
Near-Optimal Distributed Tree Embedding

Mohsen Ghaffari
MIT

ghaffari@csail.mit.edu

Christoph Lenzen
MIT

clenzen@csail.mit.edu

Abstract

Tree embeddings are a powerful tool in the area of graph approximation algorithms. Roughly speaking,
they transform problems on general graphs into much easier ones on trees. Fakcharoenphol, Rao, and Talwar
(FRT) [STOC’04] present a probabilistic tree embedding that transforms n-node metrics into (probability
distributions over) trees, while stretching each pairwise distance by at most anO(log n) factor in expectation.
This O(log n) stretch is optimal.

Khan et al. [PODC’08] present a distributed algorithm that implements FRT in O(SPD log n) rounds,
where SPD is the shortest-path-diameter of the weighted graph, and they explain how to use this embedding
for various distributed approximation problems. Note that SPD can be as large as Θ(n), even in graphs
where the hop-diameter D is a constant. Khan et al. noted that it would be interesting to improve this
complexity. We show that this is indeed possible.

More precisely, we present a distributed algorithm that constructs a tree embedding that is essentially
as good as FRT in Õ(min{n0.5+ε,SPD} + D) rounds, for any constant ε > 0. A lower bound of
Ω̃(min{n0.5,SPD}+D) rounds follows from Das Sarma et al. [STOC’11], rendering our round complexity
near-optimal.

1 Introduction and Related Work

Metric embeddings are a versatile technique in centralized approximation algorithms. Given an arbitrary metric
space on n points—i.e., a weighted graph on n nodes with distances being the metric—metric embeddings
transform it into a “nicer” metric space while incurring only a small distortion. A basic example is Bourgain’s
theorem [5], which shows that it is possible to embed into `2 with O(log n) distortion. The general approach
for using metric embeddings in approximation algorithms is as follows: (1) using the embedding, transform
the given problem instance to one in a more convenient metric space (i.e., nicer graph); (2) solve the simpler
problem; (3) transform the solution back to one of the original instance. See [14, 18] for surveys.

Tree embeddings are a particularly useful branch of metric embeddings, which “transform” general graphs
into trees. This is especially attractive, because finding solutions on trees is often quite easy, if not trivial.
Not surprisingly, the approach has a caveat: one cannot hope for a small distortion when (deterministically)
embedding into a tree; for example, transforming an n-node cycle to any tree will incur an Ω(n) distortion on
at least one edge. But not all the hope is lost, as there is still the option of embedding probabilistically. Indeed,
a beautiful line of work [1–3, 9] shows this to be feasible, obtaining successively better distortions, and ending
with the algorithm of Fakcharoenphol, Rao, and Talwar (FRT) [9], which achieves O(log n) distortion. More
precisely, the FRT algorithm maps any n-point metric into a tree drawn from a certain probability distribution
so that each pairwise distance is stretched by a factor O(log n) in expectation. This O(log n) distortion is
existentially optimal, as demonstrated by expander graphs [3].

The fact that graph problems are often easier on trees is not particular to centralized algorithms. Hence, it
is natural to expect that tree embeddings should be helpful in distributed algorithms as well. Actualizing this
intuition, Khan et al. [15] showed how to implement FRT distributedly and use it to get distributed approxi-
mation algorithms for a number of graph problems. The distributed tree embedding of Khan et al. works in
O(SPD log n) rounds of the CONGEST model, where SPD denotes the shortest-path-diameter. CONGEST is
the standard model for distributed computation, in which each node can send one B-bit size message per round
to each of its neighbors; typically, B = O(log n). The shortest-path-diameter SPD is the minimum integer
h ∈ N+ such that for any pair of nodes v and u, there is a least-weight path between v and u that has at most h
hops. Note that SPD can be much larger than the hop diameter D, up to factor Θ(n); see, e.g., Figure 1.

1

1

1

1

1

1

11

1

1

1

1

1

1

1 1

n

n

n

n

n

n
nn

n

n

n

n

n

n n n

Figure 1: An example where SPD �
D. Here D = 2 and SPD ≈ n/2.
Numbers on edges show their weights.

Khan et al. noted that it would be interesting to improve the round
complexity. This is particularly intriguing in light of the developments in
the general area of distributed approximation algorithms. On the lower
bound side, an elegant sequence of papers [7, 8, 21] show Ω̃(D +

√
n)

rounds to be necessary for a wide range of (approximation) problems,
including those for which tree embeddings can be useful. Here, D is
the hop diameter of the network graph. On the upper bound side, in the
last couple of years approximation algorithms with round complexity
Õ(D+

√
n), or close to it, have been developed for a number of different

graph problems [11–13, 16, 17, 19]. Consequently, it is intriguing to ask

“Is there an Õ(D+
√
n)-round tree embedding algorithm?”

We consider answering this question important as a positive result would add tree embeddings to the set of our
Õ(D +

√
n)-round tools and extend the range of problems in the Õ(D +

√
n)-round category to those which

can be solved via tree embedding.

1.1 Our Contribution

We show that there is a distributed algorithm that provides a probabilistic tree embedding that is essentially as
good as FRT—i.e., with only a constant factor larger stretch—in almost Õ(D +

√
n) rounds.

1

Theorem 1.1 (INFORMAL). For any ε > 0, a probabilistic tree embedding with expected stretch of
O(log n/ε) can be computed in Õ(min{n0.5+ε, SPD}+D) rounds of the CONGEST model.

The formal version specifying how the embedding is represented distributedly is presented in Theorem 4.11. As
mentioned, this result is near-optimal in both stretch and round complexity: the former must be Ω(log n) [3],
and we explain in Appendix A that [7] yields that the latter must be Ω̃(min{

√
n,SPD}+D).

1.2 Overview

Here, we explain the key ideas of our construction. For brevity, the description of FRT is deferred to Section 3.

9

8

3

1

5

7

6

2

3

2

5

1

3 1

2

2

3

3

dist. node

0 9

2 8

3 5

4 3

6 1

Figure 2: The LE list for node 9.
Nodes are labeled 1 to 9 randomly,
edges are labeled by their weights.

FRT = Least Elements (LE) Lists: Given a weighted graph G =
(V,E,W), computing FRT’s probabilistic tree embedding ofG boils down
to the following: (1) choose a permutation π of V uniformly at random; (2)
for each node v ∈ V and each distance d, find the node w within distance
d of v that appears first in the permutation π.

For each node v, this generates a list of nodes with one entry for each
distance d. Note that the π-indices of the nodes in the list are decreasing
as a function of d. The list can be compressed by only keeping the entry
with the minimum distance d for each node w in the list. The compressed
lists are called Least Elements (LE) lists [6]. See Figure 2 for an example.

Distributed LE-list Computation: Khan et al. [15] present a neat method for computing LE lists distributedly.
Their algorithm runs in iterations; in each iteration, each node sends its whole current (compressed) list to its
neighbors. Initially, each list contains only the node itself at distance 0. In each round, each node updates its
lists using the received ones and the distances from the sending neighbors. After at most SPD iterations, we
get the correct LE lists. A key observation of [15] is that, due to the random order π, in each iteration, each list
will contain at most O(log n) entries, with high probability (w.h.p.). Thus, each of the at most SPD iterations
can be performed in O(log n) rounds, which translates to a total of O(SPD log n) rounds.

A Strawman Idea: LE lists can be determined easily if we have all-to-all distances. Since we know how to get
a multiplicative approximation of all-to-all distances in time close to Õ(D +

√
n) [16], a natural idea is to use

these approximates to construct an FRT-like embedding. However, this idea does not go far, mainly because
multiplicative approximates do not satisfy (any approximation of) the triangle inequality.

Our Approach In a Nutshell: We construct a virtual graphG′ whose distances approximate those ofG and has
shortest-path diameter SG′ at most Õ(

√
n). Note that distances in a graph always satisfy the triangle inequality,

which enables us to apply the FRT construction. However, since G′ is a virtual graph, we cannot readily use
the algorithm by Khan et al. [15] to achieve a time complexity of Õ(SG′) = Õ(

√
n).

We resolve this by entangling the construction of G′ with the computation of LE lists. More concretely, we
pick the first Θ(

√
n) nodes in the random order π of FRT, call them S, find factor % = O(1/ε) approximations of

distances among nodes of S. This part uses the spanner construction of Baswana and Sen [4] and its adaptation
in [16]. We set the G′-distances among S equal to these approximations by adding direct virtual edges of the
corresponding weight, while the original edges of G are added to G′ with weight raised by factor %. As now
the approximated distances between nodes in S are exact G′-distances, we can directly compute the G′-LE
lists of the nodes in S . Here it is crucial that the nodes in S are prioritized by π, implying that their lists will
only contain nodes in S. Furthermore, for any pair of nodes for which a least-weight path has at least roughly√
n log n hops, w.h.p. one such path has a node from S within its first O(

√
n log n) hops. Thus, it suffices to

run the LE list computation, jump-started with the complete lists on S, only for Õ(
√
n) iterations. The fact

that we have entangled the (random) construction of G′ with the (random) permutation π of FRT creates some
probabilistic dependency issues. However, by opening up the analysis of FRT and the LE list computation, we
show that this does affect neither the stretch nor the running time by more than factor 2.

2

2 Preliminaries

Model: The network is represented by a connected, simple, and weighted graph G = (V,E,W) of n := |V |
nodes, with edge weights W : E → N bounded polynomially in n. Initially each node knows the weights of
its incident edges. We use the CONGEST model [20]: communication occurs in synchronous rounds, where in
each round B = O(log n) bits can be sent in each direction of each edge.

Each node independently picks an O(log n)-bit identifier (ID in short), uniformly at random. These are
the identifiers that we will use in the remainder of the paper. We use random IDs because they readily give
us a uniformly random ordering π of nodes. We use notation v < w to mean that the random ID of node
v is smaller than that of node w. It is easy to see that, with high probability, the random ID picked by each
node is unique, and we assume throughout the paper that this holds true. Here, we use the phrase “with high
probability” (w.h.p.) to indicate that an event occurs with probability at least 1− 1/nc, for an arbitrary constant
c > 0 fixed in advance.

Graph-Theoretic Notations:
• For a node v, denote the set of its neighbors by N (v).
• For a path p = (v0, . . . , vh), define its length `(p) := h and its weight W (p) :=

∑h
i=1W (vi−1, vi).

• For v, w ∈ V , denote by Pvw the set of all paths starting at v and ending at w.
• The hop distance of v, w ∈ V is defined as hd(v, w) := minp∈Pvw{`(p)}.
• The (hop) diameter of G is D := maxv,w∈V {hd(v, w)}.
• The (weighted) distance of v, w ∈ V is given by wd(v, w) := minp∈Pvw{W (p)}.
• The weighted diameter of G is WD := maxv,w∈V {wd(v, w)}.
• The shortest-path diameter of G is SPD := maxv,w∈V {min{`(p)|p ∈ Pvw ∧W (p) = wd(v, w)}}.

For brevity, we use the conventions that “diameter” denotes the hop diameter, but “distance” refers to weighted
distances. When talking of graphs other than G, we subscript the above notations by the respective graph.

3 Recap: FRT, Least Element Lists, and Spanners

3.1 The FRT Probabilistic Tree Embedding

T
k

T
2

T
1

…

RRR

r

Figure 3: FRT’s recursion.

Given a weighted graph G = (V,E,W), FRT randomly constructs a tree
T = (VT , ET ,WT) such that there is a mapping M from V to leaves of T ,
and for each pair of nodes u, v ∈ V , we have
• wd(u, v) ≤ wdT (M(v),M(v)), and
• E[wdT (M(v),M(u))] ≤ wd(u, v) ·O(log n).

FRT–An Intuitive Description: The construction can be viewed as a tree
of hierarchical decompositions. The key decomposition step is as follows:
Pick R ∈ [WD /4,WD /2] uniformly at random. For each node w, define
its (exclusive) ball

B(w) := {v ∈ V | wd(v, w) ≤ R∧∀w′ ∈ V : wd(v, w′) ≤ R⇒ w ≤ w′}.

Recall from Section 2 that the notation w ≤ w′ means w has a smaller random ID compared to w′. We
recursively create a tree embedding Ti for each subgraph of G induced by a nonempty ball B(w). Finally, add
a root node r and connect the roots of trees Ti to r via edges of weight R.

FRT–A Formal Description: The whole structure of the FRT tree can be succinctly described as follows.
Choose a uniformly random β ∈ [1, 2). Denote by L := dlog WDe+1 the maximum level of the tree. For each
v ∈ V and each i ∈ {0, . . . , L}, let node vi ∈ V minimize the ID among the set {w ∈ V | wd(v, w) ≤ β2i−1}.

3

(3, 3, 1) (4, 4, 1)

(1)

(1, 1) (3, 1) (4, 1)

(5, 4, 1)(2, 1, 1)(1, 1, 1)

1

4

3

2

5

3 3 3

1.5 1.5 1.5 1.5 1.5

4

5

2

2

4

4

graph G The FRT tree embedding of G

Figure 4: A simple example of an FRT tree.

Note that vi is a function1 of v. In particular, v0 = v and vL = minV is the first node in the order π.
The node set VT of the tree is {(vi, . . . , vL) | v ∈ V ∧ i ∈ {0, . . . , L}}. Note that each different sequence
(vi, . . . , vL) starting with vi denotes a distinct “copy” of vi ∈ V . For each tree node (vi, . . . , vL) with i < L,
its parent is the tree node (vi+1, . . . , vL), and the weight of the edge connecting them is β2i. Finally, we have
M(v) := (v0, . . . , vL). Thus, the node set V is mapped to the leaf set of the tree. Figure 4 shows an example.

The fact that, for each v, w ∈ V , wd(v, w) ≤ wdT (M(v),M(w)) can be easily verified. The main result
of Fakcharoenphol, Rao, and Talwar [10] is the probabilistic upper bound.

Theorem 3.1 ([10], Theorem 2). For the embedding described above, it holds for each v, w ∈ V that
E[dT (M(v),M(w))] ∈ O(log n) · wd(v, w).

3.2 Least Element Lists

The FRT embedding can be implicitly encoded via a data structure called Least Element lists [6].

Least Element (LE) Lists: For each node v, its LE list is

Lv := {(w,wd(v, w)) ∈ V × N0 |@u ∈ V : (u < w ∧ wd(v, u) < wd(v, w))}.

Given the LE lists, each node v can easily compute the nodes vi, for i ∈ {1, . . . , L}, from its LE list Lv.
This is because, for any given distance d, node v can recover the node of smallest ID within distance d as the
node w of smallest ID satisfying that (w,wd(v, w)) ∈ Lv and wd(v, w) ≤ d. Moreover, these lists allow us to
determine the next hop on a least-weight path from v to vi locally.

Observation 3.2. If (w,wd(v, w)) ∈ Lv for w 6= v, then u ∈ N (v) exists s.t. (w,wd(v, w)−W (v, u)) ∈ Lu.
Hence, if for each w ∈ V , w 6= v, so that (w,wd(v, w)) ∈ Lv we choose pv(w) ∈ N (v) with (w,wd(v, w)−
W (v, pv(w))) ∈ Lpv(w), then the edges (v, pv(w)) form a shortest-path tree rooted at w.

3.3 Distributed Computation of Least Element Lists

Next, we explain the distributed algorithm of Khan et al. [15] for computing LE lists:

1. Each v ∈ V initializes L(0)
v := {(v, 0)}). Set i := 0.

2. All nodes v do the following iteration in parallel:

1A better notation might be ci(v), indicating that this is the level i center of node v. However, for brevity we write vi = ci(v).

4

(a) Send L(i)
v to all neighbors.

(b) Set L(i+1)
v := L

(i)
v .

(c) For all w ∈ N (v) and (u, d) ∈ L(i)
w , set L(i+1)

v := L
(i+1)
v ∪ {(u, d+W (v, w))}.

(d) ScanL(i+1)
v in ascending order of distances (i.e., second entries) and delete each entry for which

the ID (i.e., the first entry) is not larger than all IDs previously encountered in the scan.
(e) Set i := i+ 1.

while ∃v ∈ V so that L(i)
v 6= L

(i−1)
v .

3. Each v ∈ V returns L(i)
v = Lv.

From the definition of LE lists, the following observations regarding this algorithm are straightforward.

Observation 3.3. If (w,wd(v, w)) ∈ Lv, then (w,wd(v, w)) is not deleted from L
(i)
v during its scan.

Observation 3.4. For i ∈ N0, suppose (w,wd(v, w)) ∈ Lv and (w,wd(u,w)) ∈ L
(i)
u for u ∈ N (v) on a

least-weight path from v to w. Then (w,wd(v, w))) ∈ L(i+1)
v .

Observations 3.2, 3.3, and 3.4 essentially imply the following lemma, whose proof appears in Appendix B.

Lemma 3.5. The above algorithm computes correct LE lists. It terminates after at most SPD +1 iterations.

Remark 3.6. If node v ∈ V also memorizes which neighbor sent the (first) message causing it to insert an
entry into Lv, the least-weight paths indicated by the respective pointers have minimal hop count, and the trees
implied by Observation 3.2 have minimal depth (which is bounded by SPD).

The remaining analysis essentially boils down to showing that the lists are always short, i.e., have O(log n)
entries w.h.p. in each iteration. We remark that our analysis fixes a technical issue with the analysis in [15];
however, the key idea is the same. We refer to Appendix B for details.

Lemma 3.7 ([15], Lemma 5). For each v ∈ V and each i ∈ N0, |L(i)
v | ∈ O(log n) w.h.p.

The results explained above can be put together to prove the following theorem.

Theorem 3.8. The LE lists can be computed within O(SPD log n) rounds w.h.p.

3.4 Spanners and Skeletons

In our algorithm, we will make use of known techniques for constructing spanners and skeletons. Here, we
briefly review these tools. We note that the description is adapted to best suit our application.

For % ≥ 1, a (multiplicative) %-spanner of a graph H = (VH , EH ,WH) is a graph HS = (VH , ES ,WS)
with ES ⊆ EH , WS(e) = WH(e) for all e ∈ ES , and wdHS

(v, w) ≤ %wdH(v, w) for all v, w ∈ VH . Ideally,
we want both % and |ES | to be as small as possible.

We will make use of a spanner construction on a certain virtual graph. For S ⊆ V , the h-hop S-skeleton of
G is defined as the weighted graph GS,h := (S, ES,h,WS,h) with ES,h := {{s, t} ∈

(S
2

)
| hd(s, t) ≤ h} and

WS,h(s, t) := min{W (p) | p ∈ Pst ∧ `(p) ≤ h} for each {s, t} ∈ ES,h. In words, the graph has node set S and
for each s, t ∈ S an edge of weight wd(h)(s, t) iff s and t are in hop distance at most h.

For the purposes of this paper, we confine ourselves to the special case that each node is sampled into S
independently with probability 1/

√
n and that h := c

√
n log n for a sufficiently large constant c. Under these

constraints, the skeleton preserves weighted distances, w.h.p.

Lemma 3.9 ([16], Lemma 4.6). If nodes are sampled into S with independent probability 1/
√
n and h :=

c
√
n log n for a sufficiently large constant c, then wdGS,h(s, t) = wd(s, t) for all s, t ∈ S w.h.p.

5

The hop-distance h up to which we need to explore paths in G to “find” the edges in EGS,h is in Õ(
√
n).

Furthermore, because |S| ∈ Õ(
√
n), GS,h can be encoded using Õ(n) bits. We can further reduce this to

Õ(n0.5+ε) bits by constructing a spanner ofGS,h, sacrificing a factor ofO(1/ε) in the accuracy of the distances.

Theorem 3.10 ([16], Theorem 4.10). Suppose nodes are sampled into S independently with probability 1/
√
n

and h := c
√
n log n for a sufficiently large constant c. Then, for any k ∈ N, w.h.p. a (2k − 1)-spanner of GS,h

can be computed and made known to all nodes in Õ(n1/2+1/(2k) +D) rounds. Furthermore, for each s, t ∈ S,
there is a unique p ∈ Pst of weight W (p) ≤ (2k − 1) wd(s, t) so that each node on p knows that it is on p as
well as which of its neighbors is the next node on p (as a function of the identifier of t).

This is achieved by simulating the Baswana-Sen spanner construction [4] onGS,h using a truncated version
of the multi-source Bellman-Ford algorithm. For details and proofs we refer to [16].

4 Fast Distributed Tree Embedding

In this section, we explain our algorithm. We first give an intuitive explanation of what are our key ideas. Then,
we present the algorithm and its correctness, running time, and approximation analysis.

4.1 Key Ideas

When computing LE lists according to the algorithm by Khan et al. [15], information spreads along least-weight
paths. For most of the nodes, however, the induced shortest-path trees (cp. Observation 3.2) will be fairly
shallow: Let S be the set of nodes which their ID is in the first 1/

√
n fraction of range of possible IDs. Recall

from Section 2 that we assign IDs uniformly and independently at random. Thus, Pr[v ∈ S] = 1/
√
n. When

following a least-weight path, w.h.p. one will encounter a node in S after at most O(
√
n log n) hops. Such a

node will never have any entries corresponding to nodes of larger IDs. By the union bound and Observation 3.2,
we get that the trees rooted at nodes in V \ S have depth O(

√
n log n) w.h.p.

Observation 4.1. Let S be the set of nodes with ID in the first 1/
√
n fraction of the ID range. For each

v ∈ V \ S , the depth of a shortest-path tree rooted at v whose nodes are the set {w ∈ V | (v,wd(w, v)) ∈ Lw}
is O(

√
n log n) w.h.p.

For nodes in S , there is no such guarantee. In fact, if a graph contains a very light path of n − 1 hops
and otherwise only edges of large weight, it is certain that the tree rooted at the minimum-ID node has depth
Ω(n), even if the hop diameter D is very small. Nonetheless, the property that on any path a node from S will
be encountered within O(

√
n log n) hops w.h.p. still applies. Hence, once the LE lists of the nodes in S are

determined, the algorithm from the Section 3.3 will complete after O(
√
n log n) additional iterations w.h.p.

Observation 4.2. If for some i ∈ N0 and all s ∈ S it holds that L(i)
s = Ls, then L(i′)

v = Lv for all v ∈ V and
i′ ∈ i+O(

√
n log n) w.h.p.

In summary, the problem boils down to computing the LE lists for the small subset S ⊂ V quickly. We
do not know how to do this exactly in sublinear time, i.e., õ(n) rounds. Consequently, we will make use of
approximation. Recall that, since the IDs are uniformly random, S is a uniformly random subset of V containing
each node with independent probability 1/

√
n. This is exactly the precondition required in the skeleton and

spanner constructions given by Lemma 3.9 and Theorem 3.10. Thus, in Õ(n1/2+ε + D) rounds, we can
make %-approximate distances, for % ∈ O(1/ε), between nodes in S global knowledge. More precisely, these
approximations are induced by the distance metric of a spanner of the O(

√
n log n)-hop S-skeleton. Hence,

we can compute exact LE lists of this spanner locally. Using these lists instead of those for G approximately
preserves distances.

6

Graph G Virtual Graph G’

Figure 5: Virtual graph construction. Red nodes are in S, i.e., their ID is in the top 1/
√
n fraction of the ID range. Dotted

red lines indicate virtual edges in G′, whose weights are the %-approximation of their endpoints’ distance in G. Green
edges show edges from G that are not connecting two nodes from S. In G′, their weight is by factor % larger than in G.
Hence, for each s, t ∈ S, the virtual edge {s, t} is a least-weight path from s to t in G′.

Next, we want to use these lists and Observation 4.2 to complete the computation of LE lists for the re-
maining set V \ S quickly. However, unfortunately we did not compute LE lists for G. To address this issue,
we consider the virtual graph G′ = (V,E′,W ′), where E′ := E ∪

(S
2

)
, and W ′(e′) is the distance of s and t

in the spanner iff e′ = {s, t} for some s, t ∈ S and W (e′) = %W (e) otherwise. In G′, the spanner distances
between s, t ∈ S are the exact distances, and for any v, w ∈ V , wd(v, w) ≤ wdG′(v, w) ≤ %wd(v, w). In-
tuitively, without distorting distances by more than factor %, we have ensured that the LE lists of nodes in S
we determined from the spanner are their exact LE lists in G′, and by Observation 4.2, we can compute the
LE lists of nodes in V \ S quickly. Finally, we would like to argue that the computed lists are those of an
FRT embedding of G′, and because G′ satisfies that wd(v, w) ≤ wdG′(v, w) ≤ %wd(v, w) w.h.p., the overall
expected distortion is O(% log n) in expectation.

Is it that simple? Almost, but not quite. The issue with the above simplistic reasoning is that it ignores
dependencies. Since G′ depends on S, the permutation of V induced by the ranks is not independent of the
topology of G′, and therefore it is not obvious that the bound on the expected distortion of the FRT algorithm
applies. Similarly, the the statement of Lemma 3.7 that (intermediate) LE lists are w.h.p. of size O(log n)
relies on the independence of the permutation from the topology of G′. Both of these issues can be resolved,
by argueing about S and V \ S separately; the total orders the IDs induce on S and V \ S, respectively, are
independent of what nodes are in S and thus the topology of G′.

4.2 Our Algorithm: Constructing the Virtual Graph G′ and Computing its LE Lists

Here we describe our algorithm. This algorithm uses a parameter k ∈ N that can be set arbitrarily. For our main
result, one should think of k as k = d1/εe.

1. Construct any BFS tree, determine its depth D̂ ∈ Θ(D) and n (the latter by aggregation on the tree),
and make these values known to all nodes.

2. Put the nodes whose random ID is in the first 1/
√
n fraction of the ID range in set S.

3. Set h := c
√
n log n for a sufficiently large constant c and ρ := 2k − 1. Construct a ρ-spanner G̃ of

GS,h in Õ(n1/2+1/(2k) +D) rounds, using the algorithm given by Theorem 3.10.
4. Define the virtual graph G′ := (V,E′,W ′) as follows:

• E′ := E ∪
(S

2

)
.

• For each s, t ∈ S, set W ′(s, t) := WG̃(s, t).
• For each e ∈ E′ \

(S
2

)
, set W (e′) := ρW (e).

7

5. Each s ∈ S locally computes LSv , its LE list for the metric on S induced by distances in G̃.
6. Each node s ∈ S initializes L(0)

s := LSv . Nodes v ∈ V \ S initialize L(0)
v := {(v, 0)}. The algorithm

from Section 3.3 is run on G, however with the lists L(0)
v initialized as just specified.

7. Return the computed lists.

4.3 Correctness Analysis

We first show that the algorithm computes the desired LE lists.

Lemma 4.3. W.h.p., wdG̃(s, t) = wdG′(s, t) for all s, t ∈ S.

Proof. Theorem 3.10 guarantees that w.h.p., G̃ is a ρ-spanner of GS,h. By Lemma 3.9, w.h.p. wdGS,h(s, t) =
wd(s, t) for all s, t ∈ S. In the following, we condition on both events occuring. Therefore, for any s, t ∈ S,

wdG′(s, t) ≤ wdG̃(s, t) ≤ ρwdGS,h(s, t) = ρwd(s, t).

It remains to prove that wdG′(s, t) ≥ wdG̃(s, t). To this end, consider any path p = (v0 = s, v1, . . . , v`(p) = t)
in G′. It decomposes into subpaths p = p1 ◦ p2 ◦ . . . ◦ pm (for some m ≤ `(p)) so that each pi, i ∈ {1, . . . ,m},
starts and ends at a node in S and all its internal nodes are in V \ S . Therefore, either pi = (si, ti) for some
si, ti ∈ S and W ′(pi) = wdG̃(si, ti), or pi = (si, . . . , ti) consists of edges from E only. The latter implies that

W ′(pi) = ρW (pi) ≥ ρwd(si, ti) = ρwdGS,h(si, ti) ≥ wdG̃(si, ti).

Thus, in both cases,W ′(pi) ≥ wdG̃(si, ti). By repeated application of the triangle inequality (wdG̃ is a metric),
we conclude that

wdG̃(s, t) ≤
m∑
i=1

wdG̃(si, ti) ≤
m∑
i=1

W ′(pi) = W ′(p).

Since p was an arbitrary s-t path in G′, we conclude that indeed wdG′(s, t) ≥ wdG̃(s, t).

Corollary 4.4. W.h.p., the LE lists computed locally in Step 5 are the LE lists for G′ of nodes in S.

Corollary 4.5. W.h.p., the above algorithm returns LE lists for the graph G′ specified in Step 4.

4.4 Running Time Analysis

Clearly, the first step of the algorithm requires O(D) rounds. The other steps that do not solely consist of local
computations are Steps 3 and 6. By Theorem 3.10, the time complexity of Step 3 is Õ(

√
n

1/2+1/(2k)
+ D)

w.h.p. Hence, it remains to analyze the time complexity of Step 6.

Lemma 4.6. Step 6 of the above algorithm performs O(
√
n log n) iterations of the LE list algorithm w.h.p.

The proof is given in Appendix C; essentially, the lemma follows from the fact that on each path, a node
from S is encountered every Õ(

√
n) hops.

Due to this lemma, it is sufficient to show that in each iteration, the lists contain O(log n) entries w.h.p.

Lemma 4.7. For each iteration of the LE list algorithm during Step 6, all lists have O(log n) entries w.h.p.

Proof. For each node v ∈ V and each index i ∈ N0, we split its list L(i)
v into two parts. The head of the list

H
(i)
v consists of entries (s, d) with s ∈ S and its tail T (i)

v consists of entries (v, d) with v ∈ V \ S . Consider
the following virtual graph:

8

• Take a copy of G′.
• Add a copy of each node in S and connect it to the original by a 0-weight edge.
• Connect each copy of a node s ∈ S to each original node t ∈ S \ {s} by an edge of weight W ′(s, t).

Now initialize, for each s ∈ S , L(0)
s′ := {(s, 0)}, where s′ is the copy of s. For all original nodes v ∈ V , set

L
(0)
v := ∅. Observe that
(i) after one iteration of the LE list algorithm, each original node has the same head H(0)

v as according to the
initialization in Step 6 of the algorithm;

(ii) no message from a copy of a node ever causes a change in the lists in later rounds; and
(iii) the permutation of S induced by the IDs is uniform and independent of the topology.

The third observation implies that Lemma 3.7 applies,2 i.e., the list heads have O(log n) entries w.h.p. The
first two observations imply that the list heads are identical to those of the iterations of the LE list algorithm
performed in Step 6 (shifted by one round). Hence, |H(i)

v | ∈ O(log n) w.h.p. for all nodes v ∈ V and rounds i.
Now consider the list tails. Suppose the list construction algorithm was run on G, but with L(0)

s := ∅ for all
s ∈ S. Since the ranks induce a uniformly random permutation on V \S (that is independent ofG), Lemma 3.7
applies and, in each iteration, the respective lists have O(log n) entries w.h.p. We claim that the tails T (i)

v ,
v ∈ V , i ∈ N0, are always prefixes of these lists. This follows because if an entry of an (intermediate) head list
causes deletion of an entry from a tail list, it can never happen that the deleted entry would affect neighbors’
lists in future iterations (the head entry causing the deletion always takes precedence).

To complete the proof, for each iteration i we take the union bound over all nodes and the events that the
head and tail lists are short, implying that, w.h.p., |L(i)

v | = |H(i)
v |+ |T (i)

v | ∈ O(log n) for all nodes v ∈ V .

We summarize our results on the LE list computation for G′; see Appendix C for details.

Theorem 4.8. W.h.p., the algorithm computes the LE lists of the virtual graph G′ defined in Step 5 and (if
suitably implemented) terminates in Õ(n1/2+1/(2k) +D) rounds.

4.5 Approximation Analysis

So far, we have shown that our algorithm computes LE lists for G′ and does so fast. However, we cannot apply
Theorem 3.1 to show that these LE lists represent a virtual tree sampled from the (distribution of trees given by)
the FRT embedding. Since the construction of G′ depends on the choice of S, and this choice depends on the
random IDs, G′ and the permutation on V induced by the IDs are not independent. We now adapt the analysis
of [10] to our setting and show how to remedy the probabilistic dependencies created by our algorithm. In the
following, denote by T the FRT tree specified by the LE lists on G′.

Lemma 4.9. For each v, u ∈ V , we have that E[wdT (M(v),M(u))] ∈ O(log n) · wdG′(v, u).

Proof Sketch. For any S ⊂ V , denote by ES the event that S is the set of the nodes with random IDs in the first
1/
√
n fraction of the ID range. It suffices to show that

E[wdT (M(v),M(u)) | ES] ∈ O(log n) · wdG′(v, u).

We condition on ES and an arbitrary outcome of the spanner construction (which uses independent randomness);
this fixes G′. Note that the total orders the IDs induce on each of the sets S and V \ S, respectively, are still
uniformly random and independent of G′.

Fix u, v ∈ V . We say w settles u and v on level i, iff it is the node with the smallest ID so that

min{wdG′(w, v),wdG′(w, u)} ≤ β2i−1. (1)

2Technically speaking, we use a slightly more general version of the lemma, in which a subset of the nodes may be anonymous;
the reasoning remains identical. Here, all nodes but the copies of nodes in S are anonymous.

9

We say w cuts u and v on level i, iff it settles them on level i and also

β2i−1 ≤ max{wdG′(w, v),wdG′(w, u)}. (2)

It is not hard to show that if (vi+1, . . . , vL) is the least common ancestor of v and u, then wdT (M(v),M(u)) <
β2i+1 < 2i+2 and either vi or ui cuts v and u. Hence, if we denote by Ew,i the event that w ∈ V cuts u and v
on level i, we have that

E[wdT (M(v),M(u)) | ES] <
∑
w∈V

L∑
i=1

P [Ew,i] · 2i+2 =
∑
w∈S

L∑
i=1

P [Ew,i] · 2i+2 +
∑

w∈V \S

L∑
i=1

P [Ew,i] · 2i+2.

Both sums are handled analogously; let us consider only the first one here. Sort the nodes w ∈ S in ascending
order w.r.t. min{wdG′(w, v),wdG′(w, u)} and let wk be the kth node in this order. We rewrite P [Ewk,i] as

P [(1) and (2) hold for wk and i] · P [wk settles u and v on level i | (1) and (2) hold for w and i].

As the random order on S is uniform and independent of G′, the second, conditional probability is 1/k. Con-
cerning the first probability, recall that (1) and (2) hold exactly if β2i−1 ∈ [wdG′(w, v),wdG′(w, u)]. Here,
W.l.o.g. we have assumed that wdG′(w, v) < wdG′(w, u). Computation shows that

L∑
i=1

P [(1) and (2) hold for wk and i]·2i+2 =

∫ wdG′ (w,u)

wdG′ (w,v)
23 dx = 8(wdG′(w, u)−wdG′(w, v)) ≤ 8 wdG′(v, u),

where in the final step we applied the triangle inequality. We conclude that

∑
w∈W

L∑
i=1

P [Ew,i] · 2i+2 ≤
|W |∑
k=1

8

k
· wdG′(v, u) < 8Hn · wdG′(v, u) ∈ O(log n) · wdG′(v, u).

Full proofs of the lemma and the statements below are given in Appendix C. As distances in G′ are w.h.p.
at most by factor O(log n/ε) larger than in G, we conclude that the embedding given by the LE lists for G′ is
also good for G.

Corollary 4.10. For each v, u ∈ V , we have that E[wdT (M(v),M(u))] ∈ O(k log n) · wd(v, u).

We arrive at our main result, which was informally stated in Theorem 1.1.

Theorem 4.11. For any 0 < ε ≤ 1, it is possible to sample from a distribution of probabilistic tree embeddings
with expected stretch O(log n/ε) in Õ(min{n0.5+ε, SPD} + D) rounds w.h.p. in the CONGEST model. The
computed embedding is given distributedly, in the form of corresponding LE lists. Moreover, if not all least-
weight paths in G induced by the LE lists have Õ(

√
n) hops, the subtree of the virtual tree induced by the set S

of nodes whose (uniformly random) ID is in the first 1/
√
n fraction of the ID range is known to all nodes, and

for each edge {s, t} in this subtree there is a unique s-t-path in G whose weight does not exceed the weight of
the virtual edge and whose nodes know that they are on this path.

We remark that instead of just constructing the tree embedding in form of the LE lists, this result also
makes sure that the embedding can be used for approximation algorithms efficiently. For instance, it is essential
that we can, e.g., select a root-leaf path in the virtual tree and map it back to a corresponding path in G in
Õ(min{n0.5+ε, SPD} + D) rounds. Note that this operation is very basic, as it will be required whenever
seeking to connect two leaves in different subtrees. Reconstructing such a path hop by hop using LE lists
may take SPD time, which is too slow if SPD �

√
n. Fortunately, if SPD is large, for each path all but a

prefix of Õ(
√
n) hops corresponds to a route in the constructed skeleton spanner, and the additional information

collected during the spanner construction stage is sufficient to quickly determine the remaining edges in G by
announcing the (endpoints of) the subpath in the skeleton spanner to all nodes.

10

References
[1] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application to the k-server problem.

SIAM J. Comput., 24(1):78–100, Feb. 1995.

[2] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In Proc. of the Symp. on
Found. of Comp. Sci. (FOCS), pages 184–, 1996.

[3] Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proc. of the Symp. on Theory of Comp. (STOC),
pages 161–168, 1998.

[4] S. Baswana and S. Sen. A simple and linear time randomized algorithm for computing sparse spanners in weighted
graphs. Random Structures and Algorithms, 30(4):532–563, 2007.

[5] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics,
52(1-2):46–52, 1985.

[6] E. Cohen. Size-estimation framework with applications to transitive closure and reachability. Journal of Computer
and System Sciences, 55(3):441–453, 1997.

[7] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and R. Wattenhofer. Dis-
tributed verification and hardness of distributed approximation. In Proc. of the Symp. on Theory of Comp. (STOC),
pages 363–372, 2011.

[8] M. Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the distributed minimum spanning
tree problem. In Proc. of the Symp. on Theory of Comp. (STOC), pages 331–340, 2004.

[9] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In
Proc. of the Symp. on Theory of Comp. (STOC), pages 448–455, 2003.

[10] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics. Journal
of Computer and System Sciences, 69(3):485–497, 2004.

[11] M. Ghaffari. Near-optimal distributed approximation of minimum-weight connected dominating set. In the Pro. of
the Int’l Colloquium on Automata, Languages and Programming (ICALP), 2014.

[12] M. Ghaffari and F. Kuhn. Distributed minimum cut approximation. In Proc. of the Int’l Symp. on Dist. Comp.
(DISC), pages 1–15, 2013.

[13] S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and applications. In the Proc. of the Int’l
Symp. on Princ. of Dist. Comp. (PODC), pages 355–364, 2012.

[14] P. Indyk and J. Matousek. Low-distortion embeddings of finite metric spaces. Handbook of Discrete and Computa-
tional Geometry, 37:46, 2004.

[15] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Talwar. Efficient distributed approximation algorithms via
probabilistic tree embeddings. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages 263–272,
2008.

[16] C. Lenzen and B. Patt-Shamir. Fast routing table construction using small messages: Extended abstract. In Proc. of
the Symp. on Theory of Comp. (STOC), pages 381–390, 2013.

[17] C. Lenzen and B. Patt-Shamir. Improved distributed steiner forest construction. In the Proc. of the Int’l Symp. on
Princ. of Dist. Comp. (PODC), 2014.

[18] J. Matoušek. Lectures on discrete geometry, volume 212. Springer, 2002.

[19] D. Nanongkai. Distributed approximation algorithms for weighted shortest paths. In Proc. of the Symp. on Theory
of Comp. (STOC), 2014, to appear.

[20] D. Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[21] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity of distributed MST construction. In
Proc. of the Symp. on Found. of Comp. Sci. (FOCS), pages 253–, 1999.

11

A Lower Bound

Stating a lower bound for a distributed algorithm sampling from a distribution of tree embeddings is somewhat
akward, as it is not at all clear how the distributed data structure representing the embedding is supposed to
look like. However, some assumptions must be made, as technically any embedding is given by the distributed
“data structure” consisting of the nodes’ local views of the topology and their own randomness. Fortunately,
the hardness barrier at running time roughly

√
n (or, more accurately, min{

√
n, SPD}), is very strong, in the

sense that it applies to a wide range of problems. The following corollary of [7] is based on reduction to the
(approximate) lightest s-t path problem, which certainly should be trivial to solve on the virtual tree given any
“reasonable” tree embedding. Translating the solution back to G should be trivial, too, as we are interested in
the weight of the s-t-path in the virtual tree only. Consequently, while the lower bound we state has a long list
of prerequisites, violating any of them results in embeddings that are most likely not useful.

Corollary A.1. SupposeA is an algorithm in the CONGEST model that, for any graph G, constructs a virtual
tree embedding M : V → VT with the following properties:
• Each node in VT has a unique identifier of polylog n bits.
• The depth of the virtual tree is polynomial in n.
• Each node v ∈ V knows the path from its image M(v) to the root of the tree (in terms of the identifiers

and including edge weights).
• Distances in the virtual tree are never smaller than in the original graph.
• The expected stretch of each edge satisfies a non-trivial (i.e., polynomial in n) bound.

Then, for arbitrary n and SPD ∈ {D, . . . , n− 1}, there is a graph G satisfying that D ∈ O(log n) andA runs
for Ω̃(min{

√
n, SPD}+D) rounds in expectation.

Proof. Observe that a lower bound of Ω(D) is trivial, i.e., it suffices to prove that Ω̃(min{
√
n, SPD}) rounds

are necessary.
Suppose an algorithm A as specified runs on all graphs of n nodes with D ≤ SPD ≤ n − 1 and D ∈

O(log n) in T = T (n,SPD, D) expected rounds. We use A to approximate the weight of the lightest s-t-path
on such graphs, for arbitrary s, t ∈ V , as follows. We run A, which takes T (expected) rounds. Then, we find
a shortest unweighted s-t-path in O(D) rounds (constructing a BFS tree). Communicating over this path, s
and t perform a binary search to determine the least common ancestor of their images under M in the virtual
tree; using binary search, this takes D polylog n = polylog n rounds (due to the properties of A and because
D ∈ O(log n)). Afterwards, s sends the distance of M(s) to its least common ancestor in the virtual tree to t,
which takes O(log n) rounds in expectation, as wd(s, t) ≤ WD ∈ polyn and we assume that the s-t-distance
in the virtual tree is only by an expected factor of polyn larger. Now t can output the distance of s and t in the
virtual tree, which is an expected polynomial approximation of wd(s, t).

The total running time of this approach is T + polylog n rounds. However, in [7] it is shown that for any
n, there is a D ∈ O(log n) so that for any D ≤ SPD ≤ n − 1 there is an n-node graph of diameter D and
shortest-path-diameter SPD in which the (expected) running time of any algorithm approximating s-t-distance
within an expected polynomial factor must be Ω̃(min{

√
n,SPD}).3 We conclude that

T (n, SPD, D) ∈ Ω̃(min{
√
n, SPD})− polylog n = Ω̃(min{

√
n, SPD}).

B Additional Details Concerning Least Element Lists and Spanners

Proof of Lemma 3.5. By initialization, each v ∈ V satisfies that (v,wd(v, v))) ∈ L(0)
v . By Observations 3.2,

3.3, and 3.4, correct entries (i.e., those that show up in final lists) concerning v will spread along shortest

3To be precise, the construction in [7] satisfies that SPD ∈ Θ(
√
n). By adding some irrelevant nodes, this trivially generalizes to

D ≤ SPD ∈ O(
√
n).

12

paths by one hop per iteration. In particular, the termination condition cannot be satisfied before the phase
i0 ∈ N0 satisfying that (v,wd(v, w)) ∈ Lv ⇒ (w,wd(v, w)) ∈ L

(i0)
v . Observe that the scanning process

and the definition of Lv imply that in fact (v,wd(v, w)) ∈ Lv ⇔ (w,wd(v, w)) ∈ L
(i0)
v , and thus also that

(v,wd(v, w)) ∈ Lv ⇔ (w,wd(v, w)) ∈ L(i0+1)
v . Hence the algorithm terminates after iteration i0 + 1 with the

correct output. Since information spreads along least-weight paths, it holds that i0 ≤ SPD.

With Lemma 3.5 in place, it remains to (i) show that each iteration can be performed quickly in the
CONGEST model and (ii) termination can be checked efficiently. Regarding (ii), one can use the standard
technique of continuously convergecasting indications of changes to any LE list over a BFS tree. If the root
does not receive any such notification for the sum of the depth of the tree (which is at most D) and the time re-
quired for a loop iteration, it is safe to signal termination to all nodes over the BFS tree. Overall, the asymptotic
cost of this mechanism isO(D) rounds. We remark that Khan et al. [15] use a more elaborate, problem-specific
mechanism, but it has no advantage over the generic approach.

Concerning (i), note that each entry in some L(i)
v can be encoded using O(log n) bits. Therefore, it suffices

to show that |L(i)
v | ∈ O(log n) w.h.p.; by the union bound, this entails that each iteration can be completed

within O(log n) rounds w.h.p. To this end, we will have to analyze the behavior of the list variables during the
course of the algorithm more closely. The distance variables for entries in L(i)

v represent the minimal weights
of paths of at most i hops.

Definition B.1 (Bounded-Hop Distances). For i ∈ N0 and v, w ∈ V with hd(v, w) ≤ i, define wd(i)(v, w) :=
min{W (p) | p ∈ Pvw ∧ `(p) ≤ i}.

Note that wd(i)(v, w) = wd(v, w) iff there is a least-weight path from v to w of at most i hops, and
wd(SPD) = wd. We now can pinpoint the content of the variables L(i)

v .

Lemma B.2. For all i ∈ N0, v, w ∈ V and each d ∈ N0, it holds that

(w, d) ∈ L(i)
v ⇔

(
hd(v, w) ≤ i ∧ d = wd(i)(v, w) ∧ (@w′ ∈ V : wd(i)(v, w′) ≤ wd(i)(v, w) ∧ w′ < w)

)
(after the scans in iteration i are complete).

Proof. We show the claim by induction; it trivially holds for i = 0. Now suppose that it holds for i ∈ N0 and
consider i+ 1.

To show the implication “⇒”, let us assume that (w, d) ∈ L
(i+1)
v . Clearly, hd(v, w) ≤ i + 1 and d ≥

wd(i+1)(v, w), since entries containing w spread by at most one hop each round and “accumulate” the weight
of all traversed edges. Now consider a neighbor u of v on a least-weight path from v to w of at most i + 1

hops. By the induction hypothesis, either (w,wd(i)(u,w)) ∈ L
(i)
u , or there is an entry (w′,wd(i)(u,w′)) ∈

L
(i)
u with wd(i)(u,w′) ≤ wd(i)(u,w) and w′ < w. In the latter case, we get the contradiction that v would

delete (w, d) from L
(i+1)
v , since wd(i)(u,w′) + W (v, u) ≤ wd(i)(u,w) + W (v, u) = wd(i+1)(v, w) ≤ d

and w′ < w. Therefore, (w,wd(i)(u,w), w) ∈ L
(i+1)
u , and by the same argument, d ≤ wd(i+1)(v, w) (i.e.,

d = wd(i+1)(v, w), since we showed that d ≥ wd(i+1)(v, w)). To complete this direction, it thus remains
to prove that @w′ ∈ V : wd(i+1)(v, w′) ≤ wd(i+1)(v, w) ∧ w′ < w. Assuming for contradiction that this
is the case, suppose that u is a neighbor of v on a least-weight path from v to w′ of at most i + 1 hops.
By the induction hypothesis, there is some w′′ (maybe w′ itself) satisfying that (w′,wd(i)(u,w′)) ∈ L

(i)
u ,

wd(u,w′′) ≤ wd(u,w′) = wd(v, w′)−W (v, u) ≤ wd(v, w)−W (v, u), and w′′ ≤ w′ < w. Again, we arrive
at the contradiction that (w, d) would be deleted from L

(i+1)
v .

To show the implication “⇐”, assume that

hd(v, w) ≤ i+ 1 ∧ (@w′ ∈ V : wd(i+1)(v, w′) ≤ wd(i+1)(v, w) ∧ w′ < w).

13

Suppose u is a neighbor of v on a shortest path from v to w of at most i + 1 hops. Then hd(u,w) ≤ i and
@w′ ∈ V : wd(i)(u,w′) ≤ wd(i)(u,w) ∧ w′ < w), since otherwise w′ would violate the assumption that
@w′ ∈ V : wd(i+1)(v, w′) ≤ wd(i+1)(v, w) ∧ w′ < w. Thus, by the induction hypothesis, (u,wd(i)(u,w)) ∈
L

(i)
u , implying (v,wd(i+1)(v, w)) ∈ L(i+1)

v before the scan operation in iteration i + 1. If this entry would get
deleted, this would mean that there is an entry (w′, d) ∈ L(i+1)

v with d ≤ wd(i+1)(u,w) and w′ < w. However,
by the previous arguments, this entry would satisfy that d = wd(i+1)(v, w′) and therefore w′ would violate the
assumption that @w′ ∈ V : wd(i+1)(v, w′) ≤ wd(i+1)(v, w) ∧ w′ < w. This completes the induction.

We remark that this lemma yields an alternative proof for Lemma 3.5, by observing that the algorithm
can only terminate if all list variables have their final values and that wd(SPD)(v, w) = wd(SPD +1)(v, w) =
wd(v, w) for all v, w ∈ V .

We now can re-prove a key lemma from [15], stated here as Lemma 3.7. Our proof fixes a problem with the
one from [15]: the authors argue that L(i)

v is v’s LE list for the subgraph induced by least-weight paths of i hops
that start at v, but this is not the case. More specifically, i-hop distances do not induce a metric if i < SPD, as
they do not satisfy the triangle inequality. Hence, Lemma B.2 shows that, in general, L(i)

v is not the LE list of v
for any subgraph of G.

Proof of Lemma 3.7 (corrected). Fix v ∈ V and i ∈ N0. Denote by N ∈ N the number of nodes w ∈ V so
that hd(v, w) ≤ i. We claim that the random variable |L(i)

v | is the sum of independent Bernoulli variables Xj ,
j ∈ {1, . . . , N}, where P [Xj = 1] = 1/j. From this the statement the lemma then follows by observing that

E[|L(i)
v |] = E

 N∑
j=1

Xj

 =
N∑
j=1

1

j
∈ O(logN) ⊆ O(log n)

and applying Chernoff’s bound.
To see that the claim is true, order the N nodes in hop distance at most i from v in ascending order ac-

cording to wd(i)(v, ·). By Lemma B.2, for each such node w, there can be at most one entry in L(i)
v , namely

(w,wd(i)(v, w)), and this is the case if and only if w is smaller than all previous nodes (comparing random
IDs). Since the IDs induce a uniformly random order, the probability for this is precisely 1/j for the jth node,
and this is independent from the order of the previous nodes. This proves that indeed |L(i)

v | =
∑N

j=1Xj ,
concluding the proof.

Proof of Theorem 3.8. By Lemma 3.5, the algorithm is correct and requires at most SPD +1 iterations. By
Lemma 3.7 and the union bound, w.h.p. |L(i)

v | ∈ O(log n) for all v ∈ V and i ∈ {0, . . . ,SPD +1}.4 Therefore,
globally fixing a sufficiently large value R ∈ Θ(log n) based on n, each iteration can be completed in R rounds
w.h.p. Using the standard mechanism of detecting termination over a BFS tree (which can be constructed and
used to determine n in O(D) rounds), we obtain an implementation running in (SPD +1)R + O(D) + R =
O(SPD log n) rounds w.h.p.

Proof of Lemma 3.9. Fix s, t ∈ S and a least-weight s-t-path p = (s = v0, v1, . . . , t = v`(p)). Determine node
by node whether v1, v2, . . . are in S until the first node in S is encountered. The probability for this taking more
than h hops is (1 − 1/

√
n)h ≈ e−c logn < 1/nc. Since c is sufficiently large, w.h.p. there is a sampled node

among the first h nodes. Repeating this argument inductively and applying the union bound, it follows that the
sampled nodes are no more than h hops apart w.h.p. We conclude that GS,h contains an s-t-path of weight
wd(s, t) w.h.p. Since trivially wdGS,h(s, t) ≥ wd(s, t), the claim of the lemma follows by applying the union
bound to all pairs of nodes s, t ∈ S.

4Note that trivially SPD ≤ n− 1, guaranteeing that we take the union over polynomially many events.

14

C Additional Details Concerning the Main Algorithm

Proof of Corollary 4.5. By Corollary 4.4, the initialization of the lists in Step 6 only adds correct entries w.r.t.
G′. Reasoning analogously to Lemma 3.5, this implies that running the algorithm on G′ would yield correct
lists. Given that nodes in S get assigned their final lists already at initialization, there is no need for nodes in S
to exchange any information, implying that running the algorithm on G leads to identical results.

Proof of Lemma 4.6. Fix v ∈ V \ S and w ∈ V and a shortest path from v to w in G′. Consider the prefix
p = (v, . . . , s) of the path so that s ∈ S and all other nodes are in V \ S. We claim that, w.h.p., p is also
a least-weight path in G. Assuming the contrary, there is a path q from v to s in G so that W (q) < W (p).
Observe that W ′(p) = ρW (p) and, for each edge e on q that satisfies that e ∈ E, W ′(e) = ρW (e). Moreover,
by Theorem 3.10 and Lemma 3.9, for each edge {s, t} on q with s, t ∈ S, we have thatW ′(s, t) = wdG̃(s, t) ≤
ρwdGS,h(s, t) = ρwd(s, t) w.h.p. Note that q is also a path in G′ and we just showed that W ′(q) ≤ ρW (q) <
ρW (p) = W ′(p) w.h.p. Thus, unless some event with negligible probality occurs, we arrive at a contradiction.
We conclude that p is, indeed, a least-weight path in G w.h.p.

Now fix any pair of nodes v, w ∈ V and a least-weight path p ∈ Pvw. W.h.p., among the first c
√
n log n

nodes on the path (where c is a sufficiently large constant), there is a node from S: the probability that there is
no such node is (1 − 1/

√
n)c
√
n logn ∈ e−Θ(c). Taking the union bound over all pairs of nodes, we conclude

that for any pair of nodes v, w ∈ V , there is a least-weight path from v to w in G so that a node from S is
encountered among the first O(

√
n log n) nodes on the path. The claim of the lemma now readily follows from

Corollary 4.4, the initialization of the lists in Step 6, and Observation 3.4.

Proof of Theorem 4.8. The first statement is given by Corollary 4.5. Clearly, the first step of the algorithm can
be executed in O(D) rounds. Step 2 is performed locally. Theorem 3.10 shows that Step 3 completes within
Õ(n1/2+1/(2k) + D) rounds w.h.p. The theorem also guarantees that all nodes have the necessary information
to perform the local computations required to execute Steps 5 and 6 (without further communication). Finally,
Lemma 4.6 and Lemma 4.7 imply that the algorithm can be completed in O(

√
n log2 n+D) additional rounds

w.h.p. (cp. Theorem 3.8). Applying the union bound completes the proof.

Proof of Lemma 4.9. Fix any S ⊂ V and denote by ES the event that S is the set of the nodes with random IDs
in the first 1/

√
n fraction of the ID range. We will show that

E[wdT (M(v),M(u)) | ES] ∈ O(log n) · wdG′(v, u),

from which the claim of the lemma immediately follows because S is arbitrary. Throughout the proof, we will
hence condition on ES ; for simplicity, we will largely omit this from the notation. The spanner construction from
Theorem 3.10 uses independent randomness. Therefore, after determining the outcome of this construction, G′

and thus also wdG′ are now fixed, where the random IDs of the nodes are constrained (exactly) by ES . Note,
however, that the total orders induced on the sets S and V \ S, respectively, are still uniformly random and
independent of G′. We will exploit this to, essentially, apply the FRT argument to both sets separately.

Fix u, v ∈ V . Suppose for a mapping M drawn from the probability distribution of embeddings (condition-
ing on ES and fixed G′), we have that M(v) = (v0, v1, . . . , vL) and M(u) = (u0, u1, . . . , uL). Since uL = vL
and v = v0 6= u0 = v, there is some i so that vi 6= ui and (vi+1, . . . , vL) = (ui+1, . . . , uL).

W.l.o.g., in the following we will assume that always wdG′(w, v) < wdG′(w, u); the other case is symmet-
ric. We say w settles u and v on level i, iff it is the node with the smallest ID so that

wdG′(w, v) ≤ β2i−1. (3)

Clearly, there is exactly one node settling u and v on each level, which is determined by G′ and the random
ordering (i.e., random IDs) of the nodes. Moreover, w cuts u and v on level i, iff it settles them on level i and
also

β2i−1 ≤ wdG′(w, u). (4)

15

Note that if vi 6= ui and (vi+1, . . . , vL) = (ui+1, . . . , uL), then wdT (M(v),M(u)) = 2
∑i+1

j=1 β2j−1 <

β2i+1 < 2i+2. Moreover, by definition wd(vi, v) ≤ β2i−1, and assuming w.l.o.g. that vi < ui, we must also
have that wd(vi, u) > β2i−1. Due to these constraints, vi satisfies (3) and (4) for level i, and by construction
vi < ui is minimal among all nodes in distance at most β2i−1 of v or u; thus, vi cuts u and v on level i. In
summary, if we denote by Ew,i the event that w ∈ V cuts u and v on level i, we have that

E[wdT (M(v),M(u)) | ES] <
∑
w∈V

L∑
i=1

P [Ew,i] · 2i+2 =
∑
w∈S

L∑
i=1

P [Ew,i] · 2i+2 +
∑

w∈V \S

L∑
i=1

P [Ew,i] · 2i+2.

We will handle the two sums separately. Consider W ⊆ V , where either W = S or W = V \S . Sort the nodes
w ∈ W in ascending order w.r.t. min{wdG′(w, v),wdG′(w, u)} and let wk be the kth node in this order. We
rewrite P [Ewk,i] as

P [(3) and (4) hold for wk and i] · P [wk settles u and v on level i | (3) and (4) hold for w and i].

Observe that conditional on ES , the random IDs induce a uniformly random permutation on W that is inde-
pendent of G′. Therefore, the event that (3) and (4) hold for w and i is independent of the permutation of
the nodes restricted to W , while the chosen order ensures that wk can settle u and v only if wk < wk′ for all
k′ ∈ {1, . . . , k − 1}. We conclude that

L∑
i=1

P [Ewk,i] · 2
i+2 ≤

L∑
i=1

P [(3) and (4) hold for wk and i] · 1

k
· 2i+2.

Recall that (3) and (4) hold exactly if β2i−1 ∈ [wdG′(w, v),wdG′(w, u)]. We compute

L∑
i=1

P [(3) and (4) hold for wk and i] · 2i+2 =
L∑
i=1

∫ 2

1
P [(3) and (4) hold for wk and i |β = x] · 2i+2 dx

=
L∑
i=1

∫ 2i

2i−1

P [(3) and (4) hold for wk and i |β2i−1 = x] · 23 dx

=

∫ wdG′ (w,u)

wdG′ (w,v)
23 dx

= 8 · (wdG′(w, u)− wdG′(w, v)) ≤ 8 wdG′(v, u),

where in the final step we applied the triangle inequality. We conclude that

∑
w∈W

L∑
i=1

P [Ew,i] · 2i+2 ≤
|W |∑
k=1

8

k
· wdG′(v, u) < 8Hn · wdG′(v, u) ∈ O(log n) · wdG′(v, u).

Overall, we complete the proof as

E[wdT (M(v),M(u)) | ES] <
∑
w∈S

L∑
i=1

P [Ew,i] · 2i+2 +
∑

w∈V \S

L∑
i=1

P [Ew,i] · 2i+2 ∈ O(log n) · wdG′(v, u).

Proof of Corollary 4.10. By Theorem 4.9 and linearity of expectation,

E[wdT (M(v),M(u))] ∈ O(log n) · E[wdG′(v, u)] ⊆ O(k log n) · wd(v, u),

where in the last step we exploit that, by Theorem 3.10, wdG′(v, u) ≤ (2k − 1) wd(v, u) w.h.p. and trivially
wdG′(v, u) ∈ O(WD) is polynomially bounded.

16

Proof of Theorem 4.11. We run the algorithm by Khan et al. [15] for up to
√
n iterations on G, which by

Theorem 4.7 and Theorem 3.8 takes Õ(min{n0.5,SPD} + D) rounds w.h.p. If it terminates, the statement
follows, as the LE lists represent an FRT embedding of G and all induced paths have O(

√
n log wd) ⊂ Õ(

√
n)

hops. Otherwise, it must hold that SPD ≥
√
n and we run our algorithm with parameter k := d1/εe. By

Theorem 4.8, it computes LE lists for G′ in Õ(min{n0.5+ε,SPD} + D) w.h.p. By Theorem 4.10, the stretch
guarantee is satisfied. Finally, all nodes obtain knowledge of the spanner on S, as stated in Theorem 3.10,
showing that claim concerning long paths.

17

	Introduction and Related Work
	Our Contribution
	Overview

	Preliminaries
	Recap: FRT, Least Element Lists, and Spanners
	The FRT Probabilistic Tree Embedding
	Least Element Lists
	Distributed Computation of Least Element Lists
	Spanners and Skeletons

	Fast Distributed Tree Embedding
	Key Ideas
	Our Algorithm: Constructing the Virtual Graph G' and Computing its LE Lists
	Correctness Analysis
	Running Time Analysis
	Approximation Analysis

	Lower Bound
	Additional Details Concerning Least Element Lists and Spanners
	Additional Details Concerning the Main Algorithm

