happens.

For every i ∈ N, the execution Ei defined on [−i, i] with the output signal
being constant 0 is feasible for WM, as it can be extended to some execution on R
where the transition to 1 occurs, e.g., at time i+1; it is thus an extendible module
according to Definition 7. However, the limit of E = limi→∞ Ei is the unique
execution on R with output constant 0, which is infeasible for WM. According to
Definition 12, the specification of WM is hence extendable but not limit-closed.
Conversely, limit-closure does not necessarily imply extendibility either, as the
latter requires that every execution defined on some interval I can be extended
to an execution on R; limit-closure guarantees this only for interval-restricted
executions that are part of coverings.

Definition 13 (Finite-delay & bounded-delay module). Module M has
finite delay (FD), iff every infeasible execution EM ̸∈ EM has a finite infeasible
restriction, i.e., (EM ̸∈ EM ) ⇒

(
∃ finite I ⊂ R : EI

M ̸∈ EM
)
. An FD module M
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is a bounded-delay module (BD), if I may not depend on the particular EM

in the FD definition. Finally, M is a bounded delay module with delay bound
B ∈ R+

0 , if it is BD and |I| ≤ B.

Recall that if a module is correct in an execution during an interval I it is
always also correct within a subinterval of I in the same execution. On the other
hand, the other implication (∃ finite I ⊂ R : EI

M ̸∈ EM ) ⇒ (EM ̸∈ EM ) always
holds, by our definition of a restriction. Thus, for FD modules, it holds that
(EM ̸∈ EM ) ⇔

(
∃ finite I ⊂ R : EI

M ̸∈ EM
)
.

According to Definition 13, WM is not a finite-delay module, as any finite
restriction of the infeasible all-zero trace on R is feasible. More generally, we
have the following lemma:

Lemma 2. A module is limit-closed iff it has finite delay.

Proof. Suppose M is limit-closed. Given an arbitrary E /∈ EM , defined on I ⊆ R,
consider the covering Ei = EI∩[−i,i], i ∈ N. Then, either there is some i so that
Ei /∈ EM , or we reach the contradiction that E = limi→∞ Ei ∈ EM as M is
limit-closed.

Conversely, suppose that M is a finite delay module. Consider an arbitrary
infinite covering {Ei |Ei ∈ EM}i∈N, and denote by E its limit. If E /∈ EM , then
by Definition 13 there is a finite EI /∈ EM that is a restriction of E. As {Ei}i∈N
is a covering, for sufficiently large i, it holds that the interval I on which EI is
defined is contained in the interval on which Ei is defined. Hence, EI /∈ EM is
a restriction of Ei ∈ EM , which is a contradiction to the fact that EI must be
feasible.

At that point, the question arises whether and when the composition of
modules preserves bounded resp. finite delays. The following Corollary 2 shows
that this is the case for feedback-free compositions of BD modules:

Corollary 2 (Preservation of BD). Suppose compound module M is feed-
back-free with circuit graph GM and each of its submodules S ∈ SM is FD. Then,
M is FD. Moreover, if S ∈ SM is BD with delay bound BS, then SM is BD with
delay bound

B = max
(S1,...,Sk)
path in GM

{
k∑

i=1

BS

}
.

BD is not preserved in arbitrary compound modules. Unfortunately, the above
corollary does not hold if feedback-loops are allowed. A compound module made
up of BD submodules in a feedback-loop need not be BD, and sometimes not
even FD.

As an example of the former, consider the eventual short-pulse filter (eSPF)
introduced in [26], which has a single input and a single output port, initially 0.
Given a single pulse of duration ∆ > 0 at time 0 at the input, there is a time
T = T (∆) with lim∆→0 T = ∞ such that the output o(t) = 1 for all t ≥ T . Yet,
the execution where the output never settles to 1 is not feasible (unless there is
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no input pulse). eSPF can be implemented as a compound module consisting of
a two-input zero-time Or gate and a two pure-delay channels (with delay 1 and√
2, respectively) in a feedback-loop. By adding an inertial delay channel [24] to

the output of eSPF, which suppresses all pulses with duration less than 1 (and is
hence also a BD module8), we obtain a module eSPF′ that generates exactly one
transition from 0 to 1 at the output. Module eSPF ′ is FD, as a finite interval
I = [0, T ] that guarantees EI ∈ EeSPF′ can be computed from the known ∆ in
every given execution E. However, eSPF′ is not BD, albeit all its submodules are
BD. Consequently, for compound modules that are not feedback-free, Corollary 2
need not hold.
Unexpected properties of the WM module. While the results on BD align with
our intuition, similar properties do not hold for FD modules. To show this, let
us add another BD basic submodule that acts as a random generator (which is
of course also BD) for generating an input pulse of duration ∆ > 0 to eSPF
(now considered a basic module). We obtain a feedback-free compound module
implementation of WM, which is not even FD! Consequently, and surprisingly,
one cannot generalize Corollary 2 to the preservation of FD: Feedback-free com-
pound modules composed from FD submodules are not always FD: eSPF′ is FD,
and the random generator is even BD, yet the resulting WM is not FD.

The problem can be traced back to the fact that compound modules hide
internal ports (the input port of eSPF fed by the random generator in our WM
compound module), which does no longer allow to identify appropriate infeasi-
ble finite executions in infinite executions according to Definition 13. Our mod-
eling framework allows to completely abstract away this important submodule-
internal information, which in turn creates this artefact. This intuitively suggests
that one should not entirely discard the internal structure of a compound mod-
ule, but rather simulate a “glass box view” of a submodule as advocated in [9]
by exposing important submodule-signals when composing modules. A formal
understanding of these problems is open, however.

8 Outlook

We discussed an alternative to the classical state-based modeling and analysis
approach. In particular, we reviewed the state-oblivious modeling and analysis
framework introduced in [16], and argued its utility by means of some examples,
in particular, a self-stabilizing oscillator. We also showed that it may create some
subtle artefacts when composing modules, which need careful consideration and
possibly mitigation.

While we believe that the modeling framework discussed in this article is a
sound basis for the formal study of digital circuits and even biological systems, it
currently lacks several important features that are left open for further research:

The first one is the choice of a formal language for describing signals and
module specifications. Whereas our simple signals could of course be described

8 Since we can consider the inertial delay channel to be a basic module here, we need
not care about implementability at that point.
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within a first-order theory on R, it is not clear whether this is the most appropri-
ate formalism for concisely expressing the most relevant properties of interest.
Moreover, module specifications often require (all-)quantification over signals,
which suggests the need for a second-order theory.

A somewhat related open problem is the definition of a proper notion of sim-
ulation equivalence for modules with different interfaces, and simulation-type
proof techniques similar to the ones known for both untimed [37] and timed [38]
distributed systems. Unfortunately, the state-obliviousness and the unconven-
tional domain R of our framework does not allow one to just take over state-based
simulation techniques.

Another open issue is the explicit handling of metastability, which can cur-
rently only be expressed by mapping a metastable state to a (high-frequency)
pulse train. An obvious alternative is to use a three-valued logic, also providing a
dedicated metastable stateM , as advocated in [22]. While this extension appears
relatively straightforward at the specification level, it should also be accompa-
nied by ways of specifying metastable upsets and metastability propagation.
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