
Trade-offs between Selection Complexity and Performance
when Searching the Plane without Communication∗

Christoph Lenzen
MIT

Cambridge, MA, USA
clenzen@csail.mit.edu

Nancy Lynch
MIT

Cambridge, MA, USA
lynch@csail.mit.edu

Calvin Newport
Georgetown University
Washington D.C., USA

cnewport@cs.georgetown.edu
Tsvetomira Radeva

MIT
Cambridge, MA, USA

radeva@csail.mit.edu

ABSTRACT
We argue that in the context of biology-inspired problems
in computer science, in addition to studying the time com-
plexity of solutions it is also important to study the selec-
tion complexity, a measure of how likely a given algorithmic
strategy is to arise in nature. In this spirit, we propose a
selection complexity metric χ for the ANTS problem [Fein-
erman et al.]. For algorithm A, we define χ(A) = b + log `,
where b is the number of memory bits used by each agent
and ` bounds the fineness of available probabilities (agents
use probabilities of at least 1/2`).

We consider n agents searching for a target in the plane,
within an (unknown) distance D from the origin. We iden-
tify log logD as a crucial threshold for our selection com-
plexity metric. We prove a new upper bound that achieves
near-optimal speed-up of (D2/n + D) · 2O(`) for χ(A) ≤
3 log logD + O(1), which is asymptotically optimal if ` ∈
O(1). By comparison, previous algorithms achieving simi-
lar speed-up require χ(A) = Ω(logD). We show that this
threshold is tight by proving that if χ(A) < log logD−ω(1),
then with high probability the target is not found if each
agent performs D2−o(1) moves. This constitutes a sizable
gap to the straightforward Ω(D2/n+D) lower bound.

Categories and Subject Descriptors
F.2.3 [Analysis of Algorithms and Problem Complex-
ity]: Tradeoffs between Complexity Measures; G.3 [Prob-
ability and Statistics]: Markov processes; G.2.2 [Graph
Theory]: Graph algorithms

∗This work is supported in part by AFOSR Contract Num-
ber FA9550-13-1-0042, NSF Award numbers: 0939370-CCF,
CCF-1217506, CCF-AF-0937274, CCF 1320279, the DFG
under reference number Le 3107/1-1., and the Ford Univer-
sity Research Program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611463 .

General Terms
Algorithms, Theory

Keywords
distributed algorithms; biology-inspired algorithms; search
algorithms; Markov chains; mobile agents

1. INTRODUCTION
It is increasingly accepted by biologists and computer sci-

entists that the tools of distributed computation can im-
prove our understanding of distributed biological processes.
Examples include problems inspired by social insects: for-
aging for food [11, 12, 13], deciding on a location for a new
nest [22], collectively carrying a large object [6]. A stan-
dard approach is to translate a biological process of interest
(e.g., ant foraging [11, 13] or sensory organ pre-cursor selec-
tion [1]) into a formal problem in a distributed computing
model, and then prove upper and lower bounds on the prob-
lem. The aim is to use these bounds to gain insight into the
behavior of the motivating biological process.

A recognized pitfall of this approach is incongruous analy-
sis, in which theoreticians focus on metrics relevant to com-
putation but not biology, or ignore metrics relevant to biol-
ogy but not to computation. Motivated by this pitfall, we
promote the use of selection complexity metrics for study-
ing biology-inspired distributed problems. Unlike standard
metrics from computation, which tend to focus only on per-
formance, selection complexity metrics attempt to measure
the difficulty of a given algorithmic strategy arising in na-
ture as the result of selective pressures. Roughly speaking, a
solution with low selection complexity should be more likely
to arise in nature than one with high selection complexity.

We argue that theoreticians who study biology-inspired
problems should evaluate solutions in terms of selection com-
plexity in addition to focusing on standard performance met-
rics; perhaps even measuring the trade-off between the two
classes of metrics. This paper provides a case study of
this approach by fixing a standard biology-inspired problem
and new selection complexity metric, and then bounding
the trade-off between performance and selection complexity
with respect to this metric. In doing so, we also obtain re-
sults regarding concurrent non-uniform random walks that
are of independent mathematical interest.

We recognize that most papers on biology-inspired dis-
tributed problems implicitly address selection complexity in
their fixed model constraints. Restricting agents to not have
access to communication in the search problem, for example,
is a constraint that likely lowers the selection complexity of
solutions in the model. What is new about our approach
is that we are capturing such complexity in a variable met-
ric, allowing us to study the trade-offs between algorithmic
power and performance more generally. This can provide in-
sights beyond those gained by characterizing the capabilities
of a given static set of constraints.

In this paper, we focus on the problem of n probabilis-
tic non-communicating agents collaboratively searching for
a target placed in a two-dimensional grid at (unknown) dis-
tance D from the origin. For our lower bound, we assume
that n is polynomial in D.1 This problem is described and
analyzed in recent work by Feinerman et al. [13] (referred
to as the ANTS problem), who argue that it provides a
good approximation of insect foraging and represents a use-
ful intersection between biological behavior and distributed
computation. The analysis in [13] focuses on the speed-up
performance metric, which measures how the expected time
to find the target improves with n. The authors describe
and analyze search algorithms that closely approximate the
straightforward Ω(D+D2/n) lower bound for finding a tar-
get placed at distance D from the origin.

Selection Metric Motivation. We consider the selec-
tion complexity metric χ, which captures the bits of mem-
ory and probabilistic range used by a given algorithm. This
metric is motivated by the fact that memory can be used
to simulate small probability values, and such values give
more power to algorithms, e.g. permitting longer directed
walks with a given amount of memory. In more detail, for
algorithm A, we define χ(A) = b+log `, where b is the num-
ber of bits of memory required by the algorithm and ` is
the smallest value such that all probabilities used in A are
bounded from below by 1/2`. In Section 3 and Section 4, we
show that the choice of the selection metric arises naturally
from the analysis of our algorithms and the lower bound.

We conjecture that, from a biological point of view, it
is reasonable to assume that large values of ` are associated
with higher selection complexity. Clearly, algorithms relying
on small probabilities are more sensitive to additive distur-
bances of the probability values. Hence, creating a small
probability based on a single event is harder to accomplish,
since the event must not only have a strong bias towards one
outcome, but also be well-protected against influencing fac-
tors (like temperature, noise, etc.). On the other hand, using
multiple independent events to simulate one with larger bias
(also known as probability boosting) constitutes a hidden
cost. Our model and algorithms make this cost explicit, by
accounting for it in terms of the memory needed for counting
such events.

Results. In this paper, we generalize the problem of [13]
by also considering the selection complexity metric χ. We
identify log logD, for target within distance D, as a cru-
cial threshold for the χ metric when studying the achiev-
able speed-up in the foraging problem. In more detail, our
lower bound proves that for any algorithm A such that
χ(A) ≤ log logD − ω(1), there is a placement of the tar-
get within distance D such that the probability that A finds

1Note that an exponential number of agents finds the target
quickly even if they employ simple random walks.

the target in fewer than D2−o(1) moves of each agent is poly-
nomially small in D, and the probability of finding a target
placed randomly within this distance is o(1). The speed-up

in this case is bounded from above by min{n,Do(1)}, as op-
posed to the optimal speed-up of min{n,D}. At the core of
our lower bound is a novel analysis of recurrence behavior
of small Markov chains with probabilities of at least 1/2`.

Concerning upper bounds, we note that the foraging al-
gorithms in [13] achieve near-optimal speed-up in n, but
their selection complexity, as measured by χ(A), is higher
than the log logD threshold identified by our lower bound:
these algorithms require sufficiently fine-grained probabili-
ties and enough memory to randomly generate and store,
respectively, coordinates up to distance at least D from the
origin; this entails χ(A) ≥ logD. In this paper, we seek
upper bounds that work for χ(A) ≈ log logD, the mini-
mum value for which good speed-up is possible. With this
in mind, we begin by describing and analyzing a very sim-
ple algorithm that is non-uniform in D (agents know the
value of D) and has asymptotically optimal expected run-
ning time. It illustrates our main ideas of walking up to cer-
tain points in the plane while counting approximately, thus
using little memory, and showing that this is sufficient for
searching the plane efficiently. This algorithm uses a value
of χ = log logD + O(1), which matches our lower bound
result for χ up to factor 1 + o(1).

We generalize the ideas used in our simple algorithm to
derive a solution that is uniform in D. The main idea is to
start with some estimate of D and keep increasing it while
executing a corresponding version of the simple search al-
gorithm described above for each such estimate. Our uni-
form algorithm solves the problem after O(D2/n+D) ·2O(`)

moves of each agent in expectation (if ` = O(1), the algo-
rithm matches the Ω(D2/n+D) lower bound), for χ(A) ≤
3 log logD + O(1). We remark that the increased running
time is due to the fact that in order to keep the value of χ
small, we increase our estimate of D by a factor of 2O(`) each
time, which may result in“overshooting”the correct distance
by factor 2O(`). Also, this suboptimal expected running time
arises from enforcing o(log logD) memory bits; otherwise,
one is always free to use only constant probabilities.

Discussion. An interesting question that arises from our
results is the relationship between b and ` in the definition
of χ(A): roughly speaking, more bits of memory might be
of greater utility than having access to smaller probabilities.
This seems intuitive given that smaller probability values
can be simulated using additional memory (e.g., to simulate
a coin that returns heads with probability 1/2k, flip a uni-
form coin k times while storing the number of coin tosses in
the additional memory), but in general more precise proba-
bilities cannot be used to simulate additional memory.

From a biological perspective, we do not claim that χ is
necessarily the right selection metric to use in studying such
problems. We chose it because b and ` seem to be impor-
tant factors in search, and they are potentially difficult to
increase in nature. However, we recognize that the refine-
ment and validation of such metrics require close collabora-
tion with evolutionary biologists. In this paper, our main
goal is to advertise the selection complexity approach as a
promising tool for studying biology-inspired problems.

From a mathematical perspective, we emphasize that our
lower bound result, in particular, is of independent inter-
est. It is known that uniform random walks do not provide

substantial speed-up in the plane searching problem [3]; the
speed-up is bounded by min{logn,D}. Our lower bound
generalizes this observation from uniform random walks to
probabilistic processes with bounded probabilities and small
state complexities.

Related Work. This work was initially inspired by the
results in [11] and [13], which originally introduced the prob-
lem studied here. More precisely, in [13] the authors present
an algorithm to find the target in optimal expected time
O(D2/n + D), assuming that each agent in the algorithm
knows the number of agents n (but not D). For unknown
n, they show that for every constant ε > 0, there exists
a uniform search algorithm that is O(log1+ε k)-competitive,
but there is no uniform search algorithm that is O(log k)-
competitive. In [11], Feinerman et al. provide multiple lower
bounds on the advice size (number of bits of information the
agents are given prior to the search), which can be used to
store the value n, some approximation of it, or any other
information. In particular, they show that in order for an
algorithm to be O(log1−ε n)-competitive, the agents need
advice size of Ω(log logn) bits. Note that this result also
implies a lower bound of Ω(log logn) bits on the total size of
the memory of the agents, but only under the condition that
optimal speed-up is required. Our lower bound is stronger
in that we show that there is an exponential gap of D1−o(1)

to the maximum speed-up if χ(A) is too small (and n is sub-
exponential in D). Similarly, the algorithms in [13] require
Ω(logD) bits of memory, as contrasted with our algorithm
that uses b ≤ 3 log logD +O(1) bits of memory.

Searching and exploration of various types of graphs by
single and multiple agents are widely studied in the litera-
ture. Several works study the case of a single agent exploring
directed graphs [2, 5, 7], undirected graphs [21, 23], or trees
[8, 16]. Out of these, the following papers have restrictions
on the memory used in the search: [16] uses O(logn) bits
to explore an n-node tree, [5] studies the power of a pebble
placed on a vertex so that the vertex can later be identi-
fied, [8] shows that Ω(log logn) bits of memory are needed
to explore some n-node trees, and [23] presents a log-space
algorithm for st-connectivity. There have been works on
graph exploration with multiple agents [3, 9, 15]; while [3]
and [15] do not include any memory bounds, [9] presents
an optimal algorithm for searching in a grid with constant
memory and constant-sized messages in a model, introduced
in [10], of very limited computation and communication ca-
pabilities. Note that even though these models restrict the
agents’ memory, the fact that the models allow communica-
tion makes it possible to simulate larger memory.

In the above papers, we have seen that the metrics typi-
cally considered by computer scientists in graph search algo-
rithms are usually the amount of memory used and the run-
ning time. In contrast, biologists look at a much wider range
of models and metrics, more closely related to the physical
capabilities of the agents. For example, in [4] the focus is on
the capabilities of foragers to learn about different new en-
vironments, [17] considers the physical fitness of agents and
the abundance and quality of the food sources, [18] considers
interesting navigational capabilities of ants and assumes no
communication between them, [19] measures the efficiency
of foraging in terms of the energy over time spent per agent,
and [24] explores the use of different chemicals used by ants
to communicate with one another.

2. MODEL
Our model is similar to the models considered in [11, 13].

We consider an infinite two-dimensional square grid with
coordinates in Z2. The grid is to be explored by n ∈ N iden-
tical, non-communicating, probabilistic agents. Each agent
is always located at a point on the grid. Agents can move in
one of four directions, to one of the four adjacent grid points,
but they have no information about their current location
in the grid. Initially all agents are positioned at the ori-
gin. We also assume that an agent can return to the origin,
and for the purposes of this paper, we assume this action is
based on information provided by an oracle. We also assume
the agent returns on a shortest path in the grid that keeps
closest to the straight line connecting the origin to its cur-
rent position. Note that the return path is no longer than
the path of the agent away from the origin; therefore, since
we are interested in asymptotic complexity, we ignore the
lengths of the return paths in our analysis.

Agents. Each agent is modeled as a probabilistic finite
state automaton; since agents are identical, so are their state
automata. Each automaton is a tuple (S, s0, δ), where S is a
set of states, state s0 ∈ S is the unique starting state, and δ
is a transition function δ : S → Π, where Π is a set of discrete
probability distributions. Thus, δ maps each state s ∈ S to
a discrete probability distribution δ(s) = πs on S, which
denotes the probability of moving from state s to any other
state in S. For our lower bound in Section 4, it is convenient
to use a Markov chain representation of each agent. We can
express each agent as a Markov chain with transition matrix
P , such that for each s1, s2 ∈ S, P [s1][s2] = πs1(s2), and
start state s0 ∈ S.

In addition to the Markov chain that describes the evo-
lution of an agent’s state, we also need to characterize its
movement on the grid. We define the labeling function
M : S → {up, down, right, left, origin, none} mapping each
state s ∈ S to an action the agent performs on the grid. For
simplicity, we require M(s0) = origin. Using this labeling
function, any sequence of states (si ∈ S)i∈N is mapped to
a sequence of moves in the grid (M(si))i∈N where M(si) =
none denotes no move in the grid (i.e., si does not contribute
to the derived sequence of moves) and M(si) = origin means
that the agent returns to the origin, as described above.

Executions. An execution of a single agent is defined as
a sequence (s0, s1, · · ·) of states that an agent visits while
executing some algorithm, where s0 is the start state. An
execution of an algorithm with n agents is just an n-tuple
of executions of single agents. For our analysis of the lower
bound, it is useful to assume a synchronous model. So, we
define a round of an execution to consist of one transition
of each agent in its Markov chain. Note that we do not
use such synchrony for our algorithms. In order to consider
probabilistic executions, note that the Markov chain (S, P)
induces a probability distribution of executions in a natural
way, by performing an independent random walk on S with
transition probabilities given by P for each of the n agents.
For probabilistic executions of all n agents, we consider the
product distribution of the agents’ individual distributions.

Problem Statement. The goal is to find a target located
at some vertex at distance (measured in terms of the max-
norm) at most D from the origin. Note that measuring
paths in terms of the max-norm gives is a constant-factor
approximation of the actual hop distance. We will consider
both uniform and non-uniform algorithms with respect to

D; that is, the agents may or may not know the value of
D. For simplicity, throughout this paper we will consider
algorithms that are non-uniform in n, i.e., the agents’ state
machine depends on n.2

Metrics. We consider both a performance and a selec-
tion metric and study the trade-off between the two. We
will use the term step of an agent interchangeably with a
transition of the agent in the Markov chain. We define a
move of the agent to be a step that the agent performs in
its Markov chain resulting in a state labeled up, down, left,
or right. We do not count states labeled “none” for our per-
formance metric as we consider them to be part of an agent’s
local processing. We also ignore the states labeled “origin”
because, as we already mentioned, returning back to the ori-
gin increases the total number of moves by at most a factor
of two and does not affect the asymptotic performance of
the algorithm.

For our performance metric, we focus on the asymptotic
running time in terms of D and n; more precisely, we are
interested in the expected value of the metric Mmoves: the
minimum over all agents of the number of moves of the agent
until it finds the target. We define the metric Msteps to be
the minimum over all agents of the number of steps of the
agent until it finds the target.

The selection metric of a state automaton (and thus a
corresponding algorithm) is defined as χ(A) = b + log `,
where b := dlog |S|e is the number of bits required to encode
all states from S and ` ∈ N is minimal with the property that
1/2` ≤ min{P [s, s′] | s, s′ ∈ S ∧ P [s, s′] 6= 0}, the smallest
non-zero probability value used by the algorithm.

3. ALGORITHMS
In this section, we begin by describing a non-uniform al-

gorithm in D that finds the target in asymptotically optimal
time. The main purpose for presenting this algorithm is to
illustrate our main techniques in a very simple setting. This
algorithm uses probability values of the form 1/D, which
can easily be simulated using only biased coins that show
heads with probability 1/2` for any ` such that logD is an
integer multiple of `. We show that the target can be found
in asymptotically optimal time using b = log logD− log `+3
bits of memory.

We then generalize this algorithm to work for the case
of unknown D. This ensures that closer targets are found
faster by the algorithm than targets that are far away. The
way we achieve this is by starting with an estimate of D
equal to 2 and repeatedly increasing it until the target is
found. For each such estimate we execute the non-uniform
algorithm. Since D is not known by the algorithm anymore,
we cannot easily pick fixed values for some of the parameters
we use in the algorithm in order to guarantee asymptotically
optimal results for all possible values of D. Therefore, in
our general algorithm the expected number of moves for the
first agent to find the target becomes (D2/n+D) · 2O(`) for
χ = 3 log logD + O(1). Hence, for ` = O(1) the algorithm
is asymptotically optimal with respect to both metrics, and
we achieve non-trivial speed-up of min{n,D}/Do(1) for any
` ∈ o(logD) (i.e., ω(1) bits of memory).

2We remark that it is possible to apply a technique from [13]
in order to generalize our results and obtain an algorithm
that is uniform in both D and n.

origin

up

down

rightleft

1
D2

1
2

(
1− 1

D

)

1
2

(
1− 1

D

)

1
2D

(
1− 1

D

)

1
2D

(
1− 1

D

)

1− 1
D

1
D

1
2D

1
2D

1− 1
D

1
D

1− 1
D

1
D

1
2D

1
2D

1− 1
D

1
D

State machine representation of Algorithm 1. State names
match the values of the labeling function.

3.1 Non-uniform Algorithm
Our general approach is the following: each agent chooses

a vertical direction (up or down) with probability 1/2, walks
in that direction for a random number of steps that depends
on D, then does the same for the horizontal direction, and
finally returns to the origin and repeats this process. We
show that the expected number of moves for the first agent
to find a target at distance up to D from the origin is at
most O(D2/n + D). We assume that D > 1; the cases of
D = 0 and D = 1 are straightforward.

Let coin Cp denote a coin that shows tails with proba-
bility p. Using this convention, the pseudocode of this sim-
ple routine is given in Algorithm 1, accompanied by a state
machine representation showing that the algorithm can be
implemented using only three bits of memory. Later in this
section we show that a slightly modified version of the algo-
rithm guarantees that χ = log logD + 3.

Algorithm 1: Non-uniform search.

while true do
if coin C1/2 shows heads then

while coin C1/D shows heads do
move up

else
while coin C1/D shows heads do

move down
if coin C1/2 shows heads then

while coin C1/D shows heads do
move left

else
while coin C1/D shows heads do

move right
return to the origin

Next, we state the main performance complexity result
and give a brief proof overview. We omit the complete proof
of Theorem 3.1 below, since it is a special case of the proof of

our uniform algorithm in Theorem 3.6; for additional details,
refer to the full version of the paper [20].

Theorem 3.1. Let each of n agents execute Algorithm 1.
For a target located within distance D > 1 from the origin,
E[Mmoves] = O(D2/n+D).

Proof Sketch. First, we calculate the expected number of
moves R for a single agent to complete an iteration of the
main loop; by the properties of the geometric distribution
R ≤ 2D. Note that the time to complete an iteration is
not independent of whether the target is found or not, so
we also compute the value of R conditioning on the event
that the agent does not find the target in the given iteration;
we call this value R̂ and we show that R̂ ≤ 2R. Using the
value of R̂ and the fact that in the iteration in which an
agent finds the target this takes at most 2D moves, we show
that the expected number of moves Ri,a, for a fixed agent a
to complete iteration i if i is the earliest iteration in which
agent a finds the target, is at most 4iD.

Next, we move on to considering all n agents; we cal-
culate the probability q that no agent finds the target after
each agent executes one iteration of the main loop. Since the
probability for a single agent to find the target in a given iter-
ation is at least 1/(64D), we can show q ≤ (1−1/(64D))n ≤
max{1− Ω(n/D), 1/2}, where the first value is for the case
n ≤ D, and the second one for the case n > D.

Finally, we calculate E[Mmoves]. Let event Ei denote the
event that iteration i is the earliest iteration in which some
agent finds the target. Then, E[Mmoves] =

∑∞
i=1 P [Ei] ·

E[Mmoves|Ei]. The value of E[Mmoves|Ei] can be calculated
using the Law of Total Expectation, by partitioning event
Ei based on which agent finds the target (see Theorem 3.6
for a similar argument). We can then show that

E[Mmoves] ≤
∞∑
i=1

(1− q)qi−1 · R̂ = O(D2/n+D).

We now generalize this algorithm to one that uses prob-
abilities lower-bounded by 1/2` for some given ` ≥ 1. This
is achieved by the following subroutine, which implements a
coin that shows tails with probability 1/2k` using a biased
coin that shows tails with probability 1/2`, for ` ≥ 1.

Algorithm 2: coin(k, `): Biased coin flip showing tails
with probability 1/2k`.

for i = 0 · · · k do
if C1/2` shows heads then

return heads
return tails

Lemma 3.2. Algorithm 2 returns tails with probability
1/2k` and uses dlog ke bits of memory.

Next, we construct Algorithm Non-Uniform-Search by re-
placing the lines where coin C1/D is tossed in Algorithm 1
with a copy of Algorithm 2, with parameters k = dlogD/`e
and `. Since Algorithm 2 does not generate any moves on
the grid, the complexity bound in Theorem 3.1 holds.

Theorem 3.3. Let each of n agents execute Algorithm
Non-Uniform-Search. For a target located within distance
D > 1 from the origin E[Mmoves] = O(D2/n + D). More-
over, χ(Algorithm Non-Uniform-Search) = log logD+O(1).

3.2 Uniform Algorithm
In this section, we generalize the results from Section 3.1

to derive an algorithm that is uniform in D. The main dif-
ference is that now each agent maintains an estimate of D
that it increases until the target is found. For each esti-
mate, an agent simply executes the corresponding variant
of Algorithm Non-Uniform-Search. We show that for the
algorithm in this section, the expected number of moves for
the first agent to find a target at distance at most D from
the origin is (D2/n+D)2O(`). Also, the algorithm uses only
b = 3 log logD − 3 log `+O(1) bits of memory.

To simplify the presentation, we break up the main algo-
rithm into subroutines. We begin by showing how to move
in a given direction by a random number of moves that de-
pends on the current estimate D̂ of D. In the following
algorithm, recall that ` is used to bound from below the
smallest probability available to each agent by 1/2`. We use
an integer k as a parameter in order to generate different
distance estimates D̂ = 2k`.

Algorithm 3: walk(k,`,dir): Move by a random number
of moves in direction dir.

while coin(k, `) = heads do
move one step in direction dir

Lemma 3.4. For i ∈ {0, . . . , 2k`}, the probability that an
agent executing Algorithm 3 makes exactly i moves is at least
1/2k`+2. The probability that it makes at least 2k` moves is
at least 1/4. The expected number of moves is smaller than
2k`. The algorithm uses dlog ke bits of memory.

This lemma follows from basic properties of the geometric
distribution.

Using the subroutines above, Algorithm 4 visits each grid
point of a square of side length 2k` centered at the origin
with probability Ω(1/22k`).

Algorithm 4: search(k, `): Visit each grid point of a
square of side length 2k` centered at the origin with prob-
ability Ω(1/22k`).

if if C1/2 shows heads then
walk(k, `,up)

else
walk(k, `,down)

if C1/2 shows heads then
walk(k, `,right)

else
walk(k, `,left)

Lemma 3.5. An agent executing Algorithm 4 from the ori-
gin visits each point (x, y) ∈ {0, . . . , 2k`}2 with probability at
least 1/2k`+6. Algorithm 4 uses dlog ke+ 2 bits of memory.

The lemma follows by observing that to move to a spe-
cific point (x, y) in the grid an agent needs (i) two specific
outcomes of the unbiased coins (probability 1/2 each), (ii)
exactly |y| steps up/down (probability 1/2k`+2 by Lemma
3.4), and (iii) at least |x| steps left/right (probability 1/4 by
Lemma 3.4).

Finally, in Algorithm 5, we use Algorithm 4 to efficiently
search an area of O(D2) with n agents. The algorithm iter-
ates through different values of the outer-loop parameter i,
which correspond to the different estimates of D, increasing
by approximately a factor of 2` in each iteration. For each
such estimate, the algorithm needs to execute a number of
calls to the search subroutine with parameter i. However,
since agents have limited memory and limited probability
values, we can only count the number of such calls to the
search routine approximately. We do so similarly to Algo-
rithm 3, by repeatedly tossing a biased coin and calling the
search algorithm as long as the coin shows heads.

Algorithm 5: Search Algorithm for n agents. K is a
sufficiently large constant.

for i = 1, . . . do
while coin(K + max{i− b(logn)/`c, 0}, `) = heads
do

search(i, `)
return to the origin

Throughout the rest of the proofs, we refer to an iteration
of the outer-most loop of Algorithm 5 as a phase.

Theorem 3.6. Let each of n agents execute Algorithm 5.
For a target located within distance D > 1 from the origin,
E[Mmoves] ≤ 2O(`)(D +D2/n).

Proof Overview. First, in Lemma 3.7, we calculate the
expected number of moves Ri for an agent to complete phase
i. Then, we determine the expected number of moves R̃i,a
for an agent a to complete phase i (past some initial number
of dlog2` De phases), conditioning on agent a finding the tar-
get in phase i, but not earlier. Next, we move on to reason-
ing about all n agents, instead of a single agent. In Lemma
3.9, we bound the probability that in each phase i, at least
Ω(2i`) calls to the subroutine search(i, `) are executed by all
agents together. In Lemma 3.10, we use this result to cal-
culate the probability that at least one of the n agents finds
the target in some phase i. Finally, we use these intermedi-
ate results to prove the main result of this section, Theorem
3.6, which shows that the expected number of moves for the
first agent to find a target within distance D from the origin
is (D +D2/n) · 2O(`).

Denote by Ri the expected number of moves until an agent
completes phase i. Let ρi := 2(K+max{i−b(logn)/`c,0})`.

Lemma 3.7. Ri ≤ 4ρi2
i`.

Proof. Using linearity of expectation and independence
of coin flips, Ri is the nested sum over all phases i′ ≤ i, of the
number j of calls to the search subroutine times the probabil-
ity that j such calls are executed, and the number of moves
k for an agent to complete a given call to the search subrou-
tine times the respective probability:

∑i
i′=1(

∑∞
j=0 1/ρi′(1−

1/ρi′)
j∑∞

k=0 1/2i
′`(1− 1/2i

′`)k · 2k) < 4ρi2
i`.

Denote by R̃i,a the expected number of moves until a given
agent a finds the target, conditioning on the fact that agent
a finds the target in phase i ∈ N, but no earlier phase.

Corollary 3.8. If i ≥ i0 = dlog2` De, then it holds that

R̃i,a ≤ 8ρi2
i` + 2D = 2max{2i`−logn,i`} · 2O(`).

Proof. In the (first) call to the search subroutine in
which agent a finds the target, it walks directly to the target,
which takes at most 2D moves. Hence3 R̃i,a ≤ R̃′i,a + 2D,

where R̃′i,a is the random variable counting all moves of a
up to and including phase i, conditioning on a not finding
the target in any of these phases. By the pseudocode, it
is clear that the probability for an agent to miss the target
in a given call to the search subroutine is at least 1/2. We
partition the probability space according to the events that
(1) the target is found during a given call to search, and (2)
the target is not found during a given call to search. From
the law of total expectation, it follows that Ri ≤ 1/2 · R̃′i,a,

so R̃i,a ≤ R̃′i,a + 2D ≤ 2Ri + 2D. The claim now follows

from Lemma 3.7 and the fact that 2i` ≥ 2i0` ≥ D.

At this point, we start considering a probability distribu-
tion for all n agents, as opposed to a single agent. Denote
by E1(i) the event that in total at least 2(K/2+i)` calls to
search(i, `) are executed in phase i.

Lemma 3.9. P [E1(i)] ≥ 1− 1/22`+2.

Proof. By Lemma 3.2 and linearity of expectation, the
expected number of calls to search(`, i) performed by all
agents during phase i is:

n

∞∑
j=1

1/ρi · (1− 1/ρi)
j · j ≥ n/2 · ρi ≥ 2(K+i−1)`.

Since the coin flips are independent, we can apply a Chernoff
bound to show that the probability that fewer than 2(K/2+i)`

searches are executed in total is at most e−Ω(K`). The claim
follows since K is a sufficiently large constant.

Denote by E2(i) the event that the target is found by some
agent in phase i. Let i0 = dlog2` De.

Lemma 3.10. For i ≥ i0, P [E2(i)] ≥ 1− 1/22`+1.

Proof. By Lemma 3.9, with probability at least 1 −
1/22`+2, at least 2(K/2+i)` iterations of the while loop are
executed in total. Because i ≥ i0 ≥ log2` D, i.e., 2i` ≥
D, Lemma 3.5 shows that in each iteration, the probabil-
ity to find the target is at least 1/2i`+6. Therefore, the
probability to miss the target in all calls is at most (1 −
1/2i`+6)2(K/2+i)`

= 2−Ω(K`).
Because K is sufficiently large, we may assume that this

is at most 1/22`+2. We infer that P [E2(i)] ≥ P [E2(i) | E1(i)] ·
P [E1(i)] ≥ (1− 1/22`+2)2 ≥ 1− 1/22`+1.

Proof of Theorem 3.6. Let E3(i) denote the event that
the target is found for the first time in phase i. Observe that
because the probability to find the target in phase i is inde-
pendent of all coin flips in earlier phases, by Lemma 3.10 it
follows that for i ≥ i0:

P [E3(i)] ≤
i−1∏
i′=i0

(1− P [E2(i′)]) ≤ 1/2(2`+1)(i−i0).

Let random variable X denote the number of moves until
the first agent finds the target.

E[X] =

∞∑
i=1

P [E3(i)] · E[X|E3(i)].

3This inequality is to be read as probabilistic domination.

Fix an arbitrary order of the agents (independently of the
execution). We partition event E3(i) into disjoint events
E3(i, a), where E3(i, a) denotes the event that agent a is the
minimal agent w.r.t. the chosen order that finds the target
in phase i (by the definition of E3(i), we know that such an
agent exists). By the law of total expectation applied to the
partition of event E3(i), it follows that:

E[X|E3(i)] =
∑
a

P [E3(i, a)|E3(i)] · E[X|E3(i, a)].

Let random variable Xi,a denote the number of moves
agent a takes to complete iteration i. Note that because
we condition on event E3(i, a), we know that the expected
number of moves until the target is found by some agent is
at most the expected number of moves for the fixed agent
a to find the target and complete iteration i. Therefore, it
follows that E[X|E3(i, a)] ≤ E[Xi,a|E3(i, a)].

By definition, we have E[Xi,a|E3(i, a)] = R̃i,a. We con-
clude that E[X|E3(i)] is upper-bounded by:∑
a

P [E3(i, a)|E3(i)] · R̃i,a = R̃i,a ·
∑
a

P [E3(i, a)|E3(i)] = R̃i,a

Finally, we sum over all phases to calculate the value of
E[X]. Using Corollary 3.8, we bound E[X] by.

i0∑
i=1

P [E3(i)] · R̃i,a +

∞∑
i=i0+1

P [E3(i)] · R̃i,a

≤ R̃i0,a +

∞∑
i=i0+1

1

2(2`+1)(i−i0)
· 2max{2i`−logn,i`} · 2O(`).

Simple calculations bound this by max{D2/n,D}·2O(`).

4. LOWER BOUND
In this section, we present a lower bound showing that any

algorithm A satisfying χ(A) ≤ log logD − ω(1) with high
probability (w.h.p.) does not find a target placed adversar-

ially within distance D from the origin in D2−o(1) rounds.
For uniform placement, this holds with probability 1− o(1).

Let c > 1 be a arbitrary predefined constant. Through-
out this section, we say that an event occurs with high
probability iff the probability of the event occurring is at
least 1 − 1/Dc for D ∈ N. We say that two probabil-
ity distributions π1 and π2 are approximately equivalent iff
‖π1 − π2‖ = O(1/Dc). By ‖ · ‖ we denote the max-norm on
the respective space.

First, we state the main theorem of the section in terms
of the performance metric Msteps. Note that, by the defini-
tion of a round, this is equivalent to counting the expected
number of rounds until the first agent finds the target. At
the end of the section, in Corollary 4.10, we generalize the
main result to apply to metric Mmoves.

Theorem 4.1. Let A be an algorithm with χ(A) = b +
log ` ≤ log logD − ω(1) and let each of n ∈ poly(D) agents
execute algorithm A. There is a placement of the target
within distance D from the origin for which w.h.p. Msteps ≥
D2−o(1). Moreover, if the target is placed uniformly at ran-
dom in the square of side 2D centered at the origin, then
Msteps = D2−o(1) with probability o(1).

4.1 Proof Overview
Here we provide a high-level overview of our main proof

argument. We fix an algorithm A and focus on executions of
this algorithm of D2−o(1) rounds. We prove that since agents
have o(logD) states, they“forget”about past events too fast
to behave substantially different from a biased random walk.

More concretely, first we show, in Corollary 4.3, that after
Do(1) initial rounds each agent a is located in some recur-
rent class C(a) of the Markov chain. We use this corollary

to prove, in Corollary 4.4, that after the initial Do(1) rounds
each agent a does not return to the origin (or it keeps re-

turning every Do(1) rounds, so it does not explore much of
the grid). Therefore, throughout the rest of the proof we
can essentially ignore the states labeled “origin”.

Assume there is a unique stationary distribution of C(a)4.
Since the number of states is bounded from above and non-
zero transition probabilities are bounded from below, stan-
dard results on Markov chains imply that taking Do(1) steps
from any state in the recurrent class will result in a distribu-
tion on the class’s states that is (almost) indistinguishable
from the stationary distribution (Corollary 4.5); in other
words, any information agents try to preserve in their state
is lost quickly with respect to D.

Next, we split up the rounds in the execution into groups
such that within each group, rounds are sufficiently far apart
from one another for the above “forgetting” to take place.
For each group, we show that drawing states independently
from the stationary distribution introduces a negligible error
(Lemma 4.6 and Corollary 4.7). Thus, we can apply a Cher-
noff bound to each group, yielding that agents will not de-
viate substantially from the expected path they take when,
in each round, they draw a state according to the stationary
distribution and execute the corresponding move on the grid
(Lemma 4.8 and Corollary 4.9). Taking a union bound over
all groups, we show that, w.h.p., each agent will not deviate
from a straight line (the expected path associated with its
recurrent class) by more than distance o(D/|S|), where S is
the number of states of the Markov chain. It is crucial that
the corresponding region in the grid, restricted to distance D
from the origin, has size o(D2/|S|) and depends only on the
agent’s recurrent class. Therefore, since there are at most
|S| components, taking a union bound over all agents shows
that w.h.p. together they visit an area of o(D2).

4.2 Proof
Without loss of generality, we assume that values like lnD

are integers; for the general case, we can round up. Also,
since we are interested in asymptotics with respect to D, we
may always assume that D is larger than any given constant.

Fix any algorithm A, some D ∈ N, and let b + log ` ≤
log logD − ω(1). Consider the probability distribution of

executions of A of length ∆ = D2−o(1) rounds; we will fix
the o(1)-term in the exponent later, in Lemma 4.8.

We break the proof down into three main parts. First, in
Section 4.2.1, we show that after a certain number of initial
rounds each agent is in a recurrent class and, for simplicity,
we can ignore the states labeled “origin”. Next, in Section
4.2.2, we show that if we break down the execution into
large enough blocks of rounds, we can assume that the steps
associated with rounds in different blocks do not depend on

4The general case of C(a) potentially being periodic is dis-
cussed in Section 4.2

each other, within a small error. Finally, in Section 4.2.3,
we focus on the movement of the agents in the grid, derived
from these“almost” independent steps, and show that w.h.p.
the agents do not explore any points outside of an area of
size o(D2) around the origin.

4.2.1 Initial steps in the Markov chain
Let random variable C(a, r) denote the recurrent class of

the Markov chain in which agent a is located at the end of
round r; if a is in a transient state at the end of round r,
we set C(a, r) := ⊥. Also, by p0 we denote the smallest
non-zero probability in the Markov chain. By assumption,
we know that p0 ≥ 1/2`.

First we show that for any agent a and any state s, if state
s is always reachable by agent a, then agent a visits state s

within Do(1) rounds. Let R0 = p−2b

0 2bc logD = Do(1) where
the constant c > 0 will be specified later.

Lemma 4.2. For some agent a, round r, state s, condi-
tion on the event that during rounds r, . . . , r + R0 agent a
never visits a state s′ such that s is not reachable from s′.
Then, w.h.p. a visits s in some round r′ ∈ {r, . . . , r +R0}.

Proof. Since state s remains reachable, there is always a
path of length at most |S| − 1 from the state in which agent
a is in round r′ ∈ {r, . . . , r +R0} to state s. Therefore, the
probability that the agent visits state s within R0 rounds
is bounded from below by the probability that a (biased)
random walk on a line of 2b ≥ |S| − 1 nodes starting at the
leftmost node reaches the rightmost node within R0 rounds.
In the following expression we bound this probability from
below by observing that the probability for an agent to visit

all nodes in the line in one try is p2b

0 and within R0 rounds
the agent can try at most R0/2

b times. Therefore,

1− (1− p2b

0)R0/2
b

≥ 1− 1/2Ω(c log(D+n)) = 1− 1/DΩ(c),

where we use the fact that p0 ≤ 1/2; otherwise, each state
has only one outgoing transition, in which case the claim of
the lemma is trivial. Thus, for an appropriate choice of c,
w.h.p. agent a visits state s within R0 rounds.

In the following corollary we show that for a given agent
and any round r ≥ R0, w.h.p. the agent is located in some
recurrent class of the Markov chain.

Corollary 4.3. For any agent a and any round r ≥ R0,
w.h.p. C(a, r) = C(a, r + 1) 6= ⊥.

The corollary follows from the fact that from any state
in the Markov chain, there is always a reachable recurrent
state. By Lemma 4.2, w.h.p. the agent reaches such a re-
current state in Do(1) rounds and never subsequently leaves
the associated recurrent class.

Since the recurrent class C(a, r) in which agent a is located
is the same for all rounds r ≥ R0, we will refer to it by C(a).
Next, we show that the recurrent class C(a) in which agent
a is located does not contain any states labeled “origin”, or
otherwise, the agent keeps returning to the origin too often
and makes no progress exploring the grid.

Corollary 4.4. W.h.p., at least one of the following is
true for any agent a and each round R0 ≤ r ≤ ∆: (1) agent

a never visits a point in the grid at distance more than Do(1)

from the origin, or (2) agent a is located in a recurrent class
in which none of the states are labeled “origin”.

The idea of the proof is that if C(a) contains a state la-
beled “origin”, then we can show, by applying Lemma 4.2,
that w.h.p. the agent visits that state every Do(1) rounds.

Throughout the rest of the proof, we consider executions
after round R0; since, R0 = Do(1) and we consider execu-
tions of length ∆ = D2−o(1), we can just ignore these initial
rounds. Therefore, from Corollary 4.3 and Corollary 4.4, we
can assume for the rest of the proof that each agent a is in
a recurrent class C(a) and it does not return to the origin.

4.2.2 Moves drawn from the stationary distribution
Consider C := C(a) for a fixed agent a. For the rest of

the proof, we assume that C is aperiodic, and thus, has a
unique stationary distribution π. In the general case, C
applying standard results from Markov chain theory [14,
Chapter XV.9] shows that by considering the Markov chain
induced by P t, where P is the probability matrix of the orig-
inal Markov chain and t is its period, a unique stationary
distribution exists for some subset of states of C. For the
general case, refer to the full version of the paper [20].

Consider blocks of rounds of size β = c|S| lnD/p|S|0 =

Do(1), where c > 0 is a sufficiently large constant. We define
groups of rounds such that each group contains one round
from each block. Formally, for 1 ≤ i ≤ β and j ∈ N0, group
Bi contains round numbers i+ jβ ≤ ∆.

Let πr+β,s denote the probability distribution on C of
possible states agent a may be in at the end of round r+ β,
conditional on its state being s ∈ C at the end of round r.
Note that this distribution is, in fact, independent of r. We
obtain the following corollary of Lemma 2 in [25] applied to
the Markov chain restricted to class C.

Recall that two probability distributions π1 and π2 are de-
fined to be approximately equivalent iff ‖π1−π2‖ = O(1/Dc)
for an arbitrary predefined constant c > 0.

Corollary 4.5. There is a unique stationary distribu-
tion π of the Markov chain on C. For any state s ∈ C and
any round r, πr+β,s and π are approximately equivalent.

From this corollary, we know that probability distribu-
tions π and πr+β,s are close to each other. Next, we identify
the probability distribution that constitutes the “gap” be-
tween π and πr+β,s.

Lemma 4.6. Let 1 ≤ i ≤ β. Then, for any state s ∈ C
and any constant c > 0, there exists a probability distribution
πs such that ∀r ∈ Bi, r ≤ ∆ − β : πs/D

c + (1 − 1/Dc)π =
πr+β,s, where π is the unique stationary distribution of C.

Proof Sketch. First, we bound the value of π(s′) for

each s′ ∈ C. We can show that π(s′) ≥ p
|S|
0 because p0

is the minimum transition probability of getting to state s′

from any other state, and we can do this at most |S| times.

Since b + log ` ≤ log logD − ω(1), it follows that p
|S|
0 ≥

1/Do(1). This also implies that π(s′) ≤ 1 − 1/Do(1) (as-
suming |C| > 1). Using the above equation involving πs as
definition, we can show that πs is a probability distribution,
i.e., for each s′ ∈ C, 0 ≤ πs(s

′) ≤ 1 and
∑
s′∈C πs(s

′) = 1.
Here, we leverage that by, Corollary 4.5, π and πr+β,s are
approximately equivalent.

We now show that within each class Bi, approximating
the random walk of an agent in the Markov chain by draw-
ing its state for each round r ∈ Bi independently from the

stationary distribution π does not introduce a substantial
error. To this end, consider the following random experi-
ment Ei. For each round r + β ≤ ∆, r ∈ Bi, we toss an
independent biased coin such that it shows heads w.h.p. In
this case, we draw the state at the end of round r indepen-
dently from π. Otherwise, we draw it from the distribution
πs, where s is the state the agent was in β steps ago and πs
is the distribution given by Lemma 4.6. Since each time the
coin shows heads w.h.p., a union bound shows that it holds
that w.h.p. the coin shows head in all rounds r ∈ Bi.

Corollary 4.7. If the experiment Ei described above is
executed with probability of heads being 1− 1/Dc+2, where c
is the constant fixed in the beginning of the section (in the
definition of “approximately equivalent”), w.h.p. no coin flip
shows tail. In other words, for each round r, the state of
the agent at the end of round r + β ≤ ∆, r ∈ Bi, is drawn
independently from the stationary distribution π.

4.2.3 Movement on the grid.
Having established that an agent’s state can essentially

be understood as a (sufficiently small) collection of sets of
independent random variables, we focus on the implications
on the agents’ movement in the grid. Let the random vari-
able X↑r have value 1 if the state of the agent at the end of
round r is labeled up, and 0 otherwise. Note that these ran-
dom variables depend only on the state transitions the agent
performs in the Markov chain. Also let X↑≤r =

∑r
r′=1 X

↑
r′ .

Lemma 4.8. Suppose an agent is initially in a state from
the recurrent class C. Then there is a real number p↑ ∈ [0, 1]
depending only on C, such that for each round r ≤ ∆ it holds

that
∣∣∣X↑≤r − rp↑∣∣∣ = o(D/|S|) w.h.p.

Proof Sketch. First, we consider the special case of r =
∆. Because β = o(D/|S|) (follows from the assumptions
for the value of χ), it suffices to show that, for a suitable

choice of p↑,
∑∆
r′=β+1

∣∣∣X↑r′ − (r − β)p↑
∣∣∣ = o(D/|S|). We

break this sum down into β sums, each considering only the
round numbers from the same class Bi.

For each such class Bi, we condition on the event that
experiment Ei results in all coin flips showing heads, and
so each subsequent state within class Bi is drawn indepen-
dently from the stationary distribution. Now, we apply a
Chernoff bound to show that w.h.p. the number of moves
up in the grid that occur in rounds r′ ∈ Bi does not dif-
fer from the expected number of such moves by more than
o(D/(|S|β)). Finally, we show by a union bound that w.h.p.
both (1) all coin flips from experiment Ei indeed show heads,
and (2) for all i it is true that the number of moves up in the
grid that occur in rounds r′ ∈ Bi does not differ from the
expected number of such moves by more than o(D/(|S|β)).
The value of p↑ now is simply the sum over i of the expec-
tation for class Bi divided by its size.

For the general case of r < ∆, observe that decreasing r
by an integer multiple of β decreases the computed expecta-
tion by exactly p↑ (as long as r > β + 1 = o(D/|S|)). Also,
decreasing the number of rounds only decreases the proba-
bility of large deviations from the expectation of the random
variable. Since β = o(D/|S|), the general statement hence
follows analogously to the special case.

Repeating these arguments for the other directions (right,
down, and left), we see that overall, each agent behaves fairly

predictably. Define X≤r ∈ Z2 to be the random variable
describing the sum of all moves the agent performs in the
grid up to round r, i.e., its position in the grid (in each
dimension) at the end of round r. For this random variable,
the following statement holds.

Corollary 4.9. Suppose an agent is initially in a state
of the recurrent class C. Then there is a real number ~p ∈
[0, 1]2 depending only on C such that for each r ≤ ∆, it
holds that ‖X≤r − r~p ‖ = o(D/|S|) w.h.p.

We now resume the proof of Theorem 4.1.

Proof of Theorem 4.1. Denote by C the set of recur-
rent classes of the Markov chain representing the state ma-
chine of each agent. By Corollary 4.3, it holds for each agent
a that, after each round r ≥ R0 = Do(1), w.h.p. the agent is
located in recurrent class C(a) ∈ C. Since Lemma 4.8, and
therefore Corollary 4.9, do not depend on the initial state
from C(a) the agent is in, the same reasoning shows that, at
the end of round r, w.h.p. the position of a will not deviate
by more than distance o(D/|S|) from a straight line in the
grid. By a union bound, this holds for all agents jointly w.h.p
(recall that by assumption n is polynomial in D). Hence,
w.h.p., it holds for each agent a and each round r ≥ R0 that
a never ventures further away from the origin than distance
o(D/|S|), or its position does not deviate by more than dis-
tance o(D/|S|) from one of at most |C| straight lines. Since
for any straight line only a segment of length O(D) is in
distance O(D) from the origin, the union of all grid points
that are (i) in distance at most D from the origin and (ii) in
distance at most o(D/|S|) from one of the straight lines has
cardinality O(D) · o(D/|S|) · |C| ≤ o(D2/|S|) · |S| = o(D2).
Hence, there is a set G ⊂ Z2 of o(D2) grid points that only
depends on the algorithm A, D, and n, with the following
property: w.h.p., all grid points in distance D from the ori-
gin that are visited within the first ∆ steps of an execution
of A are in G. Since there are Θ(D2) grid points in dis-
tance D from the origin, this implies that the target can be
placed in such a way that w.h.p. no agent will find it within
∆ = D2−o(1) rounds, and a uniformly placed target is found
in this amount of time with probability o(1).

Finally, we show that Theorem 4.1 also holds with respect
to the metric Mmoves. In the following corollary, we show
that each move of an agent on the grid corresponds to at
most Do(1) transitions in its Markov chain, or otherwise,
the agent does not move on the grid after some point.

Corollary 4.10. Let A be an algorithm with χ(A) =
b + log ` ≤ log logD − ω(1) and let each of n ∈ poly(D)
agents execute algorithm A. There is a placement of the
target within distance D from the origin such that w.h.p.
Mmoves ≥ D2−o(1). Moreover, if the target is placed uni-
formly at random in the square of side 2D centered at the
origin, then Mmoves = D2−o(1) with probability o(1).

The proof proceeds by showing that w.h.p., at least one of
the following is true about any agent a in any round r ≥ R0:
(1) a is located in a recurrent class in which all states are
labeled “none”, or (2) each move on the grid performed by

a corresponds to at most Do(1) steps in its Markov chain.
In the first case, the agent does not make much progress
exploring the grid; in the second case, it follows that D2−o(1)

moves in the grid correspond to D2−o(1) transitions in the
Markov chain and the result is implied by Theorem 4.1.

5. DISCUSSION AND CONCLUSION
We have presented an algorithm and a lower bound for the

problem of n agents searching in a grid for a target placed
at distance at most D from the origin. Our lower bound
shows that if χ(A) < log logD−ω(1) and n is polynomial in

D, w.h.p. no agent finds the target within its first D2−o(1)

moves. In fact, it is straightforward to generalize the result

to n ∈ 2D
o(1)

. For the remaining case of an exponential num-
ber of agents, just performing independent unbiased random
walks results in finding the target quickly. We also present
an algorithm A with χ(A) ≤ 3 log logD that finds the tar-

get in (D+D2/n) · 2O(`) rounds in expectation, proving our
lower bound to be near-tight.

For the upper bound we get stronger results if we consider
a fixed search area of radius D centered at the origin, as
opposed to aiming at a time complexity that is a function
of the actual distance of the target from the origin. In this
case, χ(A) = log logD + O(1) suffices to find the target in

(D +D2/n) · 2O(`) rounds in expectation.
Concerning open problems, note that there is a gap of

2O(`) between the running time of our uniform algorithm
and the lower bound. Also, for our lower bound we assume
that χ(A) = b+ log ` < log logD − ω(1), but our algorithm
requires b = 3(log logD − log `) +O(1) bits of memory.

6. REFERENCES
[1] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai,

and Z. Bar-Joseph. A biological solution to a
fundamental distributed computing problem. Science,
331(6014):183–185, 2011.

[2] S. Albers and M. Henzinger. Exploring unknown
environments. SIAM Journal on Computing,
29(4):1164–1188, 2000.

[3] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker,
and M. R. Tuttle. Many random walks are faster than
one. In Proceedings of the Twentieth Annual
Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, pages 119–128, New York,
NY, USA, 2008. ACM.

[4] M. Arbilly, U. Motro, M. W. Feldman, and A. Lotem.
Co-evolution of learning complexity and social
foraging strategies. Journal of Theoretical Biology,
267(4):573 – 581, 2010.

[5] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and
S. Vadhan. The power of a pebble: Exploring and
mapping directed graphs. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, pages 269–278, New York, NY,
USA, 1998. ACM.

[6] S. Berman, Á. Halász, V. Kumar, and S. Pratt.
Algorithms for the analysis and synthesis of a
bio-inspired swarm robotic system. In Swarm
Robotics, pages 56–70. Springer, 2007.

[7] X. Deng and C. H. Papadimitriou. Exploring an
unknown graph. In Foundations of Computer Science,
1990. Proceedings., 31st Annual Symposium on, pages
355–361 vol. 1, Oct 1990.

[8] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree
exploration with little memory. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’02, pages 588–597,

Philadelphia, PA, USA, 2002. Society for Industrial
and Applied Mathematics.

[9] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer.
Ants: Mobile finite state machines. arXiv preprint
arXiv:1311.3062, 2013.

[10] Y. Emek and R. Wattenhofer. Stone Age Distributed
Computing. In ACM Symposium on Principles of
Distributed Computing (PODC), Montreal, Quebec,
Canada, July 2013.

[11] O. Feinerman and A. Korman. Memory lower bounds
for randomized collaborative search and implications
for biology. In Distributed Computing, volume 7611 of
Lecture Notes in Computer Science, pages 61–75.
Springer Berlin Heidelberg, 2012.

[12] O. Feinerman and A. Korman. Theoretical distributed
computing meets biology: A review. In ICDCIT,
pages 1–18, 2013.

[13] O. Feinerman, A. Korman, Z. Lotker, and J.-S. Sereni.
Collaborative Search on the Plane without
Communication. In Proc. 31st Symposium on
Principles of Distributed Computing (PODC), pages
77–86, 2012.

[14] W. Feller. An introduction to probability theory and its
applications, volume 2. John Wiley & Sons, 2008.

[15] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and
A. Pelc. Collective tree exploration. Networks,
48(3):166–177, 2006.

[16] L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang. Tree
exploration with logarithmic memory. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 585–594, 2007.

[17] L.-A. Giraldeau and T. Caraco. Social foraging theory.
Princeton University Press, 2000.

[18] R. Harkness and N. Maroudas. Central place foraging
by an ant (cataglyphis bicolor fab.): a model of
searching. Animal Behaviour, 33(3):916 – 928, 1985.

[19] K. Holder and G. Polis. Optimal and central-place
foraging theory applied to a desert harvester ant,
pogonomyrmex californicus. Oecologia, 72(3):440–448,
1987.

[20] C. Lenzen, N. Lynch, C. Newport, and T. Radeva.
Trade-offs between selection complexity and
performance when searching the plane without
communication. arXiv preprint arXiv:1405.1688, 2014.

[21] P. Panaite and A. Pelc. Exploring unknown undirected
graphs. Journal of Algorithms, 33(2):281 – 295, 1999.

[22] S. C. Pratt and D. J. Sumpter. A tunable algorithm
for collective decision-making. Proceedings of the
National Academy of Sciences, 103(43):15906–15910,
2006.

[23] O. Reingold. Undirected st-connectivity in log-space.
In Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, pages
376–385, New York, NY, USA, 2005. ACM.

[24] E. J. Robinson, D. E. Jackson, M. Holcombe, and
F. L. Ratnieks. Insect communication: No entry signal
in ant foraging. Nature, 438(7067):442–442, 2005.

[25] J. S. Rosenthal. Rates of convergence for data
augmentation on finite sample spaces. The Annals of
Applied Probability, pages 819–839, 1993.

