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Abstract—Synchronization using flip-flop chains imposes a
latency of a few clock cycles when transferring data and control
signals between clock domains. We propose a design scheme
that avoids this latency by performing synchronization as part
of state/data computations while guaranteeing that metastability
is contained and its effects tolerated (with an acceptable failure
probability). We present a theoretical framework for modeling
synchronous state machines in the presence of metastability and
use it to prove properties that guarantee some form of reliability.
Specifically, we show that the inevitable state/data corruption
resulting from propagating metastable states can be confined
to a subset of computations. Applications that can tolerate
certain failures can exploit this property to leverage low-latency
and quasi-reliable operation simultaneously. We demonstrate the
approach by designing a Network-on-Chip router with zero-
latency asynchronous ports and show via simulation that it
outperforms a variant with two flip-flop synchronizers at a
negligible cost in packet transfer reliability.

I. INTRODUCTION

Transferring data and control signals reliably across clock
domain boundaries is a classic problem highly relevant to
today’s systems with tens to hundreds of clock and voltage
domains. A signal generated in one clock domain and latched
in another can violate the setup/hold time conditions of its des-
tination flip-flop and drive it into a metastable state. Following
flip-flops that sample the metastable flip-flop’s output may then
latch different values and/or become metastable themselves
[1], compromising state transitions and data integrity in ways
that are difficult to predict [2], [3].

The conventional approach to mitigating metastability is to
use a chain of flip-flops known as a synchronizer to resample
the crossover signal [4]. This grants the first flip-flop at the
receiver side some time to resolve any metastable state before
using its value in state/data computations. Although the prob-
ability that metastability propagates beyond the synchronizer
remains non-zero, it is reduced by orders of magnitude. The
reliability of this process is typically expressed in terms of the
Mean Time Between Failures (MTBF):
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where ¢ is resolution time, 7 is the metastability regeneration
time constant, f. is the clock frequency, f; is the crossover
signal transition rate and T, is a reference time window.
The resolution time ¢, is the propagation delay slack of
synchronizer flip-flops (approximately an integer multiple of
the clock cycle). Two flip-flop synchronizers are most common

MTBF = (1)

and typically guarantee an MTBF of thousands of years
(assuming 7 = 20ps, f. = fq4 = 1GHz and T,, = 1ns).
This reliability comes at a cost, however, as crossover signal
transitions must propagate through the synchronizer before
being used in state/data computations and so a latency equal
to the synchronizer depth is incurred.

A. Main Idea

We propose a methodology to design synchronous compo-
nents that perform synchronization as part of their state/data
computations (and thus avoid synchronization latency) at the
expense of predictable and tolerable errors. Central to our
proposal is the idea that, even though the propagation of
metastability is fundamentally impossible to prevent, meta-
stability can be contained and its effects tolerated (with an
acceptable failure probability). Containment means that the
output ports of a component are always stable, even if its flip-
flops may become metastable,! while tolerance is the ability to
meet a certain functional specification despite the occasional
manifestation of metastability. The conventional two flip-flop
synchronizer can be thought of as the simplest metastability-
containing component; its output is stable and it meets the
functional requirement of copying a value in few clock cycles.
Our scheme generalizes these properties to useful forms of
computation, removing the need for dedicated synchronizers.

B. Contributions

The contributions of this paper are as follows. (i) We present
a method to avoid synchronization latency, yet maintain de-
sired reliability guarantees when transferring data and control
signals across clock domain boundaries (Section II). (ii) We
then develop a generic framework, in which we formalize
our method and verify that the desired behavior is achieved
(Sections III and IV). (iii) To demonstrate that the method
has real practical relevance, we apply it to a Network-on-Chip
(NOC) router with store-and-forward flow control (Section V).
(iv) We finally simulate a NOC composed of 4 x4 such routers,
embedded in several clock domains, and compare its perfor-
mance and reliability to a corresponding implementation based
on routers with two flip-flop synchronizers. The comparison
demonstrates that the method confers performance gains at an
insignificant reliability cost in at least one target application.

IFor brevity, we will omit further references to failure probability keeping
in mind that it is implicit in the definition of containment.



II. PROPOSED SCHEME

We divide the state graph of a synchronous design into
safe and unsafe regions. The unsafe region contains states
corresponding to computations triggered by the transition of
a crossover signal or shortly thereafter (e.g. the latching
and processing of an incoming data item). It has an ideal
specification that applies in the nominal case. The occasional
onset and propagation of metastability can cause invalid state
transitions, but state logic and encoding are designed such
that these transitions cannot leave the unsafe region until
any metastable values have been resolved (with an acceptable
failure probability). Unsafe states are therefore synchronizing
states in which metastability is granted time to resolve. Once
a safe state is reached, synchronization is complete and state
transitions continue as per usual.

We guarantee containment by disallowing changes to the
design’s output ports in unsafe states, thus preventing meta-
stability from being observed externally. At the same time, we
attempt certain computations in unsafe states while keeping
computations that are critical to the correct behavior of the
component to safe states to isolate them from the impact
of metastability. Metastability may therefore cause occasional
invalid state transitions and data corruption, but the effects of
these events are confined to a subset of computations whose
corruption can be tolerated and does not result in catastrophic
failures for the target application. The above properties are
formalized and proven in Sections III and IV, and later
demonstrated practically in Section V. For now, we continue
building the intuition behind the scheme.

A. General Setup

We assume that the control circuit of a design is specified by
a synchronous state machine that communicates with a sender
outside its own clock domain using req and ack signals. The
arrival of req triggers the machine into a series of state transi-
tions, ending with acknowledging the sender and returning to
an idle state. Unlike conventional synchronization, we do not
protect the state machine by piping req through a flip-flop
chain. Instead, req (and any accompanying handshake data
bits) are used in state computations directly. In consequence,
state flip-flops may occasionally become metastable.

As the state machine undergoes transitions following the
arrival of req, it triggers computations which we refer to
as operations. Examples of operations include (i) asserting a
write signal to store the incoming data item in a register, (ii)
acknowledging the sender and (iii) triggering a neighboring
state machine into processing a shared memory buffer. Op-
erations are triggered by signals that are decoded from the
state register. In addition, we group the state machine and a
neighboring part of its clock domain (typically a datapath)
into a component and require that component output signals
are always stable (i.e., operations that change component
outputs can be performed in safe states only). Components are
therefore state and data containers that serve as a hierarchical
boundary for containing metastability, akin to synchronizers.
Figure 1 depicts the general setup.
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Figure 1. Metastability-containing component consisting of a state machine
and associated registers (a datapath). State-decoded operation signals (OP;)
are used to trigger datapath computations. The arrival of a handshake request
req triggers a series of state transitions and associated operations.

B. Quasi-reliability

Using conventional two flip-flop synchronizers can be
viewed as a conservative special case of this scheme in
which all computations are performed in safe states (all safe).
Conversely, omitting synchronizers in a generic design may
correspond to performing many/all computations in unsafe
states (all unsafe). The proposed scheme permits operating
between these two extremes, delineating computations based
on their importance and leveraging the benefits of low-latency
and quasi-reliable operation simultaneously.

III. FORMAL MODEL

We model the propagation of metastability in state combi-
national logic using a worst-case fashion as in [5]. We assume
that a constant number k£ > 1 of clock cycles (typically one
or two) is deemed sufficient to guarantee that any metastable
state propagating in the state register has been resolved with a
sufficiently high probability. Further, to prevent metastability
from propagating beyond the component, we disallow opera-
tions that cause changes to component outputs within the first
k clock cycles following the transition of regq.

We will refer to (the control logic of) a component that
receives data items from an asynchronous sender using hand-
shake signals req and ack and has additional input/output
signals to communicate with its synchronous neighbors. We
demonstrate our scheme by discussing an implementation of
this component that does not pipeline the sender’s req signal
through a synchronizer chain. We show how to guarantee
that its state machine resolves any metastable states (with
an acceptable MTBF) before making any changes to output
ports (i.e. the component is metastability-containing). More-
over, we ensure that any lower bound on the time from
being externally triggered until asserting ack (or modifying
other output signals) is satisfied, even if the state machine
becomes metastable. This ensures that (i) handshake protocol
requirements are met and (ii) metastability cannot propagate
to subsequent synchronous logic. We give a concrete example
of this approach later, in Section V; in this section, we discuss
how the behavior of the state machine under metastability is
modeled and explain a general transformation ensuring that
the above properties are satisfied.



A. State Machine Model

Consider a clocked state machine that is initialized in a pre-
determined state, ready for receiving data. The machine’s state
is recorded in a b-bit state register, where the encoding of a
state s € S is given by the b-bit string £(s). On each clock
cycle of the state machine, the state (i.e. the content of the
state register) is updated based on (i) the current state, (ii)
the value of req, and (iii) the state of an associated datapath
register. Moreover, the state machine may decide to modify the
datapath register or trigger output port changes via operations
that are associated with certain states.

The behavior of the state machine is subject to the following
constraints:

(1) The initial state is left when the (sampled) req signal
indicates that new data has arrived; not before.

(2) Triggered operations that modify output ports must occur
in the safe region, the set of states that cannot be
reached before possible metastability has been resolved,
i.e. k clock cycles passed since the transition of req.

(3) The datapath register is split into control and data parts.
The control part

« is only modified in safe states,

« may affect the transitions of the state machine, and

« may be used in operations,

while the data part

« may be modified in any state, but

« must not affect the transitions of the state machine, and
« cannot be used in operations.

(4) The state machine is guaranteed to reach a safe state and
then transition back to the initial state. We assume that
this includes completing the handshake by asserting ack.

(5) When this occurs, the data part of the datapath register
must have been processed correctly if no metastable
state was induced by req. Here, “processing” includes
modifications performed as a result of state machine
operations. Note that the precise meaning of “correctly
processed” is application-specific.

(6) The control part of the datapath register must be pro-
cessed correctly even if metastability was induced.

Thus, we allow non-critical modifications to be performed
in the unsafe region. This permits saving synchronization time
by performing computations optimistically at the expense of
a small risk of data corruption.

B. Behavior under Metastability

In order to clarify the behavior of the state machine when
facing metastability, we make use of the framework in [5].
Rather than specifying the effects of metastability directly, we
define the transition function for metastability-free states and
use the classification results from [5] to derive the transitions
under metastability.

Recall that state transitions are based on (i) the sampled
req signal, (ii) the current state (b bits wide), and (iii) the
control part of the datapath register (c bits wide). Denote by
f {0, 1}tH0Fe — 10, 1}b+¢ the transition function of the

state machine (we include possible operations on the control
part). Along the lines of [5], we next extend the specification
of the transition function f to potentially metastable bits:
in addition to the stable values 0 and 1, a signal may also
attain the value M. Then the following definition describes
the best possible guarantee we can make for inputs from
{07 1, M}1+b+c.

Definition 1 (Metastable Closure): For bit strings =,y €
{0,1,M}", define = * y via

z, ifz=y
M else.

Vi: (m*y),—:{

Moreover, for z € {0,1, M}", set
Res(z) = {2 € {0,1}"|Vi: o} # 2; = z; = M},

i.e. the set of strings that could result from resolving meta-
stability in x. Then, for ¢ : {0,1}"™ — {0,1}™, its metastable
closure [g] : {0,1,M}™ — {0,1,M}™ is defined by

gi(2').

vislol(z) = X

As shown in [5], one can always design a circuit such
that, under worst-case propagation of metastability, the circuit
computes [f](z) given input x € {0,1, M}'**+¢ and that no
(combinational) circuit can make more restrictive guarantees
on its output. Accordingly, in the following we assume that
the state machine is described by a binary state transition
function f and is extended to metastable inputs by taking [f].
We stress that the encoding of states plays an important role:
Intuitively, metastable “state” s encoded by &(s) € {0,1,M}®
is a superposition of all states s’ such that £(s’) € Res(e(s)).

Denote by req(r), r > 0, the state of the req signal right
before sampled by clock edge r + 1. Then, req (the string of
samples) contains either 011 ... or OM11...: per handshake-
cycle, there can be at most one clock transition that samples a
metastable req, since req is externally held at 1 until ack is
raised by the state machine, completing the handshake cycle.

Recall that we require that the state machine stays in the
(unsafe) initial state while req(r) = 0, in which it does not
modify the control part of the datapath register. Thus, for any
z € {0,1}*¢, we have that f(0 o 2) = [f](0 0 2) = z; here
o denotes concatenation of strings. In the analysis, we can
therefore assume that req is either M11... or 11...

Given a Boolean transition function f satisfying the above,
we are now ready to specify the behavior of the state machine.
Denote by £(0) € {0, 1}" the encoding of the starting state and
let 2(0) € {0,1}¢ be any valid control part. At clock edge ,
r € {1,...,k}, the state is updated (latched) as

y(r) =e(r)ox(r) = [fl(rea(r — 1) o y(r —1)).

At clock edge r = k + 1, the computation is the same, but we
assume that metastability is resolved (with sufficiently high
probability) after k cycles. Accordingly, let

y(k+1) = Res([f](req(k — 1) o y(k —1))).



Figure 2. State diagrams illustrating an example execution of a state machine.
Current states are gray and ¢ is the index of the clock edge after the transition
of req. State superpositions are indicated by multiple current states, here
occuring during the first and second clock cycles. Once ¢ = 3 is reached,
metastability is resolved (assuming k = 2).

Afterwards, the state is binary, and the state machine follows
its binary specification, i.e., for all » > k + 2,

y(r) = f(rea(r —1)oy(r —1)).

C. Example

Consider the state machine whose execution states are
shown in Figure 2. Here, the datapath control part is a single
bit A that is used to trigger one of two operations, Op1 or Op2.
We assume that both operations involve updates to certain
registers which we wish to guard against corruption. Opl and
Op2 must therefore not be triggered while the state register
is metastable. The figure shows an execution of the machine
in case req = M11... and A = 1 (data transformation and
state encoding rules are not included in the figure). We assume
that metastability is guaranteed to resolve within k£ = 2 clock
cycles, i.e. by the third clock edge after the transition of req.
In this example, we trace a very deep metastable state that
persists up to this limit. The machine behaves as follows.
req(0) = M results in a metastable state at clock edge 1. From
req(l) = 1, we have that the state machine is guaranteed to
have left the initial state at clock edge 2. From k = 2, we have
that metastability is guaranteed to resolve by the subsequent
clock edge, here resulting in (metastability-free) state 2 at
clock edge 3. Afterwards, the machine transitions through
Opl and then finally back to 0 (acknowledging the sender).
Our requirement that neither Opl or Op2 is triggered during
metastability is therefore met. Observe that the metastable req
only resulted in a delay of one clock cycle before triggering
Opl, when compared to a circuit where req is guaranteed to
always be sampled as either 0 or 1. Even better, req(0) = M
means that req was just transitioning from 0 to 1 when the
signal is sampled. This implies that the delay in terms of wall-
clock time is just marginally larger than it would be if the
signal transition occurred right after the signal is sampled.

D. Single Point of Failure

The reliable transfer of data between clock domains requires
using the handshake request signal to control the passage of
data (i.e. having a single point of synchronization [2]). This is
satisfied in our scheme since all datapath operations (including
the latching of incoming data) are triggered by state transitions
that follow the handshake request. We also satisfy the bundled
data constraint in the same way as conventional synchroniza-
tion, i.e. by constraining crossover path delays such that req
transitions arrive later than their accompanying data transitions
by a sufficient margin (factoring in any combinational logic
in crossover paths) [6]. We include in our definition of “data
transitions” the transitions of req that arrive at datapath flip-
flops, to prevent data corruption on the clock edge where req
is sampled by the state register [7]. Note that incoming data
bits are guaranteed to be stable (by the bundled data constraint)
and can therefore be treated as part of the datapath register’s
control part (i.e. used to control state transitions and trigger
operations in both safe and unsafe states).

E. Failure Types and Rates

We make a distinction between two forms of failures that
may occur under our scheme. First, a synchronization failure
is an event in which metastability reaches the safe region of
the state graph, akin to propagating beyond a synchronizer
chain. This is a failure that we are interested in making very
improbable (i.e. with a MTBF in the order of thousands of
years). For a conservative upper bound on the probability of
this failure, we use Equation (1) assuming ¢4 = k X t,, where
tps is the worst-case (positive) propagation delay slack in state
combinational logic. The resulting MTBEF is less than that of
a flip-flop chain synchronizer (that provides k clock cycles of
synchronization time), but still likely to be large: given that
clock periods are typically constrained by data critical paths,
one can expect t,, to be a large fraction of the clock period.
In any case, different values of k£ can be chosen to achieve
arbitrary levels of reliability.

The second type are datapath failures. These are more
frequent events in which metastability corrupts register values
that are updated in unsafe states. Datapath failures are unde-
sired but predictable events that we here treat as a performance
issue.> While we are interested in making synchronization fail-
ures very improbable, datapath failures need only be infrequent
enough to not affect performance significantly. It is therefore
more informative to express the frequency of these events as
a probability per handshake P, which we calculate as

P = wace_ts/‘r ) (2)

this time substituting ¢, as the worst-case propagation delay
slack in all combinational paths, not just state logic. Synchro-
nization MTBF and datapath failure rates for an actual design
are presented in Subsection V-E.

2Note that the consequences of datapath failures are application-specific
and may not be limited to performance. However, these consequences are
predictable and can therefore be addressed by the component’s environment.
We discuss this further in Subsection VI-C.



IV. STATE ENCODING

In the example in Figure 2, we did not discuss state
encoding; we implicitly assumed an encoding that is optimal
with respect to uncertainty. In contrast, choosing a “bad”
encoding can have severe consequences as detailed below.

Consider any encoding for which €(0) = 000, (1) = 111,
and all other states are encoded with pairwise distinct values
in {0,1}2. In this case, req(0) = M makes the system go
to “state” MMM at time 1: a superposition of all states. In
terms of Figure 2, this means that all states are marked gray at
time 1. With this encoding, the unsafe region is thus the set of
all states and operations Opl and Op2 can be triggered from
unsafe states, contrary to our requirements in the example.

A much better choice is the encoding £(0) = 000, £(1) =
001, e(2) = 011, &(3) = 101, (Opl) = 111, and £(Op2) =
110. Then req(0) = M results in “state” 00M at time 1: a
superposition of states 0 and 1 like in Figure 2. If A = 0,
the system transitions to M01 (superposition of 1 and 3), and
if A =1 to OM1 (superposition of 1 and 2) at time 2. This
is the same behavior as in the example of Figure 2. From
the fact that metastability must decay at time 3 at the latest,
we easily check that all following transitions (including those
to Opl and Op2) are metastability-free. It follows that the
requirements (1) to (4) specified earlier are fulfilled.

A. Finding Good Encodings

While the encoding before was handcrafted, the question
arises if there is a systematic way to derive small bit-size
encodings that allow to restrict unsafe regions. To address this
problem, we first capture what it means for two state machines
(on different encodings) to behave the same way with respect
to the underlying Boolean specification f.

Definition 2 (State Graph): For an encoding £(s), s € S, and
a transition function f, the directed state graph G = (S, E)
is defined by

(s,t) € E& Jz,2": f(loe(s)ox) =e(t)ox’.

Definition 3 (Equivalent State Machines): Given states S,
encodings ¢ and ¢ of b and b’ bits, and transition func-
tions f: {0,1}10¢ — {0,1}°+¢ and f': {0,1}1HV+c -
{0, l}b'“, respectively, we consider the corresponding state
machines equivalent iff

o fand f’ have the same state graph and

« for each edge (s,t) of the state graph and z € {0,1}°,
there is 2’ € {0,1}¢ with f(loe(s) ox) =&(t) oa’ and
f'(loég(s)ox)=¢(t)oa'.

Note that equivalent state machines do not necessarily
behave the same way in the presence of metastability, but their
behavior on non-metastable states is identical.

The following result states that we can always change the
encoding so that (i) the number of required bits does not
increase too much, (ii) the new and the old state machine
are equivalent, and (iii) the new encoding guarantees that the
unsafe region consists of the states within k£ directed hops of
the starting state.

Theorem 4: Given any b-bit encoding e(s) for s € S
and transition function f: {0,1}1*0+¢ — {0,1}°F¢, we
can find a b'-bit encoding £'(s) and a transition function
£ {0, 1} +e 5 40,130 +¢ such that

eV =b+Ek+1,

« the respective state machines are equivalent, and

« the unsafe region for f’ is a subset of the states that are

in (directed) distance at most k£ from the starting state in

the state graph.

Proof: We only give the proof idea here. We modify the
state encoding and transitions as follows. In addition to the
encoding that is already given, we reserve k + 1 additional
bits for unary encoding of the distance to the starting state,
where states in distance k + 1 or larger simply have all bits
set to 1. The new transition function f’ consists of applying
f to the input, ignoring the k£ + 1 reserved bits, and operating
on them as described above. We then show by induction that
at clock edge » > 1, only the first r distance bits can be
modified. [ ]

Given that k£ is no more than 1 or 2 in practice, this
encoding scheme induces a very small overhead compared to
the optimum of [log |S]|] bits. From Theorem 4, we obtain:

Corollary 5: Given any state set .S and transition function,
we can find an encoding with [log|S|| + & + 1 bits and an
equivalent state function such that the unsafe region is a subset
of the states that are in (directed) distance at most £ from the
starting state in the state graph.

We can also be more restrictive in terms of the unsafe
region (as well as metastability causing “jumps” to otherwise
unreachable states).

Theorem 6: Given any b-bit encoding e(s) for s € S
and transition function f: {0,1}'*t+c — {0,1}°F¢, we
can find a b'-bit encoding ¢’(s) and a transition function
£+ {0,140 +e 5 40,130 +¢ such that

o b =b+ Zf:o [log(A; +1)], where A; is the maximum

outdegree of nodes within 7 hops from the starting state,

« the respective state machines are equivalent, and

o the unsafe region for f’ is exactly the union over all valid

control parts x of states that can be reached in at most

k cycles from the starting state with control part x when

req(0) = 1.

Proof: We follow a similar approach as in Theorem 4. The
difference is that instead of encoding merely that distance 7 is
reached, we rather encode the edge over which the previous
state was left. Concretely, for each state within distance &k from
the starting state, we enumerate its outgoing edges; at clock
edge 7 < k+1, we store the (number of) the edge over which
the previous state was left. To this end, we reserve log[A; +1]
many bits, as we also require a codeword L indicating that
the r-th transition has not been performed yet. Again, f’ acts
like f on all but the additional bits, which are determined as
just described.

Fixing any control part z, reasoning as for Theorem 4 shows
that the safe region cannot be entered before clock edge £+ 1.
By construction, f’ with the new encoding is equivalent to f
with the original one, and ¥’ = b + Zf:() [log(A; +1)]. =
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V. IMPLEMENTATION

In this section, we present a NOC router that transports
packets across clock domains and uses our method to remove
synchronization latency in the forward direction. Our aim here
is not to present an optimal or efficient router (router design
and trade-offs are outside the scope of the current work).
Instead, we focus on demonstrating our scheme using NOC
routing as a target application.

A. Router Design

Figure 3A shows a block diagram of the router. The router
has 5 channels (north, east, south, west and local), each com-
prising a pair of receive/send transceivers. The transceivers use
two-phase handshakes to communicate with other transceivers
in adjacent routers, each operating in its own clock domain.
The router relies on store-and-forward flow control: packets
are received and assembled, one flit at a time, before being re-
transmitted. Switch logic allocates access to outgoing channels
using round-robin arbitration and XY routing is used.

B. The Transceiver

We used our scheme to avoid synchronizing incoming
flits in the RX transceiver (henceforth the transceiver). This
unit’s block and state diagrams are shown in Figures 3B
and 4 respectively. The transceiver serves as the metastability-
containing component in the router (following the definition
in Subsection II-A). In what follows, we describe its behavior
and how it integrates with other router modules.

Initially, the transceiver is in an idle state (ST_IDLE). Upon
receiving a handshake request (ch_req), the flit is latched and
its control bits are examined. If the control bits denote a header
flit (head_f1lit = 1), the transceiver extracts the packet destina-
tion identifier and fetches outgoing channel information from
a routing table (routing computation, ST_RC), then appends
the flit to the buffer (ST_BUF). Body flits (head_flit=0)
are appended to the buffer without prior routing computation.
Once the packet is fully assembled (a packet comprises 8
flits), the transceiver issues a request for the outgoing channel

ST_IDLE ST_LATCHED
':"-.\‘ ch_re 0T .
i 000 j——{ 001 }

(ch_ack)

ST_RC

~sw_gnt
(ch_ack)
(~sw_req)

sw_gnt

111\1

ST_SEND

ST_CH_WAIT

Figure 4. State diagram (RX transceiver). Edge labels denote transition
conditions and, between brackets, output port changes (unlabeled transitions
are unconditional). Unsafe states are marked with a dashed contour. Port
changes are made only during safe states. The labels ch_req and ch_ack
denote signal changes (two-phase handshake) while others signal levels.

(ST_CH_WAIT) and, when granted, waits for the packet to be
fully transmitted (ST_SEND) before returning to the idle state.
The transceiver has three interfaces:

(1) Channel interface (asynchronous, two-phase handshake):
receives incoming flits from remote sender

(2) Switch interface (synchronous): requests outgoing chan-
nel from switch logic and receives send notification

(3) Buffer interface (synchronous): provides packet buffer
read access to outgoing channel TX transceiver

C. Metastability Containment

The transition of ch_req triggers the transition from the idle
state ST_IDLE and subsequent processing of the incoming flit.
The set {ST_IDLE, ST_LATCHED} is the unsafe region, while
remaining states constitute the safe region. Here, we assume
that metastable states resolve within 1 clock cycle with an
acceptable MTBF (i.e. k£ = 1, corresponding to a two flip-
flop synchronizer). Note that this can easily be generalized to
larger k. To satisfy the conditions for metastability contain-
ment, all output port changes are performed in safe states.

D. Datapath Failure Modes

Datapath failures are caused by the persistent corruption
of registers that are write-accessible in the two unsafe states.
These registers are:

(1) REG_FLIT (flit register): latches the flit received via the
channel interface, written when entering ST_LATCHED;

(2) REG_OUT_CHANNEL (outgoing channel register): holds the
fetched destination of the current packet, written when
entering ST_RC;

(3) REG_BUFF_WR_IND (buffer write index): holds the index
of the current flit, written when entering ST_BUF;

(4) MEM_BUFF (packet buffer): stores current packet, written
when entering ST_BUF.

Datapath failure modes can be inferred as the worst-case
consequences of committing arbitrary values to these registers:



Figure 5. Architecture of simulated NOCs. Squares are routers and edges are
bidirectional transceiver connections. Circles are dummy cores that generate
packets with random destinations and consume incoming packets. Each core
is connected to its adjacent router via the local channel.

(1) assembly and transmission of corrupt packets;

(2) forwarding packets via incorrect outgoing channels;

(3) dropping packets (when the buffer index does not reach
the packet flit count and is reset by the head flit of the
subsequent packet).

E. Performance and Reliability

We implemented the proposed router in Verilog and com-
pared its performance and reliability to a corresponding imple-
mentation based on conventional two flip-flop synchronizers.
We simulated a 4x4 NOC (Figure 5) based on each router
type and calculated mean packet delivery time for random
traffic patterns. Clock frequency was 700 MHz for all routers
(we assume independent plesiosynchronous clock sources).
Figure 6 shows the results of our simulations. We observed
an improvement of 17.7 to 26.2% in mean packet delivery
time across a range of packet injection rates as a consequence
of applying our scheme to the RX transceiver.

We synthesized the router using a commercial 65nm cell
library, targeting a clock frequency of 700 MHz, to obtain
realistic estimates of propagation delay slack and calculate
synchronization MTBF and datapath failure rates. State com-
binational logic had a propagation delay slack ¢,; = 1.1 ns.
Assuming f; =700 MHz, T, = 1 ns and 7 = 20 ps, the MTBF
of synchronization is 5 x 107 years. Note that while this is less
than the MTBEF of a two flip-flop synchronizer chain, a higher
MTRBEF (if desired) can be obtained by increasing k.

The worst-case propagation delay in the synthesized
transceiver (including state and datapath combinational logic)
was 0.32ns. Using Equation (2), we calculated a datapath
failure probability per handshake of P < 10~7. To determine
the impact of datapath failures, we modified our simulation to
write random values (with probability P) to all registers that
are write-accessible in unsafe states (listed in Subsection V-D).
We found that this caused packet loss at a rate of <0.001%
and packet corruption at a rate of <0.0002% but no significant
difference in mean packet delivery time.
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Figure 6. Simulation results showing 17.7 — 26.2% reductions in mean
packet delivery time when using the proposed scheme. noc is a NOC with
two flip-flop synchronizers while metanoc uses the presented zero-latency
RX transceivers to contain metastability and tolerate its effects. Both NOCs
consist of a 4x4 router mesh with local dummy cores. Both use XY routing,
round-robin arbitration and store-and-forward flow control.

VI. DISCUSSION

A. Related Work

Large part of the work in synchronization literature
(i) presents special case solutions, e.g. for plesiosynchronous,
rationally-related, and periodic clocks [8]-[10], or (ii) explores
time-unbounded decision schemes such as pausible/stretchable
clocking [11]-[13]. Few proposed “speculative” synchroniza-
tion schemes do not target the clocking process itself as such
but focus on overlapping synchronization with computation
using architectural techniques [7], [14], [15]. The presented
scheme is similar to speculation in this regard but is char-
acteristically different. While speculation involves using a
dedicated synchronization path to identify then correct/discard
corrupt results once synchronization is complete, metastability
containment combines synchronization and computation with-
out attempting to identify or correct the resulting errors.
Instead, the approach focuses on isolating metastability and
predicting its consequences at the component level.

Several recent papers offer ideas that complement the work
presented here. Of particular relevance are the metastability-
containing circuits presented in [5], [16], [17] that elimi-
nate/minimize the propagation of metastable operands when
computing Boolean functions. In particular, the described
behavior of state machines under metastability is achieved
only when the circuit specification is implemented in a certain
way, cf. [5]. These techniques can further constrain the effects
of metastability when performing computations in the unsafe
region and hence improve the overall reliability of our scheme;
for example, under certain conditions it is possible to exe-
cute operations correctly despite internal metastability of the
state machine. Finally, metastability modeling and verification
frameworks [18] can also facilitate using our scheme by
enabling designers to formally verify properties that describe
metastability masking and propagation. This is particularly



useful for verifying that only specific registers may be written
to and that module output interfaces are unchanged while in
the unsafe region of the state graph.

B. Nominal Synchronization Performance

The synchronization time needed for a satisfactory MTBF
(e.g. thousands of years or more) is much longer than the
average resolution time of a metastable state. For example,
assuming 7 = 20ps, f. = 1 GHz and T}, = 1 ns, the probability
that a synchronization attempt causes a metastable state longer
than 10% of the clock period is less than 1%. One may
therefore differentiate between the worst and nominal cases
of metastability resolution. While flip-flop chain synchronizers
target the worst case, our scheme takes advantages of the
nominal case by attempting computations optimistically then
containing and tolerating the resulting (infrequent) failures.
The presented router design is a case in point; a propagation
delay slack of 22% of clock period (0.32/1.43 ns) was suffi-
cient to reduce packet corruption/drop rates below 0.001%.

C. Shifting the Problem of Metastability

The system-level consequences of component errors vary
significantly across applications (and may be catastrophic in
certain cases), so the proposed scheme is no general solution
to the problem of synchronization. Nevertheless, shifting the
reliability issues posed by metastability to higher abstraction
layers confers three advantages. First, it permits exploiting
any ability to tolerate reliability issues that is intrinsic to
the application [19], [20]. Second, it enables the re-use of
existing high-level reliability mechanisms that may be present
to mitigate other forms of low-level errors [21]. Third, it
exposes metastability failures to a richer set of high-level
design tools, trade-offs and solutions than present at the circuit
level. The latter is exemplified by NOC routing where (as we
have shown) metastability can be transformed into a packet
delivery reliability issue, a relatively well-studied problem for
which several solutions have been proposed [22]-[24].

VII. CONCLUSION

Metastability is traditionally viewed as a malevolent circuit-
level phenomenon that can cross hierarchical boundaries and
cause catastrophic system-level failures. While it is true that
the propagation of metastability is fundamentally impossible
to prevent, this propagation is constrained structurally and
functionally. Metastability can therefore be contained within a
subset of state/data flip-flops and prevented from propagating
further until its probability is sufficiently diminished. We
presented a design scheme in which we exploited this idea to
avoid dedicated synchronization while isolating metastability
at the component level and predicting its consequences.
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