
Fault-tolerant Clock Synchronization
with High Precision

Attila Kinali
Max-Planck Institute for Informatics

Saarbrücken, Germany
Email: adogan@mpi-inf.mpg.de

Florian Huemer
University of Technology Vienna

Vienna, Austria
Email: florian.huemer@tuwien.ac.at

Christoph Lenzen
Max-Planck Institute for Informatics

Saarbrücken, Germany
Email: clenzen@mpi-inf.mpg.de

Abstract—We present the first FPGA implementation of a
distributed clock synchronization algorithm with sub-nanosecond
skews that can tolerate arbitrary faults of individual components.
Each of n nodes is equipped with its own quartz oscillator and
the nodes broadcast their clock pulses to enable synchronization.
The algorithm provably maintains synchronization even if fewer
than n/3 nodes exhibit arbitrary faulty behavior. Moreover, as
long as more than 2n/3 nodes remain synchronized, nodes will
recover and resynchronize after transient faults.

Using 4 boards with Cyclone IV FPGAs, our implementation
achieves precision better than 300ps. This is in accordance
with the worst-case precision of 870ps predicted by theory.
Furthermore, our experiments demonstrate that nodes recover
from transient faults as described above. Finally, frequency
stability of the overall system improved by an order of magnitude.

I. INTRODUCTION

Reliably clocking complex very large scale integration
(VLSI) circuits is a highly challenging problem. The tradi-
tional approach of using a global clock tree brings a variety
of scalability issues: In high-performance designs, minimizing
the clock skew, i.e., the time difference between the earliest
and latest clock transition arrivals at the clock tree leafs,
requires advanced buffer insertion, snaking wires, and wire
sizing techniques [1], [2], [3]. These techniques typically rely
on high precision delay models or symmetry assumptions [4]
of the involved components. In addition, monolithic clock
trees make the system dependent on a single clock source
and its system-wide distribution. This introduces a single point
of failure, entailing that any dependable architecture clocked
in this way requires an extremely robust clock tree design;
naturally, this aggravates scalability issues even further.

In light of these obstacles, Globally Asynchronous Locally
Synchronous (GALS) systems [5] offer a paradigm shift away
from centralized clocking. Instead, the system is partitioned
into clock domains, each generating and distributing its own
clock. Depending on the relation between the clock do-
mains, such systems are called mesochronous (same frequency,
bounded phase relation), plesiochronous (same nominal fre-
quency), or heterochronous (else) [6].

While clock generation and distribution for plesiochronous
and heterochronous systems are easily realizable by indepen-
dent sources and distribution layers, these solutions introduce
an entire batch of new problems:
• Asynchronous communication across clock domains re-

quires the use of synchronizers for each data path, in-

creasing delays and buffer sizes, and thus decreasing the
overall throughput.

• Slight differences in clock speeds may result in differ-
ent rates of data production and processing, potentially
causing buffer overflows.

• Introducing communication (handshaking, etc.) to resolve
this issue increases design complexity at the application
level and shifts the difficulty of providing strong real-time
response guarantees to the application designer.

This advocates re-introducing timing guarantees between the
different clock domains, i.e., using mesochronous GALS
systems, allowing for higher inter-domain communication
throughput and slimmer communication circuits [6], [7], as
well as metastability-free communication [8]. However, while
such systems may not suffer from throughput penalties and
do not rely on a clock tree as the top-level synchronization
mechanism, this top-level synchronization is critical to its
operation: unless the inter-domain clocking mechanism itself is
fault-tolerant, again a single point of failure has been created.

A. Our Contribution

We propose the use of a fault-tolerant distributed algorithm
for inter-domain synchronization. We present our algorithm,
which is a variant of the clock synchronization algorithm by
Lynch and Welch [9], in Section II-B. To make it suitable for
hardware implementation, we modify their routine to work by
broadcasting simple pulses (as opposed to round numbers).
Based on some preliminary results [10], we analyze the fault-
tolerance properties and skew of the algorithm in Section II.
The algorithm provides the following guarantees:

1) In a system with n nodes, at any point in time any
f < n/3 nodes may exhibit arbitrary faulty behavior
without disrupting synchronization of correct nodes. For
example, this includes adverse behavior such as asym-
metrically sent pulses, due to, e.g., faulty output drivers
that are connected to nodes with slightly different input
driver thresholds.

2) Any unsynchronized node resynchronizes in a bounded
number of iterations.

3) If local clock sources have small phase drift (cheap quartz
oscillators suffice), clock skew is bounded by roughly
4(U +G), where U is the uncertainty in communication
delays (i.e., difference between minimum and maximum)

1

and G is the resolution of the time-to-digital converters
(TDCs) used to measure phase offsets.

We stress that in absence of faults, the algorithm achieves
a better precision of roughly 2(U + G), matching the lower
bound from [11] up to factor 2. The remaining factor 2 can,
in principle, be shaved off, too, but this might not always be
the best choice; we discuss this in Section II-B.

Moreover, we discuss a proof-of-concept implementation of
the algorithm on Cyclone IV FPGAs in Section III. Our goal
here is neither to provide the best possible FPGA realization
nor to achieve the smallest possible skews. Rather, we seek to
demonstrate (i) that implementing the adapted fault-tolerant
distributed clock synchronization algorithm in hardware is
feasible, and (ii) that – even with an implementation struggling
with the limitations of low-priced of-the-shelf hardware –
the algorithm not only works, but offers skews that signif-
icantly outperform state-of-the-art fault-tolerant solutions. In
the 4-node system we implemented, we observed a maximum
skew of 180 ps over 109 clock pulses between correct nodes, in
the presence of a faulty node. The theoretical analysis implies
that letting one node send early pulses to a subset of the
remaining nodes only leads to a worst-case skew. We ran
several experiments and tested the skew under these worst-case
faults, resulting in a maximum skew of 300 ps for the same
number of runs. Finally, we verified that nodes successfully
resynchronize in bounded time. Due to peculiarities of our
setup, namely the phase corrections step size being limited
to 300 ps per round, this required 7 s, but the analysis shows
that this will be orders of magnitude faster for a faithful
implementation of the algorithm.

B. Related Work

A canonical approach to distributed clock synchronization is
to let nodes agree on an approximate common notion of time
periodically, and readjusting their local clocks to the value
upon which they agreed. Early work on reaching approximate
agreement in distributed systems [12] lead to fault-tolerant
clock synchronization algorithms based on this method, see
e.g. [13] for an overview.

In this work, we make use of the algorithm by Welch and
Lynch [9], for the following reasons:

(i) Its skew is proportional to the delay uncertainty rather
than the maximum delay as, e.g., the algorithm proposed
in [14].

(ii) In contrast to more involved algorithms that require
multi-round communication for a single resynchroniza-
tion [13], it is well suited for an on-chip VLSI imple-
mentation.

In the context of systems with high dependability require-
ments, such as automotive and aerospace, similar fault-tolerant
clock synchronization algorithms have been deployed at a
higher level of abstraction. Examples are the the time triggered
protocol (TTP) [15] and FlexRay [16]. Both protocols provide
round-wise communication based on TDMA slots aligned
via a fault-tolerant clock synchronization primitive. These
primitives are also based on the algorithm by Welch and Lynch

and have been proven correct, see e.g. [17], [18]. However,
due to their involved communication protocols and treatment
of special cases, both TTP and FlexRay feature hybrid imple-
mentations which join soft- and hardware components; neither
is suitable for a slim hardware implementation with multiple
nodes on a single GALS chip.

We are aware of only two on-chip distributed clock syn-
chronization algorithms that can tolerate arbitrary behavior of
faulty nodes: DARTS [19], [20] and FATAL [21], [22]. Both
are based on Srikanth and Toueg’s primitive for simulating
authenticated reliable broadcast in the presence of arbitrarily
failing nodes [14]. DARTS is implemented using clock-less
logic, e.g., comprising Muller C-Elements as central basic
components. Since gate-level implementations of C-Elements
are inefficient (with regard to both space and latency), DARTS
lends itself to an ASIC implementation, but does not work
well for FPGAs [20]. By contrast, the solution proposed in
this work requires standard synchronous design elements only.
Consequently, it is well-suited for both FPGA and ASIC
implementation.

Furthermore, the worst-case skew exhibited by the algorithm
by Srikanth and Toueg, and thus also by DARTS and FATAL,
is proportional to the maximum communication delay [14], as
opposed to the delay uncertainty U which is typically at least
an order of magnitude smaller.

In contrast to DARTS, FATAL provides the additional guar-
antee of self-stabilization [23]: after an arbitrary disruption
of all nodes’ states and the communication medium, correct
nodes will re-synchronize again (assuming that sufficiently
many nodes recover and recommence executing the algorithm
correctly) [22]. This comes at the price of a more complex
clock synchronization algorithm, incurring considerable hard-
ware overhead and requiring additional methods to generate
fast clocks from the slower FATAL clock. The approach we
propose in this work guarantees “limited” self-stabilization:
after transient faults, nodes re-synchronize, provided that at
any point in time sufficiently many nodes are correctly syn-
chronized. This is a deliberate restriction to keep the algorithm
simple; in [10], it is shown how to ensure full self-stabilization
by coupling the algorithm to a concurrently running instance
of FATAL.

II. ALGORITHM AND ANALYSIS

We modify the algorithm by Lynch and Welch [9] to
broadcast simple clock pulses, as opposed to nodes commu-
nicating round numbers. In large parts, this modification is
inconsequential. However, the algorithm from [9] makes use
of the round numbers to achieve a powerful recovery property:
any node can resynchronize after a transient fault, provided
that out of the n nodes never more than f := b(n− 1)/3c are
faulty or out-of-sync.

We first describe the assumptions on system behavior under-
lying the algorithm and its analysis in Section II-A, then give
the basic algorithm using clock pulses in Section II-B, and
finally present a recovery mechanism that can operate based
on clock pulses only in Section II-C.

2

A. System Model

The system consists of a set V of n nodes that are fully
connected by (1-bit) broadcast channels. Each node v ∈ V is
a fault-containment region in the sense defined by Kopetz [24]:
a single (physical) fault, such as a gate malfunction, does not
directly affect correctness of the components outside the fault-
containment region that contains the faulty component. Node
v comprises a local physical clock Hv (e.g. a ring oscillator),
the circuitry implementing the algorithm’s logic for v, and
its outgoing links. Note that this means that communication
does not use a shared bus, which would be a single point
of failure. Any potential application logic clocked by v will
be part of its fault containment region as well. Thus, any
transient or permanent faults of components (in the fault-
containment region) of v affect other nodes only indirectly via
communication. A faulty node (i.e., one whose containment
region contains faulty components) can behave arbitrarily;
in particular, it may send a clock pulse to a subset of the
nodes only and at different times. We assume that at most
f = b(n − 1)/3c nodes are faulty, and refer to the set of
correct nodes as C ⊆ V .

Nodes in C communicate by broadcasts. If v ∈ C
broadcasts at time tv , any other correct node w ∈ C has
received and processed the respective pulse at some time
twv ∈ [tv + d − U, tv + d], where d is the maximum delay
and U is the delay uncertainty. For faulty senders in V \ C,
such restrictions are irrelevant, as they may deviate from the
protocol in an arbitrary way, i.e., send pulses at arbitrary times
and independently to different receivers.

A correct node measures the time of arrival of other nodes’
pulses relative to the time of arrival of its own pulse of
the same round (cf. Algorithm 1). This is done by looping
the broadcast signal back and using time-to-digital converters
(TDCs) to determine the respective time difference. (cf. Sec-
tion III-B). We assume a one-sided1 worst-case measurement
error of our TDCs when comparing signals arriving at times
t and t′ that fulfills e(|t − t′|) = G + ν|t − t′|, where G is
the granularity of the TDC (i.e., its discretization error) and
ν � 1 is the maximum relative deviation of the frequency of
the TDC’s time reference from its nominal frequency.

A node v has no access to real-time, but only to its local
clock Hv : R+

0 → R+
0 , where Hv(t) is the local clock value at

real-time t. For the purpose of a straightforward presentation
of the algorithm, we assume that

∀t, t′ ∈ R+
0 , t > t′ : t− t′ ≤ Hv(t)−Hv(t

′) ≤ ϑ(t− t′),

where ϑ > 1 is a constant close to 1, describing the frequency
offset uncertainty of the local clock2. For the sake of simplic-
ity, we set ν = ϑ − 1 in the following, i.e., the clock source
of a node and its TDCs have the same worst-case phase drift.
We assume that Hv(0) ∈ [0, F) for all v ∈ C, where F is

1By this we mean that we specify the length of the interval around the true
value the measurements may come from.

2Naturally, in practice Hv will be discrete and bounded. However, Hv

is merely used to control the local logic of the algorithm, rendering this
inconsequential to our considerations.

Algorithm 1: Synchronization algorithm, code for node v

1 // Hw(0) ∈ [0, F) for all w ∈ V
2 wait until time tv(0) with Hv(tv(0)) = F ;
3 foreach round r ∈ N do
4 start listening for messages;
5 wait for τ1 local time; // all nodes are in round r
6 broadcast clock pulse to all nodes (including self);
7 wait for τ2 local time; // all messages arrived
8 for each node w ∈ V do
9 τvw := Hv(tvw), with reception time tvw of first

message from w (τvw :=∞ if no message
received from w);

10 Tv := {τvw − τvv | w ∈ V } (as multiset);
11 let T k

v denote the kth smallest element of Tv;

12 δv ←
T f+1
v + Tn−f

v

2
; // clock correction

13 wait until time tv(r) with
Hv(tv(r)) = Hv(tv(r − 1)) + TR − δv;// round ends

determined by the precision of the booting process. For better
readability, we denote real-times with t and local times with
τ , with respective indices.

B. Basic Algorithm

Algorithm 1 gives the pseudocode of the algorithm. Each
node v ∈ V starts round r ∈ N at time tv(r − 1), where
tv(0) = F , and ends round r at tv(r). To fully specify the
algorithm, we need to determine τ1, τ2 and TR. The following
conditions are sufficient for the algorithm to work as intended.

τ1 ≥ ϑF
τ2 ≥ ϑ(F + τ1 + d)

TR ≥ ϑ(τ1 + F + U) + τ2 + tcomp +G,

where tcomp is the time required to compute and apply the
phase correction. It is desirable to keep the round length TR
small, unless one seeks to lower the communication frequency.
Since any values satisfying these inequalities are acceptable,
one may always round up to the next integer multiple of
the cycle time of the oscillators controlling the logic, i.e.,
no constraints on oscillator frequencies are needed. In the
full paper, we prove that the minimal feasible choices result
in a steady-state skew of E ≈ 4(U + G) for ϑ − 1 � 1.
More detailed calculations show that the algorithm can handle
frequency offsets of up to ϑ−1 ≈ 1% without dramatic impact
on E.

C. Node Recovery

So far we assumed that nodes are initially synchronized
and maintain this property. We now address the case that
n − f nodes are synchronized, but an additional node is
out-of-sync (possibly after a transient fault) and attempts to
resynchronize. The modification to the algorithm is extremely
simple: whenever a node receives fewer than n − f signals
while listening for them in a given round, it will cut this round
short. Thus, it quickly catches up with the main field.

3

In the full paper, we prove that under slightly more
conservative constraints on τ1, τ2, and TR, this results in
resynchronization in a constant number of rounds. We stress,
however, that this requires that an implementation (i) makes
sure that indeed a node starts executing the next round within
a time bounded by the maximum round duration, regardless of
the content of its volatile memory, and (ii) it does not introduce
any variables whose values are carried over to the next round.

III. IMPLEMENTATION AND EXPERIMENTS

We implemented the algorithm on four Cyclone IV FPGA
development boards. We designed a simple additional board to
carry the clock oscillator for the FPGA and the connectors for
the coaxial cables between the nodes. In order to allow correc-
tions of the pulse position with sub-clock cycle granularity, we
apply phase shifts using a voltage controlled crystal oscillator
(VCXO), which supplies the reference frequency for the PLL
within the FPGA. The nodes are connected to each other using
coaxial cables of the same length (ca. 30 cm), one for each pair
of nodes and direction. The FPGA implements four TDCs
(see below) to measure the timing of the incoming pulses,
implements the logic of the algorithm, and controls the VCXO.
An additional pulse output is available for measurements.

Due to limitations of the development board, pulses use
3.3V LVCMOS signaling. The resulting reflections slightly
add to the measurement uncertainties. Furthermore, the FPGA
development board only provides two pins for ground con-
nection. This resulted in an involuntary test of the algorithm’s
fault-tolerance properties: having many high-speed signals
over the same connector, the setup suffered from significant
ground bounce of up to 200mV between the ground potentials
of the development board and the interface board; this caused
one of the nodes to lose several clock ticks during our
experiments.

A. Cycle Structure and Phase Control

We clock the FPGA with 130MHz derived from a 20MHz
VCXO on our interface board. As discussed above, to achieve
sub-cycle length (i.e. smaller than 7.7 ns) corrections of the
phase of the pulse, we control the reference oscillator’s output
frequency. We implemented this using a 16-bit, 1Msps DAC
with SPI interface. This design choice imposed two important
restrictions on our implementation. First, the oscillator’s mod-
ulation bandwidth of about 10 kHz imposes a lower bound on
the round length, as we need to allow for sufficient time for
the oscillator to respond to a changed control input. Therefore,
we chose a fairly large round length of TR = 50µs, of which
40µs are allocated for shifting the clock phase.

Second, the tuning range of the oscillator is roughly 10 ppm,
limiting the phase correction per round to ≈ 400 ps. This
is smaller than the duration of clock cycle of the FPGA
(≈ 7.7 ns), preventing a simple implementation of larger phase
shifts by enabling to adjust the (integral) number of clock
cycles per round. Fortunately, the convergence analysis shows
that the algorithm achieves the same steady-state error with
this limitation on phase corrections. However, the number of

25 50 75 100 125 150 175
0

20 ps

40 ps

60 ps

80 ps

Fig. 1. Histogram of the encoded TDL output values during offline calibration.
These values correspond to the bin sizes of the delay line.

rounds required for recovering nodes to resynchronize is much
larger; with a frequency correction of at most 10 ppm, this
takes up to about 105 rounds, yielding a worst-case bound on
the time to recover in the order of seconds.

B. Time-to-Digital Converter
We employ standard techniques in our TDC design (like

in, e.g., [25]). Our implementation is based on the tdc-core
by the White Rabbit Project [26] (details are presented in
[27] and [28]), which we adapted with minimal changes to
Cyclone IV. The TDC uses an adder carry chain as delay line
and a coarse counter for the measurements. Additionally, there
is a ring oscillator to measure and compensate for voltage
and temperature effects during operation (see [28] for details).
We used the internal startup calibration system to get an
estimate on the bin size of the TDC and thus its precision (see
Figure 1). The largest observed bin size is 140 ps. Estimating
a calibration error of up to 20 ps, this yields a single-shot
precision of G ≤ 160 ps.

C. Parameter Extraction
The performance-critical parameters from the setup are:
• As discussed above, we have G ≤ 160 ps for the TDC.
• We calibrated the differences in wire delays on the

development and interface boards using the TDCs. This
results in an uncertainty of U ≤ G + 40 ps ≤ 200 ps,
where 40 ps is an estimated upper bound on the delay
variations in equivalent paths between the TDCs.

• We measured a frequency deviation between one pair of
oscillators of < 1.5 ppm. The manufacturer lists a typical
frequency deviation including initial deviation and over
temperature range of typical 3 ppm, i.e., ϑ−1 ≈ 3 ·10−6.

Inserting these values into the bound obtained from the anal-
ysis, the estimated worst-case clock skew without faults is
2(G + U) + (ϑ − 1)TR = 870 ps, where TR = 50µs is
the nominal duration of a round. With faults, this becomes
4(G+ U) + 2(ϑ− 1)TR = 1740 ps.

D. Experimental Setup and Results
We fully connected the nodes using cables of length 30 cm.

The physical diameter of the whole setup is approximately
50 cm, cf. Figure 2. Measurements are taken by a WaveCrest
DTS-2075, which has a single-shot accuracy of ±25 ps and
calibrated the input port skew to achieve better than 2 ps
accuracy. To rule out any spurious effects from the instrument,
we used two Stanford Research SR620 to verify these bounds.

4

Fig. 2. Experimental setup. Left: measurement instruments. Center: nodes
with FPGA and interface boards, and a stray mouse. Right: recording PC.

0s 500s 1000s 1500s 2000s 2500s 3000s 3500s 4000s 4500s
−150ps

−100ps

−50ps

0ps

50ps

100ps

Fig. 3. Long-term evolution of the clock skew of three nodes against the
same reference node over a period of an hour, measured sequentially. The
thick lines depict the average clock skew over 10 s, the light yellow colored
fill with the thin lines depict the minimum and maximum in the same interval.

3500s 3505s 3510s 3515s 3520s
−150ps

−100ps

−50ps

0ps

50ps

100ps

Fig. 4. Short-term behavior of the clock skew of the ”blue” node vs. the
reference node from Figure 3 over an arbitrarily selected period of 20 s.

1) Skew Measurements: We measured the skew between all
pairs of nodes sequentially for at least one hour each, which
corresponds to 7.2·107 rounds. We observed a maximum clock
skew of 180 ps between correctly working nodes. Figure 4
showcases the short-term behavior of the clock skew.

To test the behavior under worst-case faults, we modified
one node with the aim to maximize the skew of the remaining
nodes. The analysis indicates that the maximum impact of
faults is achieved when faulty nodes send early pulses to nodes
that are already ahead and none to those that lag behind. After
implementing this behavior, we observed an increase in the
maximum skew to 270 ps.

10−2s 10−1s 100s 101s 102s 103s
10−13

10−12

10−11

10−10

Fig. 5. TDEV between all pairs of nodes, measured sequentially. The colors
of pairs match those from Figure 3.

2) Resynchronization: To verify that nodes resynchronize
after transient fault conditions, we modified one node to
drop out using a manually actuated switch. Triggering the
switch every couple of seconds results in randomly distributed
restarting times with respect to the clock phase of the correctly
synchronized nodes. In 20 measurements, we observed the
expected stabilization behavior. In accordance with our earlier
discussion, recovery took up to 7 s for our implementation.

3) Time and Frequency Stability: We analyzed the statisti-
cal time and frequency stability (cf. [29]) of the system in long
term measurements. The TDEV plots (Figure 5) are measured
between pairs of nodes of the synchronized system. As it can
be seen, the noise of the system behaves mostly like white
phase noise up to a τ of approximately 10 s.

The results significantly exceed our expectations in the
range below 10 s. While the algorithm inherently suppresses
effects from outliers, as it drops the largest and smallest
measurement value in each round, and subsequently averages
between the remaining two, this merely suggests improve-
ments of factor 3 to 5 over a free-running oscillator (TDEV of
∼ 1·10−9 s @ 1 s). In contrast, uncertainties of parts in 10−12 s
are already reached above 1 s for the correctly working nodes.
These are quite astonishing stability values, especially in light
of the crude setup resulting from the employed affordably
priced hardware.

As the primary application of the clock synchronization
system is to serve as a clock source for circuits, we also
analyzed the absolute frequency fluctuations against a Stanford
Research FS275 rubidium frequency standard. We show two
ADEV plots, see Figure 6. The first compares a free-running
node to the rubidium, i.e., the algorithm is deactivated in order
to measure the raw performance of the oscillator. The second
depicts the behavior of the same node, but now synchronized
to the other nodes, via the algorithm. We observe that the
long term stability over τ > 10 s is approximately the same.
This is expected, as the long-term behavior is dominated
by the temperature-induced frequency fluctuation of the used
oscillators. Below a τ of 1 s, however, the stability of the
synchronized system is higher than the one of the free running
node, as the noise of the oscillators is averaged by the
synchronization of the nodes. Surprisingly, we gain almost an

5

10−2s 10−1s 100s 101s 102s 103s 104s
10−10

10−9

10−8

10−7

Fig. 6. ADEV between a node and a rubidium frequency standard. The
top (blue) curve compares to the free-running oscillator, with the algorithm
disabled. The bottom (red) curve is the same node with the algorithm enabled
and the system fully synchronized. The temperature effects beyond τ = 100 s
differ because the traces were recorded on subsequent days with different
weather conditions and thus different heating patterns of the building.

order of magnitude in stability in the short-term range, again
significantly exceeding our predictions.

IV. CONCLUSION

We presented a sub-nanosecond skew FPGA prototype
implementation of a fault-tolerant clock synchronization al-
gorithm. The algorithm can sustain f < n/3 Byzantine faults
and allows for resynchronization of nodes after transient faults.
Our experiments demonstrate excellent performance, featuring
270 ps clock skew despite faults and an order of magnitude
improvement in clock stability in the sub-second range. There-
fore, we consider the approach a promising candidate for
reliable clock generation in VLSI circuits. Our current FPGA-
based implementation is clearly limited by the accuracy of
the TDCs. We are currently working on a hybrid solution
with an ASIC-based TDC, with the prospect of achieving
skews below 100 ps. Moreover, our findings concerning clock
stability enhancement for τ < 1 s warrant exploration of
leveraging the technique in communication applications, for
which short-term clock stability is crucial.

ACKNOWLEDGMENTS

We thank Ulrich Schmid and Andreas Steininger for kindly
providing the lab space and the equipment for the measure-
ments and Magnus Danielson for many fruitful discussions
and checking our measurements for potential issues.

REFERENCES

[1] E. Friedman, “Clock distribution networks in synchronous digital inte-
grated circuits,” Proceedings of the IEEE, vol. 89, no. 5, pp. 665–692,
May 2001.

[2] W.-H. Liu, Y.-L. Li, and H.-C. Chen, “Minimizing clock latency range in
robust clock tree synthesis,” in Proceedings of the 2010 Asia and South
Pacific Design Automation Conference, ser. ASPDAC ’10. Piscataway,
NJ, USA: IEEE Press, 2010, pp. 389–394.

[3] G. Shamanna, N. Kurd, J. Douglas, and M. Morrise, “Scalable, sub-
1W, sub-10ps Clock Skew, Global Clock Distribution Architecture for
Intel R© CoreTM i7/i5/i3 Microprocessors,” in Proc. Symposium on VLSI
Circuits (VLSIC), 2010, pp. 83–84.

[4] X.-W. Shih and Y.-W. Chang, “Fast timing-model independent buffered
clock-tree synthesis,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 31, no. 9, pp. 1393–1404, Sept
2012.

[5] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Sys-
tems,” Ph.D. dissertation, Stanford University, 1984.

[6] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey and taxonomy
of gals design styles,” Design Test of Computers, IEEE, vol. 24, no. 5,
pp. 418–428, Sept 2007.

[7] Y. Semiat and R. Ginosar, “Timing Measurements of Synchronization
Circuits,” in Proc. Symposium on Asynchronous Circuits and Systems
(ASYNC), 2003, pp. 68–77.

[8] T. Polzer, T. Handl, and A. Steininger, “A metastability-free multi-
synchronous communication scheme for socs,” in Stabilization, Safety,
and Security of Distributed Systems, ser. Lecture Notes in Computer
Science, R. Guerraoui and F. Petit, Eds. Springer Berlin Heidelberg,
2009, vol. 5873, pp. 578–592.

[9] J. L. Welch and N. A. Lynch, “A New Fault-Tolerant Algorithm for
Clock Synchronization,” Information and Computation, vol. 77, no. 1,
pp. 1–36, 1988.

[10] P. Khanchandani, “Accurate and Robust Clock Synchronization,” Mas-
ter’s thesis, University of Saarbrücken, 2015.

[11] J. Lundelius and N. Lynch, “An Upper and Lower Bound for Clock
Synchronization,” Information and Control, vol. 62, no. 2-3, pp. 190–
204, 1984.

[12] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching Approximate Agreement in the Presence of Faults,” Journal
of the ACM, vol. 33, pp. 499–516, 1986.

[13] F. B. Schneider, “Understanding protocols for byzantine clock synchro-
nization,” Ithaca, NY, USA, Tech. Rep., 1987.

[14] T. K. Srikanth and S. Toueg, “Optimal Clock Synchronization,” Journal
of the ACM, vol. 34, no. 3, pp. 626–645, 1987.

[15] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceed-
ings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[16] R. Belschner, J. Berwanger, F. Bogenberger, C. Ebner,
H. Eisele, B. Elend, T. Forest, T. Führer, P. Fuhrmann,
F. Hartwich et al., “Flexray communication protocol,” Oct. 22
2003, eP Patent App. EP20,020,008,171. [Online]. Available:
https://www.google.com/patents/EP1355456A1?cl=en

[17] H. Pfeifer, D. Schwier, and F. W. Von Henke, “Formal verification for
time-triggered clock synchronization,” in Dependable Computing for
Critical Applications 7, 1999. IEEE, 1999, pp. 207–226.

[18] M. Függer, E. Armengaud, and A. Steininger, “Safely Stimulating
the Clock Synchronization Algorithm in Time-Triggered Systems - a
Combined Formal & Experimental Approach,” IEEE Trans. Industrial
Informatics, vol. 5, no. 2, pp. 132–146, 2009.

[19] M. Függer and U. Schmid, “Reconciling Fault-Tolerant Distributed
Computing and Systems-on-Chip,” Distributed Computing, vol. 24,
no. 6, pp. 323–355, 2012.

[20] M. Ferringer, G. Fuchs, A. Steininger, and G. Kempf, “VLSI Im-
plementation of a Fault-Tolerant Distributed Clock Generation,” IEEE
International Symposium on Defect and Fault-Tolerance in VLSI Systems
(DFT2006), Oct. 2006.

[21] D. Dolev, M. Fuegger, C. Lenzen, M. Posch, U. Schmid, and
A. Steininger, “Rigorously Modeling Self-Stabilizing Fault-Tolerant Cir-
cuits: An Ultra-Robust Clocking Scheme for Systems-on-Chip,” Journal
of Computer and System Sciences, vol. 80, no. 4, pp. 860–900, 2014.

[22] D. Dolev, M. Fuegger, C. Lenzen, and U. Schmid, “Fault-tolerant
Algorithms for Tick-generation in Asynchronous Logic: Robust Pulse
Generation,” Journal of the ACM, vol. 61, no. 5, pp. 30:1–30:74, 2014.

[23] E. W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Con-
trol,” CACM, vol. 17, no. 11, pp. 643–644, 1974.

[24] H. Kopetz, “Fault containment and error detection in the time-triggered
architecture,” in Autonomous Decentralized Systems, 2003. ISADS 2003.
The Sixth International Symposium on, April 2003, pp. 139–146.

[25] J. Song, Q. An, and S. Liu, “A high-resolution time-to-digital converter
implemented in field-programmable-gate-arrays,” Nuclear Science, IEEE
Transactions on, vol. 53, no. 1, pp. 236–241, Feb 2006.

[26] “OHWR TDC core,” http://www.ohwr.org/projects/tdc-core/wiki.
[27] S. Bourdeauducq, “A 26 ps RMS time-to-digital converter core

for Spartan-6 FPGAs,” March 2013. [Online]. Available: http:
//arxiv.org/pdf/1303.6840v1.pdf

[28] ——, “Time to digital converter core for Spartan-6 fpgas,” November
2011. [Online]. Available: http://www.ohwr.org/documents/98

[29] D. Sullivan, D. Allan, D. Howe, and F. Walls, “Characterization of
clocks and oscillators,” National Institute of Standards and Technology,
Technical Note 1337, March 1990.

6

https://www.google.com/patents/EP1355456A1?cl=en
http://www.ohwr.org/projects/tdc-core/wiki
http://arxiv.org/pdf/1303.6840v1.pdf
http://arxiv.org/pdf/1303.6840v1.pdf
http://www.ohwr.org/documents/98

	Introduction
	Our Contribution
	Related Work

	Algorithm and Analysis
	System Model
	Basic Algorithm
	Node Recovery

	Implementation and Experiments
	Cycle Structure and Phase Control
	Time-to-Digital Converter
	Parameter Extraction
	Experimental Setup and Results
	Skew Measurements
	Resynchronization
	Time and Frequency Stability

	Conclusion
	References

