
8

Tight Bounds for Clock Synchronization

CHRISTOPH LENZEN, THOMAS LOCHER, AND ROGER WATTENHOFER

ETH Zurich, Zurich, Switzerland

Abstract. We present a novel clock synchronization algorithm and prove tight upper and lower bounds

on the worst-case clock skew that may occur between any two participants in any given distributed

system. More importantly, the worst-case clock skew between neighboring nodes is (asymptotically)

at most a factor of two larger than the best possible bound. While previous results solely focused on

the dependency of the skew bounds on the network diameter, we prove that our techniques are optimal

also with respect to the maximum clock drift, the uncertainty in message delays, and the imposed

bounds on the clock rates. The presented results all hold in a general model where both the clock

drifts and the message delays may vary arbitrarily within pre-specified bounds.

Furthermore, our algorithm exhibits a number of other highly desirable properties. First, the algo-

rithm ensures that the clock values remain in an affine linear envelope of real time. A better worst-case

bound on the accuracy with respect to real time cannot be achieved in the absence of an external timer.

Second, the algorithm minimizes the number and size of messages that need to be exchanged in a

given time period. Moreover, only a small number of bits must be stored locally for each neighbor.

Finally, our algorithm can easily be adapted for a variety of other prominent synchronization models.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-

tems; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and

Problems—Computations on discrete structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Bounded rates, global skew, gradient property, local skew, variable

clock drifts, worst-case analysis

ACM Reference Format:
Lenzen, C., Locher, T., and Wattenhofer, R. 2010. Tight bounds for clock synchronization. J. ACM

57, 2, Article 8, (January 2010), 42 pages.

DOI = 10.1145/1667053.1667057 http://doi.acm.org/10.1145/1667053.1667057

1. Introduction

There is a wide range of tasks in distributed systems requiring its participants to

maintain a common notion of time, which necessitates the use of a synchronization

algorithm. In distributed systems, the participants synchronize by perpetually

Preliminary results of this article were published in Lenzen et al. [2008, 2009a].

Authors’ address: Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 8092 Zurich,

Switzerland, e-mail: {lenzen;lochert;wattenhofer}@tik.ee.ethz.ch

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along with the

full citation. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute

to lists, or to use any component of this work in other works requires prior specific permission and/or

a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,

New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0004-5411/2010/01-ART8 $10.00

DOI 10.1145/1667053.1667057 http://doi.acm.org/10.1145/1667053.1667057

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:2 C. LENZEN ET AL.

sending messages containing information about their current state and by applying

a clock synchronization algorithm to update their clocks.

We model a distributed system as a graph G = (V, E), where the nodes in V
denote the participants in the system and each edge {u, v} ∈ E represents a bidirec-

tional communication link between u and v . Each node is equipped with a hardware

clock with a bounded but variable drift. A logical clock value is computed according

to the local hardware clock value and the messages received from neighbors. Since

it is reasonable to expect that events occurring at different real times also happen

at different logical times, we demand that nodes increase the value of their logical

clocks at least at a certain minimum rate. The goal is to minimize the skew between

the logical clocks. The main difficulty lies in the fact that the nodes know neither

the potentially variable hardware clock rates nor the message delays, which can

also vary arbitrarily within certain bounds. Moreover, the nodes do not have access

to a source of real time (e.g., by means of a GPS receiver) that could provide the

nodes with real time information once in a while.

Naturally, one objective is to minimize the skew between any two nodes in

the graph, regardless of the distance in G between them. We call the maximum

worst-case skew between any two nodes in the graph the global skew. Apart from

minimizing the global skew, it is essential for several distributed applications that

the clock skew between neighboring nodes is as small as possible. One could

even think of applications where the global skew is not of great concern, but any

node only needs to be well synchronized with nodes in its vicinity. This is the

case if occurrences of events are only of local importance and do not bear any

(immediate) significance for nodes that are not close-by.1 The so-called gradi-
ent property, which has been introduced in Fan and Lynch [2004], captures this

optimization criterion. It requires that the clock skew between any two nodes

v, w is bounded by a monotonically increasing function of their distance d(v, w).

Thus, neighboring nodes should always be well synchronized, whereas the log-

ical clock values of distant nodes are allowed to deviate more. We will refer

to the maximum worst-case clock skew between neighboring nodes as the local
skew.

Ideally, an algorithm guarantees good bounds on both the global and the local

skew. It has been shown that the smallest possible global skew that any algorithm

can achieve is D/2 [Biaz and Lundelius Welch 2001], where D denotes the di-

ameter of the graph.2 As far as the local skew is concerned, it has been proved in

the surprising work by Fan and Lynch [2004] that a skew of �(log D/ log log D)

between neighboring nodes cannot be prevented. While it is fairly easy to come up

with an algorithm guaranteeing a bound of �(D) on the global skew, finding an

algorithm with a strong gradient property is more challenging. At the time when

Fan and Lynch [2004] presented their lower bound, no algorithm guaranteeing a

local skew sublinear in the diameter was known. In the meantime, the upper bound

on the local skew has been improved to O(
√

D) [Locher and Wattenhofer 2006]

and subsequently to O(log D) [Lenzen et al. 2008]. However, both the upper and

1 A prominent example is TDMA in wireless networks where nodes depend on locally well synchro-

nized time slots.
2 For ease of presentation, we normalize the uncertainty in message delays to one in this introduction

and the related work section as all bounds depend linearly on it.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:3

the lower bounds so far neglected the influence of other parameters such as the

maximum clock drift rate, leaving room for improvements not visible when con-

sidering only the network diameter.

The objective of this work is to provide tight bounds on the degree of synchro-

nization that can be achieved, taking many parameters such as the delay uncertainty

and the maximum clock drift rate into account. In other words, we show how the

bounds on the worst-case skews depend on all of these parameters. Another aspect

of clock synchronization, which so far has not received much attention, is that a

practical clock synchronization algorithm must ensure that the rates of progress of

all logical clock values are always within specific bounds, that is, the clock values

are not allowed to change substantially in a short time.3 However, bounding the

clock rates inhibits the ability of an algorithm to react to clock skews, which have

to be kept as small as possible. Apart from bounding the logical clock rates in order

to ensure that the clock values do not change abruptly, it may further be desirable

to keep the progress of the logical clock values as close to the progress of real

time as possible, that is, an algorithm should guarantee the best possible real-time

approximation in the absence of an external timer.

We propose an algorithm that bounds the minimum and maximum progress of

the logical clocks and ensures that the logical clock values always remain within an

affine linear envelope of real time. We prove matching bounds on both the global

and the local skew of this algorithm. What is more, we show that the message

frequency can be kept quite low without increasing the worst-case clock differences

significantly, which implies that techniques such as piggybacking can be employed.

This is a viable option especially considering that we only require a few bits to be

sent in each message, which can be included in (or appended to) any message sent

by another application. To round off our analysis, we discuss how to adapt our

algorithm to other synchronization models, for example, external synchronization

where a source of real time is available to some of the participants in the system. Our

results imply that the techniques in this work offer asymptotically optimal solutions

to the synchronization problem with respect to several optimization criteria for a

wide range of models.

The remainder of this article is organized as follows. After reviewing related

work in Section 2, the formal model used throughout this work is presented in

Section 3. The proposed algorithm is described and analyzed in Section 4 and

Section 5, respectively. The message, bit, and space complexities of the algorithm

are discussed in Section 6. In Section 7, we show that the algorithm is asymptotically

optimal by proving matching lower bounds on both the global and the local skew.

The applicability of our algorithm to other model assumptions is discussed in

Section 8. Finally, Section 9 concludes the article.

2. Related Work

There is a large body of work on the fundamental problem of synchronizing clocks

in distributed systems. Most work mainly focuses on bounding the skew that may

occur between any two clocks and also the communication costs that are required in

3 For instance, if velocities are to be determined with the help of local clocks, clock jumps would

severely deteriorate the accuracy of the measurements.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:4 C. LENZEN ET AL.

order to guarantee a certain degree of synchronization (see, e.g., Lundelius Welch

and Lynch [1984], Ostrovsky and Patt-Shamir [1999], Patt-Shamir and Rajsbaum

[1994], and Srikanth and Toueg [1987]). It has been shown that a skew of D/2 cannot

be avoided on any graph G of diameter D [Biaz and Lundelius Welch 2001]. We will

prove a stronger lower bound of roughly D for clock synchronization algorithms

that strive to keep all clock values within a linear envelope of real time. The clock

synchronization algorithm by Srikanth and Toueg [1987] achieves a bound ofO(D)

on the skew of any two clocks at all times and is thus asymptotically optimal. The

authors further show that the accuracy of their algorithm with respect to real time is

also optimal as all clocks are always within a linear envelope of real time. However,

their algorithm incurs a skew of �(D) between neighboring nodes in the worst

case.

In their seminal work that introduced the problem of synchronizing clocks of

close nodes as accurately as possible, Fan and Lynch [2004] showed that no al-

gorithm can avoid a clock skew of �(logb D) between neighboring nodes, where

b ∈ O(log D). The only imposed constraint is that nodes are required to increase

their clock values at a given minimum progress rate, which is quite natural as oth-

erwise events that occur at different (real) times may happen at the same logical

time because an algorithm could simply halt the clocks. Subsequently, it has been

shown that this bound also holds if all messages arrive instantaneously, but an

adversary can determine when synchronization messages may be sent [Meier and

Thiele 2005]. However, Fan and Lynch treated the maximum hardware clock drift

ε as a constant; taking it into account as a parameter reveals that b ∈ O((log D)/ε).

We improve their result to b ∈ �(1/ε), that is, any algorithm may experience a

local skew of �(log1/ε D) [Lenzen et al. 2009a]. Furthermore, we show that if clock

rates are upper bounded by a constant, b depends linearly on the difference of the

maximum and the minimum rate. In particular, if logical clocks must guarantee an

optimal drift of O(ε), the bound on the local skew becomes �(log D) [Lenzen et al.

2009a].

There has also been a lot of (more practical) work on clock synchronization for

specific computing environments. For example, the clock synchronization prob-

lem in wireless sensor networks has been extensively studied [Elson et al. 2002;

Ganeriwal et al. 2003; Maróti et al. 2004; PalChaudhuri et al. 2004]. It can be

argued that in such systems message delays are not only bounded, but also dis-

tributed (independently) at random. This assumption constitutes a far-reaching

difference to the worst-case scenario as it impacts the achievable skew bounds.

Recently, it has been shown that in the respective model the global skew can

be upper bounded by Õ(
√

D) with high probability [Lenzen et al. 2009b]. The

same work proves that on most graphs at any point in time there is a con-

stant probability that a clock skew of �(
√

D) can be observed between some

nodes. Synchronizing clocks is also an important issue for other forms of dis-

tributed systems such as the Internet [Mills 1991] or systems-on-a-chip [Függer

et al. 2006]. However, apart from processor design, where one seeks to con-

trol signal delays by means of placement and wiring (see, e.g., Korte et al.

[2007] and references therein), synchronizing close-by devices particularly well

has scarcely been considered as an optimization criterion. In fact, to the best of

our knowledge, the only attempt has been made in the context of sensor networks

[Sommer and Wattenhofer 2009].

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:5

The first algorithm guaranteeing a sublinear bound on the clock skew be-

tween neighboring nodes achieved a bound of O(
√

εD) [Locher 2009; Locher

and Wattenhofer 2006], a result that has recently been generalized to dynamic set-

tings [Kuhn et al. 2009]. For static distributed systems, the upper bound has been

improved toO(log D) [Lenzen et al. 2008]. However, the algorithm that guarantees a

logarithmic bound has several disadvantages: Apart from being quite complicated,

the algorithm has the undesirable property that the clock values can “jump” by

�(log D) in a single time step, and thus the clock values may not change smoothly.

Moreover, both the message frequency and the size of the messages are fairly large,

which prohibits techniques such as piggybacking and which may imply that the

algorithm is not useful in practice. What is more, the base of the logarithm can

hardly be increased if ε becomes small. Since typically ε � 1, a notable gap to the

lower bound remains. The algorithm presented in this article does not have these

shortcomings [Lenzen et al. 2009a].

3. Model

We model a distributed system as a connected, undirected graph G = (V, E) of

diameter D, where nodes represent computational devices and edges represent

bidirectional communication links. Each node v can communicate with all neigh-

boring nodes by exchanging messages. The set of v’s neighbors is denoted by

Nv := {w ∈ V | {v, w} ∈ E}. We assume that, for any two nodes u, w ∈ Nv ,

node v can distinguish u from w , for example, by means of a port numbering or

node identifiers, and also that all communication is reliable, that is, messages are

never lost. However, communication takes some time, and this delay may vary. In

general, a message delay may consist of two parts, a fixed known delay and an

additional variable delay. Since any fixed fraction of the total delay can be added

to a received clock value, we define it to be zero (we will discuss the impact of

this simplification in Section 8.3). Thus, the time that passes from the moment a

message is sent until the recipient can act upon it may be any value in the range

[0, T], where T is the delay uncertainty. While the bound T is unknown to the

algorithm, we assume that the nodes know an upper bound T̂ on T , which can eas-

ily be obtained by measuring round-trip times (see Section 8.1 for a more detailed

discussion).

Each node v is equipped with a hardware clock Hv which starts running at the

time tv when v is initialized. The first node starts its clock at real time t = 0. An

initialization message is then flooded through the distributed system in order to

start the clocks at the other nodes. We denote the value of the hardware clock at real

time t by Hv (t), that is, Hv : R
+
0 → R

+
0 is a monotonically increasing function.

The value of the hardware clock of v is 0 until time tv and Hv (t) := ∫ t
tv

hv (τ) dτ

afterwards, where hv (τ) is the hardware clock rate of v at time τ . The clock rates

may vary over time, but we assume that there is a constant 0 < ε < 1 such that the

following condition holds.

∀v ∈ V ∀t ≥ tv : 1 − ε ≤ hv (t) ≤ 1 + ε.

While the exact value of ε is unknown, we assume that the nodes know an upper

bound ε̂ that is strictly smaller than one, that is, hardware clocks guarantee a strictly

positive minimum progress rate.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:6 C. LENZEN ET AL.

Additionally, each node v has a logical clock Lv , which is also a monotonically

increasing function Lv : R
+
0 → R

+
0 whose value until time tv is 0 as well. It is

desirable to keep all logical clock values within an affine linear envelope of real

time. Therefore, we require that any algorithm satisfies the following condition,

which takes the different initialization times tv into account.

∀v ∈ V ∀t : (1 − ε)(t − tv) ≤ Lv (t) ≤ (1 + ε)t. (1)

Moreover, we demand that the logical clocks behave normally in the sense that the

logical clock values may not change dramatically in a short time. Formally, there

are constants 0 < α ≤ 1 − ε and β ≥ 1 + ε such that

∀v ∈ V ∀t ′ ≥ t ≥ tv : α(t ′ − t) ≤ Lv (t ′) − Lv (t) ≤ β(t ′ − t). (2)

The increased (or lowered) clock rates of the logical clocks allow the nodes to

correct differences between the logical clock values in the system. The difference

between the values of logical clocks is called clock skew. Ideally, the logical clocks

behave just like the hardware clocks even in the presence of clock skews, albeit

with a slightly worse clock drift, that is, α ∈ 1 −O(ε) and β ∈ 1 +O(ε). Note that

Condition (2) implies that clocks must always make progress.

A clock synchronization algorithmA executed at node v specifies how the logical

clock Lv (t) of node v is increased based on its hardware clock and the information

received from its neighbors up to time t in such a way that Conditions (1) and (2) are

satisfied. Given a clock synchronization algorithmA and a (connected) graph G, an

execution E specifies the delays of all messages and also the hardware clock rates

of all nodes at each point in time when A is executed on G. Thus, the information

contained in an execution completely determines the state of the system at any time

for a run of A on G. The global and the local skew are formally defined as follows:

Definition 3.1 (Global Skew). Given a connected graph G = (V, E) and a

clock synchronization algorithm A, the global skew is defined as the value

supE,v∈V,w∈V, t {Lv (t) − Lw (t)} ,

where E is any execution of A on G.

Definition 3.2 (Local Skew). Given a connected graph G = (V, E) and a clock

synchronization algorithm A, the local skew is defined as the value

supE,v∈V,w∈Nv , t {Lv (t) − Lw (t)} ,

where E is any execution of A on G.

Naturally, the goal of an algorithm A is to ensure the best possible bounds on

both the global and the local skew on any graph G.

4. Algorithm

In this section, we introduce the synchronization algorithm Aopt. After a brief

overview of the structure and main concepts of the algorithm, we give a line-by-

line description of the pseudocode.

4.1. OVERVIEW. In short, any clock synchronization algorithm needs to perform

two tasks: First, the algorithm must gather up-to-date information about other nodes’

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:7

clock values, and second, based on these estimates it needs to determine the progress

rate of the (local) logical clock.

The algorithm Aopt ensures that the estimates are up-to-date as follows. Every

node periodically announces its current clock value and an estimate of the current

maximum clock value in the system to its neighbors. This way, nodes obtain esti-

mates of the neighbors’ clock values that were in transit for at most T time. Note

that since an estimate of the maximum clock value may be forwarded through the

system, it is possible that up to DT time passes from the time it was originally

sent until a particular node receives it. In an effort to keep the estimates as accurate

as possible, all nodes increase the estimates at the rate of their hardware clock

between updates. As we will see later, this allows us to increase the time between

sending events notably without suffering from a considerable decay in the resulting

synchronisation quality.

While it is fairly easy to perform the necessary bookkeeping, it is more challeng-

ing to determine the “right” logical clock rate given the current estimates of the

neighbors’ clock values and the largest clock value. The progress rate of the logical

clock is determined by the subroutine setClockRate(). It is called whenever a new

message from a neighbor has been processed since the message may have caused

an update to the local estimates of clock values. The subroutine setClockRate()
either determines that the logical clock rate must be the same as the hardware clock

rate or that the logical clock must increase more quickly than the hardware clock,

in which case, the logical clock rate is simply a (predefined) constant times larger

than the hardware clock rate. In other words, the logical clock value increases at the

same rate as the hardware clock value by default, but the subroutine setClockRate()
can decide to impose a higher logical clock rate. The main challenge is to deter-

mine when the logical clock rate has to be switched to the faster mode (and back);

this is discussed in the following section where we describe the algorithm in more

detail.

4.2. DETAILED DESCRIPTION. Since naturally a clock synchronization algo-

rithm runs in an asynchronous system, its actions are triggered by events. In our

case, an action is triggered if either a message is received (Algorithm 2) or the

local hardware clock reaches certain values (Algorithms 1 and 4). The subroutine

setClockRate() (Algorithm 3) is invoked directly by Algorithm 2 after the newly

received message has been processed.

We proceed by examining the algorithm in greater detail. In order to synchronize

the logical clocks, any node v must perpetually send synchronization messages

informing the neighboring nodes about its current clock value Lv . Node v itself

adapts its clock value according to the information received from its neighbors. In

order to ensure that nodes indeed inform each other on a regular basis, we impose

that messages are sent at least once in time H0 according to the local hardware clock.

Certainly, we want to keep H0 as large as possible for the purpose of minimizing

the number of transmissions. However, information about neighboring clock values

only is not sufficient to guarantee an optimal bound on the global skew because the

neighboring nodes might have similar clock values while the skew to nodes at greater

distances may be large. Naturally, nodes may not increase their clock values over the

largest received clock value as such a behavior might violate Condition (1). Thus,

we need to spread information about large clock values quickly without increasing

the frequency of communication substantially.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:8 C. LENZEN ET AL.

This problem can be solved by including an estimate Lmax
v of the maximum clock

value in each message. This estimate is increased at the (local) hardware clock rate,

that is, the nodes assume that the maximum clock value in the system increases at

the same rate as the local hardware clock. Nodes send a message to their neighbors

exactly when their local estimate Lmax
v reaches an integer multiple of H0. Thus,

they send a message 〈Lv , Lmax
v 〉 on their own after at most H0/(1 − ε) real time

(Algorithm 1).4 However, when receiving an estimate larger than their own, they

will immediately forward it to their neighbors so that distant nodes obtain this

larger estimate as quickly as possible. Since any received estimate must already be

an integer multiple of H0, any node sends only one message for each multiple of

H0. Apart from Lmax
v , each node v keeps estimates Lw

v of the clock values of its

neighbors w ∈ Nv . In order to decide whether a newly received value from w is

more recent and thus more accurate, v keeps track of the largest clock value �w
v that

v has received from w so far. If the received clock value is larger than �w
v , Lw

v is

adapted accordingly. Each node v also increases the estimates Lw
v at the progress

rate hv of its own hardware clock.

Algorithm 1. Lmax
v reaches an integer multiple of H0. Note that Lmax

v is increased at rate hv .

1 send 〈Lv , Lmax
v 〉 to all u ∈ Nv

Based on this information, v has to decide how to adapt its logical clock. To

this end, Aopt computes the estimates 	↑
v := maxw∈Nv {Lw

v − Lv} and 	↓
v :=

maxw∈Nv {Lv − Lw
v } of the skew to the clocks in its neighborhood that are ahead and

behind the most, respectively. In order to satisfy Condition (2), the clock value Lv
cannot be increased by a certain value instantaneously, i.e., Aopt can only manipulate

the logical clock rate. For this purpose, the subroutine setClockRate is called, which

adapts the logical clock rate whenever new information has been received. The

actions that each node v takes upon receiving a message 〈Lw , Lmax
w 〉 from a node

w are summarized in Algorithm 2.

Algorithm 2. Message 〈Lw , Lmax
w 〉 received from a node w ∈ Nv . Note that Lu

v , u ∈ Nv , and Lv are

increased at the rates hv and ρv · hv , respectively.

1 if Lmax
w > Lmax

v then
2 Lmax

v := Lmax
w

3 send 〈Lv , Lmax
v 〉 to all u ∈ Nv

4 end
5 if Lw > �w

v then
6 Lw

v := Lw , �w
v := Lw

7 end
8 	↑

v := maxu∈Nv {Lu
v − Lv}

9 	↓
v := maxu∈Nv {Lv − Lu

v }
10 setClockRate()

The steps of the subroutine setClockRate, the key ingredient of algorithm Aopt,

are summarized in Algorithm 3. By default, the logical clock runs at the hardware

clock rate as well. The subroutine determines if and for how long the logical clock

value has to increase more quickly than the hardware clock value (and the local

4 Recall that all hardware clock rates always lie in the interval [1 − ε, 1 + ε].

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:9

variables) as follows. First, the amount Rv by which v would increase Lv if it were

allowed to raise its clock value instantaneously is computed. Roughly speaking, the

goal of the subroutine is to ensure that the clock skew 	↓
v to the neighbor whose

clock is assumed to be behind the most and the clock skew 	↑
v to the neighbor

with the largest estimated clock value are the same integer multiple of a parameter

κ ∈ �(T). The variable Rv is the largest value that satisfies this constraint. More

precisely, if 	↑
v ≤ sκ and 	↓

v ≥ sκ for some s ∈ N0, then Rv ≤ 0. Otherwise,

Rv > 0 is exactly the increase of the clock value that causes this condition to hold

for some s ∈ N0. Line 1 of Algorithm 3 is a concise formulation of this rule.

Note that the simpler approach that attempts to attain a clock value that lies in the

middle between the largest and the smallest (estimated) clock value of the neigh-

boring nodes fails to achieve even a sublinear bound on the local skew [Locher and

Wattenhofer 2006]. AlthoughAopt also strives to balance the skew to the (estimated)

fastest and slowest neighbor’s clocks, the following simple example illustrates that

the employed strategy is more aggressive than just trying to reach the average of

the maximum and the minimum clock estimate: If 	↑
v = 	↓

v = (s + 1/2)κ for any

s ∈ N0, algorithm Aopt sets Rv to κ/2, whereas for 	↑
v ≤ 	↓

v the simpler strategy

mandates that Rv = 0. Finally, the value Rv may be at least κ −	↓
v because a skew

of κ is always tolerated, but never more than Lmax
v − Lv , since v must not increase

the clock to a value greater than Lmax
v (see Line 2 of Algorithm 3).

Algorithm 3. setClockRate(): Adjust the logical clock rate of the clock Lv according to the current

information.

1 Rv := sup
{

R ∈ R
∣∣ ⌊	

↑
v −R
κ

⌋ ≥ ⌊
	

↓
v +R
κ

⌋}
2 Rv := min

{
max

{
κ − 	↓

v , Rv

}
, Lmax

v − Lv

}
3 if Rv > 0 then
4 ρv := 1 + μ
5 H R

v := Hv + Rv
μ

6 else
7 ρv := 1

8 end

In order to bound the increase of the logical clock, the algorithm dictates that any

node’s logical clock value may increase at most 1+μ times faster than its hardware

clock value for a given μ > 0. If the computed increase Rv is positive, v sets its

logical clock rate multiplier ρv to 1 + μ, which ensures that Lv (t2) − Lv (t1) =
(1 + μ)(Hv (t2) − Hv (t1)) for any time interval [t1, t2] where ρv = 1 +μ. The clock

rate multiplier ρv is reset to 1 as soon as the logical clock has made a progress that

is Rv larger than the progress of the hardware clock, that is, ρv is set to 1 when

the hardware clock value reaches H R
v = Hv + Rv/μ (Algorithm 4). Naturally, new

information can cause v to set H R
v to a smaller or a larger value. Of course, if we do

not insist on a strict upper bound on the logical clock rate, the computed increase

Rv can simply be added to the logical clock value.

Algorithm 4. Hv reaches H R
v .

1 ρv := 1

So far we did not cover the initialization process of Aopt. This can be treated in a

straightforward manner by interpreting the first received message as an initialization

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:10 C. LENZEN ET AL.

message, starting both the hardware and the logical clock, setting Lmax
v to the

received value, and triggering a sending event. Any node waking up by itself simply

sets Lmax
v := 0 and sends 〈0, 0〉 to its neighbors. The first message from a neighbor

w ∈ Nv further initializes Lw
v and lw

v . Until this message is received v is oblivious

to w’s existence and acts based only on the subset of neighbors from which it

has already received a message. This scheme also allows for initially unknown

topologies as nodes are integrated by means of their first message.

5. Analysis of Aopt

Before we begin our analysis of the worst-case clock skew that may occur when

algorithm Aopt is used, we need to discuss some preliminaries. En route, we will

see that Aopt satisfies Constraints (1) and (2), that is, Aopt is indeed a clock syn-

chronization algorithm that adheres to the rules of our model.

5.1. GENERAL STATEMENTS. We will frequently use two basic definitions. The

first definition captures how much the increase of a logical clock exceeds the mini-

mum increase, which is determined by the minimum hardware clock rate 1 − ε, in

a given time period [t1, t2].

Iv (t1, t2) := Lv (t2) − Lv (t1) − (1 − ε)(t2 − t1).

It follows directly from the definition that Iv is positive, monotonic in both argu-

ments and interval additive.

The second definition captures how much the logical clock value increased more

than the hardware clock value in a given time period [t1, t2]:

Rv (t1, t2) := Lv (t2) − Lv (t1) − (Hv (t2) − Hv (t1)).

Again, Rv is positive, monotonic, and interval additive. Given that hv (t) ∈ [1 −
ε, 1 + ε] at all times t , the two quantities Iv (t1, t2) and Rv (t1, t2) are related by the

inequality

Rv (t1, t2) ≤ Iv (t1, t2) ≤ Rv (t1, t2) + 2ε(t2 − t1). (3)

Given these definitions, we can prove the following essential property of Aopt.

LEMMA 5.1. If the subroutine setClockRate (Algorithm 3) is called at a node
v at a time when no message is received, both ρv and H R

v remain unchanged.

PROOF. Assume that the subroutine is called at time t , and let t ′ < t be the time

when the last message arrived at node v . By definition, the increase of the logical

clock value in the time interval [t ′, t] exceeds the increase of the local estimates

Lmax
v and Lw

v by Rv (t ′, t).
If Rv (t ′, t) = 0, Algorithm 3 must have determined at time t ′ that the logical and

the hardware clock value have to increase at the same rate. Therefore, if setClock-
Rate was called at time t , we would have that Rv (t) ≤ 0 because 	↑

v and 	↓
v , and

also Lmax
v − Lv , remain unaltered. Thus, the logical clock rate multiplier ρv would

still be set to 1 after the procedure call at time t . Moreover, H R
v is not changed at

time t .
If Rv (t ′, t) > 0, it holds that 	↑

v (t) = 	↑
v (t ′) − Rv (t ′, t) and 	↓

v (t) = 	↓
v (t ′) +

Rv (t ′, t). The value Rv in Line 1 of Algorithm 3 thus reduces by exactly Rv (t ′, t).
Moreover, κ−	↓

v and Lmax
v −Lv also reduce by exactlyRv (t ′, t) in Line 2, implying

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:11

that Rv (t) = Rv (t ′) − Rv (t ′, t). If Rv (t) evaluates to zero, i.e., Rv (t ′, t) = Rv (t ′),
the hardware clock must have reached H R

v and the logical clock rate multiplier has

been reset to 1 by time t .5 The logical clock rate multiplier is not set to 1 + μ,

because Rv (t) ≤ 0, and H R
v is again not changed at time t . If Rv (t) > 0, the logical

clock rate multiplier is set to 1 + μ until the hardware clock value reaches H R
v (t).

Since Rv (t ′, t) = μ(Hv (t) − Hv (t ′)), it holds that

H R
v (t) = Hv (t) + Rv (t)

μ
= Hv (t ′) + (Hv (t) − Hv (t ′)) + Rv (t ′) − Rv (t ′, t)

μ

= Hv (t ′) + Rv (t ′, t)

μ
+ Rv (t ′) − Rv (t ′, t)

μ

= Hv (t ′) + Rv (t ′)
μ

= H R
v (t ′).

Hence, the logical clock rate multiplier remains 1 + μ until the same hardware

clock time as before. We conclude that ρv and H R
v remain exactly the same in all

cases.

This property is useful in that it allows us to determine the logical clock rate also

at times when no message is processed: We can simply assume that the variables

are updated and the subroutine setClockRate is called, which does not cause the

logical clock rate to change at any such time. As a first application, this permits a

straightforward proof that Condition (1) holds.

COROLLARY 5.2. Let Lmax(t) := maxv∈V {Lmax
v (t)} denote the maximum esti-

mate of the maximum clock value in the system. It holds that

(i) ∀v ∈ V ∀t : Lv (t) ≤ Lmax(t)

(ii) ∀t ′ > t : Lmax(t ′) − Lmax(t) ≤ (1 + ε)(t ′ − t).

PROOF. At initialization time tv we have that Lv (tv) ≤ Lmax
v (tv). At times when

Lv = Lmax
v Subroutine (3) computes Rv ≤ 0 in Line 2 and thus ρv is set to 1.

Hence, due to Lemma 5.1, at such times indeed it holds that ρv = 1 and Lv and

Lmax
v increase at the same rate. As Lv is continuous and Lmax

v is monotonically

increasing, we conclude that Lv (t) ≤ Lmax
v (t) ≤ Lmax(t) at any time t . Since Lmax

v
is increased at the rate hv (t) ≤ 1+ε locally and never set to a value not yet reached

by another node, Statement (ii) holds.

COROLLARY 5.3. AlgorithmAopt satisfies Condition (1) and Condition (2) with
α = 1 − ε and β = (1 + ε)(1 + μ).

PROOF. Since ρv ≥ 1 at all times, we have that Lv (t) ≥ (1 − ε)(t − tv) at all

times t ≥ tv . Statement (ii) of Corollary 5.2 shows that Lmax(t) ≤ (1 + ε)t , which

together with Statement (i) implies Lv (t) ≤ (1 + ε)t . Since ρv may only take the

values 1 and 1 + μ, logical clocks increase at a rate of at least hv (t) ≥ 1 − ε and

at most hv (t)(1 + μ) ≤ (1 + ε)(1 + μ).

5Note that Rv (t) cannot be negative because ρv is set to 1 as soon as Rv (t ′, t) = Rv (t) and no message

is received in the interval (t ′, t].

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:12 C. LENZEN ET AL.

Hence, Aopt is correct regardless of the choices of H0, κ and μ. Not surprisingly,

to achieve a good synchronization quality, these parameters have to be chosen

carefully. Since κ contributes linearly to the local skew as we will see, it should be

kept as small as possible. However, we require that it is at least

κ ≥ 2((1 + ε)(1 + μ)T + H̄0), (4)

where

H̄0 := (2ε + μ)H0. (5)

The intuition behind this lower bound is that κ must be large enough to compensate

for the inaccuracy of the known clock values of the neighboring nodes due to the

delay uncertainty T . In order to give the algorithm a chance to react to clock skews,

T is multiplied by (1+ε)(1+μ). Obviously, the accuracy of the information about

neighboring clocks deteriorates if H0 is set to a large value. Since clock skew can

be built up at a rate of at most O(μ), the additional skew is bounded by O(μH0).

Therefore, κ must further include the term H̄0 as defined above. The factor of two

is due to the fact that any node v might possess outdated information about both

the nodes whose clocks are ahead and the nodes whose clocks are behind.

It is sufficient to choose a μ ∈ �(ε). However, as long as μ � 1, larger choices

will result in a smaller local skew. In order to incorporate this in our analysis, we

define that σ ≥ 2 is the largest integer such that

μ ≥ 7σ
ε

1 − ε
. (6)

We see that it suffices to set μ to roughly 14ε for any reasonable ε, that is, the

precision of the clocks reduces by merely one order of magnitude while clock

skews are corrected. In the following, we assume that Inequalities (4) and (6) are

always satisfied.

Before we can proceed to bound the global and local skew of Aopt, we need one

more tool. The following lemma gives a bound on the accuracy of the estimates

that the nodes have of their neighbors’ clock values.

LEMMA 5.4. For all nodes v ∈ V and w ∈ Nv it holds for all times t when v
has received at least one message from w that

Lw
v (t) > Lw (t − T) − H̄0. (7)

PROOF. Set t ′ := t − T and let ts denote the time when w sent the largest

clock value that v received at the latest at time t , and let tr ≤ t be the time when v
received this clock value. Since v sets its estimate to the received value at time tr ,

it holds that Lw
v (tr) = Lw (ts).

If ts ≥ t ′, we have that

Lw
v (t) ≥ Lw

v (tr) = Lw (ts) ≥ Lw (t ′) > Lw (t ′) − H̄0.

If ts < t ′, it must hold that Hw (t ′) − Hw (ts) < H0, as otherwise w sends a

message that arrives at v at the latest at time t and that contains a larger clock value

than the clock value sent at time ts . Furthermore, Lw (t ′) − Lw (ts) is upper bounded

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:13

by (1 + μ)(Hw (t ′) − Hw (ts)). Consequently, it holds that

Iw (ts, t ′) = Lw (t ′) − Lw (ts) − (1 − ε)(t ′ − ts)

≤
(

1 + μ − 1 − ε

1 + ε

)
(Hw (t ′) − Hw (ts))

< (μ + 2ε)H0
(5)= H̄0. (8)

This observation and the fact that Lw
v is increased at the hardware clock rate in

the interval [tr , t] allow us to bound

Lw
v (t) ≥ Lw (ts) + (1 − ε)(t − tr)

= Lw (t ′) − Iw (ts, t ′) − (1 − ε)(t ′ − ts) + (1 − ε)(t − tr)

(8)
> Lw (t ′) − H̄0 − (1 − ε)(tr − ts) + (1 − ε)(t − t ′)
≥ Lw (t ′) − H̄0.

In the last step, we simply used that t − t ′ = T and tr − ts ≤ T .

5.2. GLOBAL SKEW. First, we derive a bound on the global skew when executing

Aopt on any graph G.

THEOREM 5.5. The global skew of Algorithm Aopt is upper bounded by

G := (1 + ε)DT + 2ε

1 + ε
H0. (9)

PROOF. Define Lmax(t) := maxv∈V {Lmax
v (t)} as in Corollary 5.2. Instead of

bounding the clock skew between the nodes directly, we show that Lmax(t)−Lv (t) ≤
G for all nodes v ∈ V and times t . As Lmax(t) ≥ Lv (t) for all v ∈ V and times t
according to Corollary 5.2, this statement proves the theorem.

For the sake of contradiction, assume that t̄ is the infimum of all times when the

clock skew between Lmax and the clock value Lv of some node v exceeds G. Since

Lmax and Lv are continuous, it holds that

Lmax(t̄) − Lv (t̄) = G. (10)

First, assume that 	↓
v (t̄) < κ . Let L be the largest estimate of the maximum

clock value that v receives at the latest at time t̄ . Moreover, let ts and tr ≤ t̄ be the

times when L is first sent and when it is received by v , respectively.6 Since ts is the

first time when L was sent, we have that L = Lmax(ts). Assume that ts ≥ t̄ − DT .

As Lmax
v increases at the rate hv ≥ 1 − ε, we get that

Lmax
v (t̄) ≥ L + (1 − ε)(t̄ − tr)

= Lmax(ts) + (1 − ε)(t̄ − tr)

≥ Lmax(t̄) − (1 + ε)(t̄ − ts) + (1 − ε)(t̄ − tr) (11)

(10)≥ Lv (t̄) + G − (1 + ε)DT
> Lv (t̄),

where Inequality (11) follows from Statement (ii) of Corollary 5.2.

6 Note that ts and tr are not (necessarily) the send and receive event of the same message. The estimate

L of the maximum clock value in the system may be forwarded to v along a path of nodes.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:14 C. LENZEN ET AL.

The message may have been sent earlier at a time ts = t̄ − DT − γ for a value

γ ∈ (0, H0/(1 − ε)). Note that ts ≤ t̄ − DT − H0/(1 − ε) is not possible as the

progress of any hardware clock until t̄ − DT is at least H0, implying that another

message containing a larger estimate would certainly have been sent until time

t̄ − DT . In this case, the estimate would have been forwarded towards v unless

some node on the path had already sent a larger estimate of the maximum clock

value earlier. Since the distance to v is upper bounded by D and the message delays

are at most T , node v would receive a message containing (at least) L + H0 at

the latest at time t̄ , contradicting the assumption that L is the largest estimate that

arrives until t̄ . More generally, if hmax ∈ [1 − ε, 1 + ε] denotes the average rate

at which Lmax increases in the interval [ts, t̄ − DT], it holds that hmaxγ < H0,

otherwise L is not the largest estimate of the maximum clock value that arrives at

v at the latest at time t̄ . Since tr ≤ ts + DT and thus t̄ − tr ≥ γ , it holds in this

case that

Lmax
v (t̄) ≥ L + (1 − ε)(t̄ − tr)

≥ Lmax(ts) + (1 − ε)γ

≥ Lmax(t̄) − (1 + ε)DT − hmaxγ + (1 − ε)γ

(10)= G + Lv (t̄) − (1 + ε)DT − hmaxγ

(
1 − 1 − ε

hmax

)

> G + Lv (t̄) − (1 + ε)DT − 2ε

1 + ε
H0 (12)

= Lv (t̄).

Thus, in both cases it holds that Lv (t̄) < Lmax
v (t̄). This observation, the assump-

tion that 	↓
v < κ and Lemma 5.1 imply that ρv (t̄) = 1 + μ. Consequently, the

rate of v’s logical clock at time t̄ is at least (1 − ε)(1 + μ), which is larger than the

maximum clock rate 1 + ε of Lmax according to Inequality (6). Hence, t̄ cannot be

the infimum of all times when the clock skew between Lmax and Lv exceeds G, a

contradiction.7

It remains to study the case that 	↓
v (t̄) ≥ κ . Let w ∈ Nv be any node such

that Lv (t̄) − Lw
v (t̄) ≥ κ , and let ts denote the time when w sent the message

containing the largest clock value that v received at a time tr ≤ t̄ . It holds that

Lv (tr) − Lw
v (tr) +Rv (tr , t̄) = Lv (t̄) − Lw

v (t̄) ≥ κ because Lv increases by exactly

Rv (tr , t̄) more than the hardware clock and thus also Rv (tr , t̄) more than the

estimate Lw
v . Hence, since the message received at time tr contains the clock value

Lw (ts), which implies that Lw
v (tr) = Lw (ts), we know that

Lw (ts) ≤ Lv (tr) + Rv (tr , t̄) − κ. (13)

Furthermore, it holds that

Lv (t̄) = Lv (tr) + Hv (t̄) − Hv (tr) + Rv (tr , t̄)

≥ Lv (tr) + (1 − ε)(t̄ − tr) + Rv (tr , t̄) (14)

7 Strictly speaking, this does not follow from the observation on v’s clock rate at t̄ only. However,

since the number of messages sent until any given time is finite, a time interval of positive length

starting at time t̄ must exist in which v receives no messages and sticks to the faster clock rate.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:15

If we assume that ts ≥ t̄ −T , the skew between Lmax and Lw at time ts is at least

Lmax(ts) − Lw (ts)
(13)≥ Lmax(t̄) − (1 + ε)(t̄ − ts) − Lv (tr) − Rv (tr , t̄) + κ

(14)≥ Lmax(t̄) − Lv (t̄) + κ − (1 + ε)(t̄ − ts) + (1 − ε)(t̄ − tr)

= Lmax(t̄) − Lv (t̄) + κ − (1 − ε)(tr − ts) − 2ε(t̄ − ts)

(10)≥ G + κ − (1 + ε)T (4)
> G.

If ts = t̄ − T − γ for a value γ ∈ (0, H0/(1 − ε)) as before, we again have that

hwγ < H0, where hw now denotes the average clock rate of w in the time interval

[ts, t̄ − T]. The same arguments as in the previous cases reveal that

Lmax(t̄ − T) − Lw (t̄ − T) ≥ Lmax(t̄) − (1 + ε)T − (Lw (ts) + hwγ)

(13)≥ Lmax(t̄) − Lv (tr) + κ

−Rv (tr , t̄) − (1 + ε)T − hwγ

(14)≥ Lmax(t̄) − Lv (t̄) + κ

−(1 + ε)T − hwγ + (1 − ε)(t̄ − tr)

t̄−tr ≥γ≥ G + κ − (1 + ε)T − hwγ

(
1 − 1 − ε

hw

)
hw γ<H0

> G + κ − (1 + ε)T − 2ε

1 + ε
H0

(4)≥ G.

Thus, in either case the skew between Lmax and Lw exceeded G at a time earlier

than t̄ . This is a contradiction as Lmax(t) − Lv (t) ≤ G for all v ∈ V at all times

t < t̄ because t̄ is the infimum of all times when this bound is violated.

5.3. LOCAL SKEW. We now focus our attention on the worst-case clock skew

between neighboring nodes. Consider the maximum length of a path with a given

average clock skew �L between the nodes of this path. The proof of the bound

on the local skew relies on the fact that linearly increasing the average clock skew

�L results in an exponential decrease in the length of the longest possible path that

exhibits such an average clock skew. This fact implies that the average skew on

paths of length one, that is, between neighboring nodes, is logarithmically bounded

in the diameter D. In particular, we show that the system is always in a legal state,

which is defined as follows.

Definition 5.6 (Legal State). Given the integer σ ≥ 2, we say that a distributed

system is in a legal state at time t , if and only if for all s ∈ N0 and all nodes

v, w ∈ V at distance

d(v, w) ≥ Cs := 2G
κ

σ−s,

we have that

Lv (t) − Lw (t) ≤ d(v, w)

(
s + 1

2

)
κ.

Note that Theorem 5.5 shows that any two nodes v and w at a distance of at least C0

cannot violate the legal state condition, because Lv (t) − Lw (t) ≤ G ≤ d(v, w)κ/2

at all times t .

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:16 C. LENZEN ET AL.

Two lemmas are required in order to prove the main theorem. The first one

basically states that the larger the clock skew is between two nodes v and w , the

faster w can reduce it by increasing its clock value quickly.

LEMMA 5.7. Given ξ ≥ 0 and s ∈ N, assume that the clock skew between two
nodes v and w at time t0 is

Lv (t0) − Lw (t0) = d(v, w)

(
s − 1

2

)
κ + ξ. (15)

Define t1 := t0 + κCs−1

(1−ε)μ
+ T . If the system is in a legal state at time t0, it follows

that

Iw (t0, t1) ≥ ξ. (16)

PROOF. Define

�(t) := max
u∈V

{
Lv (t0) − Lu(t0) − d(v, u)

(
s − 1

2

)
κ − Iu(t0, t)

}
.

Observe that if �(t) ≤ 0 holds at any time t ≥ t0, then for node w we have that

Iw (t0, t) ≥ Lv (t0) − Lw (t0) − d(v, w)

(
s − 1

2

)
κ = ξ.

Furthermore, �(·) is monotonically decreasing, hence showing that �(t) ≤ 0 for

any t ≤ t1 proves the lemma. We proceed by deriving an upper bound on �(t0).

Consider any node u ∈ V . If d(v, u) ≥ C0, it holds that Lv (t0) − Lu(t0) ≤
d(v, u)κ/2 due to the legal state condition, which was satisfied at time t0. We get that

Lv (t0) − Lu(t0) − d(v, u)(s − 1/2)κ ≤ 0, i.e., �(·) cannot become positive because

of a node u at distance d(v, u) ≥ C0. Hence, we may assume that d(v, u) < C0, i.e.,

there is an integer r ≥ 1 such that d(v, u) ∈ [Cr , Cr−1). The legal state condition

states that

Lv (t0) − Lu(t0) − d(v, u)

(
s − 1

2

)
κ ≤ d(v, u)(r − s + 1)κ. (17)

The right-hand side of this inequality is at most 0 for r < s. If r ≥ s it holds that

d(v, u)(r − s + 1)κ < Cr−1(r − s + 1)κ

= σ s−r Cs−1(r − s + 1)κ

≤ κCs−1

because σ ≥ 2. Hence it follows that �(t0) ≤ κCs−1.

The second step is to prove that �(·) decreases at least at an average rate of

(1 − ε)μ until it reaches zero. In particular, we claim that

�(t) ≤ max{0, �(t0) − (1 − ε)μ(t − t0) + (1 − ε)μT } (18)

for all times t ≥ t0.

This statement is trivially true for all times t ≤ t0+T because in this case we only

require that �(t) ≤ �(t0), which follows from the fact that �(·) is monotonically

decreasing. Assume for the sake of contradiction that the claim that Inequality (18)

holds at all times t ≥ t0 is false. Let t̄ be the infimum of all times t ≥ t0 + T
when �(t) > �(t0) − (1 − ε)μ(t − t0) + (1 − ε)μT > 0 and let u be a node that

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:17

maximizes �(t̄). Note that u �= v because v cannot cause the value of the function

�(·) to become positive due to the fact that Iv (t0, t) ≥ 0. Since �(·) is a continuous

function, it holds at time t̄ that

Lv (t0) − Lu(t0) − d(v, u)

(
s − 1

2

)
κ − Iu(t0, t̄)

= �(t0) − (1 − ε)μ(t̄ − t0) + (1 − ε)μT . (19)

Consider any neighbor u′ of u that is closer to v than u, that is, the distance

between v and u′ is d(v, u′) = d(v, u)−1. By definition of t̄ , Inequality (18) holds

for node u′ at time t ′ := t̄ − T ≥ t0. Thus, we have that

Lv (t0) − Lu′(t0) − d(v, u′)
(

s − 1

2

)
κ − Iu′(t0, t ′)

≤ �(t0) − (1 − ε)μ(t ′ − t0) + (1 − ε)μT
= �(t0) − (1 − ε)μ(t̄ − t0) + 2(1 − ε)μT . (20)

By subtracting Inequality (20) from Eq. (19), we get that

Lu′(t0) + Iu′(t0, t ′) − Lu(t0) − Iu(t0, t̄)

≥ (d(v, u) − d(v, u′))
(

s − 1

2

)
κ − (1 − ε)μT

=
(

s − 1

2

)
κ − (1 − ε)μT . (21)

If u had not received a message from u′ until t̄ , then u′ would not have been

initialized at time t̄ > t ′, that is, Lu′(t0) + Iu′(t0, t ′) = 0. Since both Lu(t0) and

Iu(t0, t̄) are positive, Inequality (21) then yields that

κ

2
≤

(
s − 1

2

)
κ ≤ (1 − ε)μT .

However, this is impossible as κ/2 > μT due to Inequality (4). We conclude that

u must have already received a message from u′ at time t̄ . Thus, as t ′ = t̄ − T ,

Lemma 5.4 can be used in order to lower bound 	
↑
u (t̄):

	↑
u (t̄) ≥ Lu′

u (t̄) − Lu(t̄)
(7)
> Lu′(t ′) − H̄0 − Lu(t̄)

= Lu′(t0) + Iu′(t0, t ′) − Lu(t0) − Iu(t0, t̄)

−(1 − ε)(t̄ − t ′) − H̄0

(21)≥
(

s − 1

2

)
κ − (1 − ε)μT − (1 − ε)T − H̄0

(4)
> (s − 1)κ.

This bound and the fact that the estimate of the maximum clock value is at least

as large as the estimated clock value of any neighbor imply that

Lmax
u (t̄) ≥ 	↑

u (t̄) − Lu(t̄) > (s − 1)κ − Lu(t̄) ≥ Lu(t̄).

Hence, in accordance with Lemma 5.1, the clock rate is 1 + μ unless a clock value

a neighboring node sent to u is too small.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:18 C. LENZEN ET AL.

Consider an arbitrary node u′′ ∈ Nu from which u has received a message until

time t̄ . The distance between v and u′′ is at most d(v, u) + 1. As u′′ did not violate

the claimed bound at time t ′ = t̄ − T , it holds that

Lv (t0) − Lu′′(t0) − d(v, u′′)
(

s − 1

2

)
κ − Iu′′(t0, t ′)

≤ �(t0) − (1 − ε)μ(t̄ − t0) + 2(1 − ε)μT .

By subtracting Eq. (19), we get that

Lu(t0) + Iu(t0, t̄) − Lu′′(t0) − Iu′′(t0, t ′)

≤ (d(v, u′′) − d(v, u))

(
s − 1

2

)
κ + (1 − ε)μT

≤
(

s − 1

2

)
κ + (1 − ε)μT . (22)

This inequality is used to upper bound Lu(t̄) − Lu′′
u (t̄):

Lu(t̄) − Lu′′
u (t̄)

(7)
< Lu(t̄) − Lu′′(t ′) + H̄0

= Lu(t0) + Iu(t0, t̄) − Lu′′(t0) − Iu′′(t0, t ′)
+(1 − ε)(t̄ − t ′) + H̄0

(22)≤
(

s − 1

2

)
κ + (1 − ε)μT + (1 − ε)T + H̄0

(4)
< sκ.

Since this bound holds for any neighbor u′′ ∈ Nu from which u receives a message

until time t̄ , we can infer that 	
↓
u (t̄) < sκ .

Altogether, we have that Lu(t̄) < Lmax
u (t̄), 	

↑
u (t̄) > (s − 1)κ , and 	

↓
u (t̄) ≤

Lu(t̄)−Lu′′
u (t̄) < sκ . Hence, the subroutine setClockRate would set Ru to a positive

value at time t̄ and the logical clock rate multiplier to 1 + μ. Thus, according to

Lemma 5.1, the value of the logical clock rate multiplier ρu is 1 + μ at time t̄ . This

result implies that Iu grows at a rate of at least (1 +μ)(1 − ε) − (1 − ε) = (1 − ε)μ
at time t̄ . Since the rate of Iu is at least (1− ε)μ for any u for which Inequality (19)

holds, it follows that the rate of �(·) at time t̄ is at most −(1 − ε)μ, contradicting

the definition that t̄ is the infimum of all times when the claim does not hold.8 Thus,

at time t1 = t0 + κCs−1

(1−ε)μ
+ T , it holds that �(t1) ≤ max{0, �(t0) − (1 − ε)μ(t1 −

t0) + (1 − ε)μT } = 0 as desired.

The second lemma shows that the clock skew can only increase slowly once it

reaches a certain level. More precisely, for any s ∈ N, we consider the path on

which the average clock skew exceeds sκ the most. If v is the node with the largest

and w is the node with the smallest clock value among all nodes on this path, then

v’s logical clock runs at the hardware clock rate, that is, the clock skew between

v and w can only grow further at a rate of at most 2ε. Moreover, the clock skew

8 Again, being strictly formal, there must be a time interval of positive length in which none of the

critical nodes receive messages and their clock values increase quickly.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:19

decreases if w increases its clock value quickly. In order to abbreviate the notation,

the following definition is introduced.

Definition 5.8. Given a node w ∈ V and s ∈ N, define for any time t

�s
w (t) := max

v∈V
{Lv (t) − Lw (t) − sκd(v, w)} ≥ 0.

LEMMA 5.9. If �s
w (t) > 0 for all t ∈ (t0, t1], then it holds at any time t ∈

[t0, t1] that

�s
w (t) ≤ 2ε(t − t0) − Iw (t0, t) + κ

7σ
+ �s

w (t0). (23)

PROOF. Note that Inequality (23) holds trivially at time t0. Assume for the sake

of contradiction that t̄ ∈ (t0, t1] is the infimum of times when the claim is false. As

�s
w is continuous, this means that a node v ∈ V exists such that

Lv (t̄) − Lw (t̄) − sκd(v, w) = 2ε(t̄ − t0) − Iw (t0, t̄) + κ

7σ
+ �s

w (t0). (24)

Since w cannot cause �s
w (·) to become positive, we know that v �= w and thus

d(v, w) ≥ 1. Moreover, it holds that Lv (t̄) ≥ sκd(v, w) ≥ κ . This implies that v
had been initialized earlier than at time t̄ − 2T , as otherwise

Lv (t̄) ≤ 2(1 + ε)(1 + μ)T (4)
< κ.

Therefore, at time t̄ node v must have already received the first message from each

neighbor.

Since d(v, w) ≥ 1, a neighbor u ∈ Nv at distance d(u, w) = d(v, w) − 1 from

w exists. Let ts denote the time when u sent the largest clock value that v received

at a time tr ≤ t̄ . We need to distinguish between the following two cases.

If ts ≥ t0, Inequality (23) was not violated at time ts , which allows us to bound

Lv (t̄) − Lu
v (t̄) = Lv (tr) − Lu

v (tr) + Rv (tr , t̄)

(3)≥ Lv (tr) − Lu(ts) + Iv (tr , t̄) − 2ε(t̄ − tr)

= Lv (t̄) − Lw (t̄) − (Lu(ts) − Lw (t̄))

− (1 − ε)(t̄ − tr) − 2ε(t̄ − tr)

= Lv (t̄) − Lw (t̄) − (Lu(ts) − Lw (ts)) + Iw (ts, t̄)

+ (1 − ε)(t̄ − ts) − (1 − ε)(t̄ − tr) − 2ε(t̄ − tr) (25)

(23,24)≥ sκ(d(v, w) − d(u, w)) − Iw (t0, t̄) + Iw (t0, ts) + Iw (ts, t̄)

+ (1 − ε)(tr − ts) − 2ε(t̄ − tr) + 2ε(t̄ − t0) − 2ε(ts − t0)

= sκ + (1 + ε)(tr − ts) ≥ sκ.

If ts < t0, note that the time difference ts − t0 is bounded because each node sends

a message to its neighbors at the latest after its hardware clock value increased by

H0, that is, after at most H0

1−ε
time, since it last sent a message. If ts ≤ t0 − H0

1−ε
−T ,

another message, containing a larger clock value, is sent at a time t ′
s ≤ t0 − T ,

which arrives at a time t ′
r ≤ t0, contradicting the assumption that the message sent

at time ts contains the largest clock value that v receives from u until t̄ ≥ t0. Hence,

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:20 C. LENZEN ET AL.

it follows that ts > t0 − H0

1−ε
− T and thus

t0 − tr ≤ t0 − ts <
H0

1 − ε
+ T (5)

<
H̄0

(1 − ε)μ
+ T

(6)≤ H̄0

7σε
+ T . (26)

The clock skew between Lu and Lw at time ts is bounded by

Lu(ts) − Lw (ts) = Lu(t0) − Lw (t0) − Iu(ts, t0) + Iw (ts, t0)

≤ sκd(u, w) − Iu(ts, t0) + Iw (ts, t0) + �s
w (t0)

≤ sκd(u, w) + Iw (ts, t0) + �s
w (t0). (27)

In this case, the estimated clock skew between v and u at time t̄ is

Lv (t̄) − Lu
v (t̄)

(25)≥ Lv (t̄) − Lw (t̄) − (Lu(ts) − Lw (ts)) + Iw (ts, t̄)

+(1 − ε)(tr − ts) − 2ε(t̄ − tr)

(24,27)≥ sκ(d(v, w) − d(u, w)) − Iw (t0, t̄) − Iw (ts, t0)

+Iw (ts, t̄) + κ

7σ
+ (1 − ε)(tr − ts) − 2ε(t0 − tr)

(26)
> sκ + κ

7σ
− 2ε

(
T + H̄0

7σε

)
(4)
> sκ + 2(μT + H̄0)

7σ
− 2ε

(
T + H̄0

7σε

)
(6)
> sκ.

Thus, Lv (t̄) − Lu
v (t̄) ≥ sκ holds in either case. Applying the same arguments

to any node u′ ∈ Nv yields that Lu′
v (t̄) − Lv (t̄) ≤ sκ , as all terms in the previous

estimates switch signs, except the term sκ because d(v, w) − d(v, u′) ≥ −1. Since

these estimate holds for any node u′, we have that 	↑
v (t̄) ≤ sκ . Moreover, it holds

that 	↓
v (t̄) ≥ Lv (t̄) − Lu

v (t̄) ≥ sκ , which implies that Rv evaluates to zero in

Line 1 of the subroutine setClockRate (Algorithm 3) if the subroutine is called at

time t̄ . Given that s ∈ N, we further know that κ − 	↓
v (t̄) ≤ κ(1 − s) ≤ 0. Hence,

Rv (t̄) = 0 and the logical clock rate is the same as the hardware clock rate at time t̄
according to Lemma 5.1. Since the minimum progress rate of any node is 1−ε and

the progress rate of v at time t̄ is at most 1+ε, the clock skew between v and w can

only increase at the rate 2ε.9 As the previous reasoning applies to any node v which

is going to violate the bound, this is a contradiction to the assumption that t̄ is the

infimum of all times when the claim is violated, which concludes the proof.

We are now in the position to prove the main theorem, which states that the local

skew grows logarithmically with the diameter D of the graph.

9 Once again, in order to argue minutely we have to observe that clock rate of v will equal hv for a

time period of non-zero length.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:21

THEOREM 5.10. The local skew when executing algorithm Aopt on any graph
G of diameter D is upper bounded by

κ

(⌈
logσ

2G
κ

⌉
+ 1

2

)
.

PROOF. Let G ′ ≥ G be the number for which logσ (2G ′/κ) = �logσ (2G/κ)�.

It is convenient to assume, without loss of generality, that G ′ is the bound on

the global skew because in this case Cs ∈ N for all s ∈ {0, . . . , smax}, where

smax := logσ (2G ′/κ).

By definition, a skew of more than d(v, w)(smax + 1/2)κ between the clocks of

any two nodes at distance d(v, w) ≥ Csmax
cannot occur as long as the system is in

a legal state. Since Csmax
= 1, this means that the claimed bound on the worst-case

skew between neighboring nodes can only be violated if the system is not in a legal

state. Thus, if the system is always in a legal state, the theorem follows immediately.

Assume for the sake of contradiction that t̄ is the infimum of all times when the

system is not in a legal state. As argued before, the legal state condition cannot be

violated for s = 0 as a violation implies that the clock skew between two nodes

exceeds G ′ ≥ G, a contradiction to Theorem 5.5. Hence, two nodes v and w at

distance d(v, w) ≥ Cs for some s ∈ {1, . . . , smax} exist such that

Lv (t̄) − Lw (t̄) = d(v, w)

(
s + 1

2

)
κ. (28)

Define t0 := t̄ − κCs−1

(1−ε)μ
− T . Since κCs ≥ κ > (1 − ε)μT , it holds that

t̄ − t0 <
(σ + 1)

(1 − ε)μ
κCs . (29)

If �s
w ≤ 0 at some point in time in the interval [t0, t̄], its continuity permits us to

define t ∈ [t0, t̄] as the largest time such that �s
w (t) = 0. Note that t < t̄ because

at time t̄ we have that

�s
w (t̄) ≥ Lv (t̄) − Lw (t̄) − sκd(v, w)

(28)= κ

2
d(v, w)

d(v,w)≥Cs≥ κ

2
Cs > 0. (30)

In this case, by applying Lemma 5.9, we get that

κ

2
Cs

(30)≤ �s
w (t̄)

(23)≤ 2ε(t̄ − t) − Iw (t, t̄) + κ

7σ

≤ 2ε(t̄ − t0) + κ

7σ
Cs

(29)
< 2ε

σ + 1

(1 − ε)μ
κCs + κ

7σ
Cs .

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:22 C. LENZEN ET AL.

This estimate implies that

2ε
σ + 1

(1 − ε)μ
κCs >

(
1

2
− 1

7σ

)
κCs

and thus

μ <
28εσ (σ + 1)

(1 − ε)(7σ − 2)

σ≥2≤ 7σ
ε

1 − ε
, (31)

a contradiction to Condition (6).

Hence, it must hold that �s
w (t) > 0 for all t ∈ [t0, t̄]. Another application of

Lemma 5.9 yields that

κ

2
Cs − �s

w (t0)
(30)≤ �s

w (t̄) − �s
w (t0)

(23)≤ 2ε(t̄ − t0) − Iw (t0, t̄) + κ

7σ
(29)
< 2ε

σ + 1

(1 − ε)μ
κCs − Iw (t0, t̄) + κ

7σ
.

By rearranging the terms, we get that

�s
w (t0) >

κ

2
Cs − 2ε

σ + 1

(1 − ε)μ
κCs + Iw (t0, t̄) − κ

7σ
. (32)

Since t0 = t̄ − κCs−1

(1−ε)μ
− T , Lemma 5.7 can be used to lower bound Iw (t0, t̄). As

Iw (t0, t̄) ≥ ξ if there is any node u such that Lu(t0)−Lw (t0) = d(u, w)
(
s − 1

2

)
κ+

ξ , we have that

Iw (t0, t̄)
(15)≥ max

u∈V

{
Lu(t0) − Lw (t0) −

(
s − 1

2

)
κd(u, w)

}
≥ �s

w (t0)

(32)
>

κ

2
Cs − 2ε

σ + 1

(1 − ε)μ
κCs + Iw (t0, t̄) − κ

7σ

≥
(

1

2
− 1

7σ

)
κCs − 2ε

σ + 1

(1 − ε)μ
κCs + Iw (t0, t̄).

This result again leads to the Inequality (31), which contradicts Inequality (6). Thus,

the system can never leave the legal state, which proves the claimed bound on the

local skew.

Note that this theorem also holds if each node v increases its logical clock value

by the value Rv computed in the subroutine setClockRate at once instead of raising

the logical clock rate: Theorem 5.10 is proved using Lemma 5.7 and Lemma 5.9.

Clearly, increasing the clock values instantly is a more aggressive strategy and it is

easy to see that Lemma 5.7 still holds. In Lemma 5.9, we found that Rv = 0 if the

clock skew between two nodes v and w is sufficiently large, which implies that v
increases its logical clock value at the hardware clock rate in this situation even if

the nodes are allowed to increase the clock values instantaneously.

Since the base of the logarithm σ is the largest integer such that Inequality (6)

holds (for a given μ ≥ 14ε/(1 − ε)), it follows that σ ∈ �(μ/ε). Thus, choosing

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:23

κ ∈ �((1 + μ)T + μH0) results in a local skew of

O(((1 + μ)T + μH0) logμ/ε D).

Recall that we can choose κ ∈ �(T) because we know upper bounds T̂ ∈ O(T)

and ε̂ < 1 on T and ε, respectively. If μ ∈ �(ε) and H0 ∈ O(T /μ) = O(T /ε),

Theorem 5.10 states that the local skew is upper bounded by O(T log D). Note that

choosing μ ∈ �(ε) entails that the maximum logical clock rate β is upper bounded

by 1+O(ε). If the logical clock rate is allowed to be larger than the hardware clock

rate by a constant factor, that is, μ ∈ �(1), and we choose H0 ∈ O(T), the bound

on the local skew reduces to O(T log1/ε D).

6. Complexity

In this section, we discuss the cost of AlgorithmAopt with regard to several measures.

In particular, we analyze how many messages need to be exchanged and also the

(maximum) size of these messages. Moreover, we upper bound the number of bits

that each node needs to store locally.

6.1. MESSAGE COMPLEXITY. An essential optimization criterion is the fre-

quency of communication required to sustain a given quality of synchronization.

If resource consumption due to communication is critical, the average of this value

over time, that is, the amortized message frequency, is highly relevant. Statement

(ii) of Corollary 5.2 immediately yields that Aopt exhibits an amortized message

frequency of �(1/H0) at each node. The bound from Theorem 5.10 suggests to

choose H0 ∈ �(T̂ /μ), which for a minimal μ ∈ �(ε̂) entails that the amortized

message frequency is only �(ε̂/T̂).

In a short time period, however, a node v might receive �(G/H0) messages con-

taining values Lmax, each larger by H0 than the previous one, which cause v to send

as many messages. Thus, the algorithm in the presented form does not guarantee a

non-trivial lower bound on the message frequency. The message frequency could

be bounded by adding another term in the order of �(H̄0) to κ and forcing nodes

to wait at least until the progress of their hardware clocks is H0 since they last

sent a message. The price of this modification is that the bound on the global skew

increases by �(εDH0) as the time it takes to propagate information through the

whole system increases by O(DH0) while nodes increase the estimate on Lmax

locally at their hardware clock rate. This results in a tunable trade-off between

minimum message frequency and global skew as increasing the former inversely

affects the latter. This is, up to constant factors, the best possible trade-off, since

in the �(DH0) time a pair of nodes at distance D may have to act without updates

about each other’s state a skew of �(εDH0) can be built up by manipulating the

hardware clock rates.

6.2. BIT COMPLEXITY. Another important property is the bit complexity, that

is, the maximum number of bits that must be sent in a message. Since the same

update information is sent to all neighbors at the same send event, we define that

the bit complexity in our model is simply the maximum size of this message.

Certainly, we cannot encode arbitrary real numbers; however, inaccuracies in the

communicated values can simply be accounted for by increasing κ . Therefore,

nodes are merely required to transfer rounded values to their neighbors. Note that

the parameter μ ∈ O(1) can be encoded as a constant times 1/n, for a number

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:24 C. LENZEN ET AL.

n ∈ N. The other parameters, κ and H0, can then be chosen (and encoded) as

multiples of μ. Thus, any value that is bounded by a constant can be encoded

using O(log(1/μ)) ⊆ O(log(1/ε̂)) bits. We will use this simple observation in the

following.

In order to bound the bit complexity, we cannot send the unbounded clock val-

ues. Instead, nodes simply communicate the O((1 + μ)H0) progress their clocks

made since they last sent a message, which requires O(log H0 + log(1/μ)) bits.

However, since we have that κ ∈ �(μH0), we might as well add another μH0 to

κ and discretize the sent values in steps of μH0. Thus, for the clock value Lv only

O(log(1/μ)) bits are necessary.

Advantageously, the estimate Lmax
v is a multiple of H0, but unfortunately it may in-

crease by �(G) in a single message, which could be encoded using �(log(T D/H0))

bits. In order to reduce the number of bits that are required to encode Lmax
v , we may

limit the maximum increase of Lmax
v that a node informs its neighbors about in a

single message to �(1 + ε̂)(1 + μ)/(1 − ε̂)�H0 ∈ O(H0), which can be encoded

using O(1) bits. If the actual value is larger, v stores the difference and informs its

neighbors about the remaining increase in its subsequent messages. The intuition

behind this is that Lmax does not increase faster than at rate 1+ ε, therefore sending

an update of at least (1+ε)H0/(1−ε) every H0/(1−ε) time is sufficient not to fall

behind. If larger estimates are received than can be propagated immediately, then

these estimates simply arrived quickly because the message delays were small. In

the scenario where all messages are as slow as possible, this would not happen.

Thus, the estimates of L̂max that slow nodes receive are still sufficiently large for

Theorem 5.5 to hold. Since a node v sends updates of more than (1+μ)H0, its clock

value Lv at the time of sending is still upper bounded by the estimate of Lmax that

it sends along. Hence, Lemma 5.7 still holds as v is not prohibited from increasing

its clock value because its estimate Lmax
v is too small, and thus also Theorem 5.10

remains correct. We conclude that Algorithm Aopt can be implemented with a bit

complexity of O(log(1/μ)) ⊆ O(log(1/ε̂)).

Moreover, if we enforce that nodes wait between sending events for H0 local time,

we can further reduce this number. Since now we implicitly know of the progress of

the hardware clock since the last message, we can encode the differences between

the logical clock values more efficiently. To this end, the progress of the logical

clock is described relative to the progress H0 of the hardware clock, meaning that

a difference of at most μH0 has to be conveyed. Since we may round the progress

to multiples of μH0, this requires merely O(1) bits. From this and the previous

observation that only O(1) bits are needed to update the estimate of the maximum

clock value, we deduce that this variant of Aopt offers a constant bit complexity.

Note that if all messages must contain globally (or locally) unique node identi-

fiers, O(log |V |) (or O(log �), where � denotes the maximum node degree) addi-

tional bits are required.

6.3. SPACE COMPLEXITY. The space complexity of an algorithm is the maxi-

mum amount of memory that it requires to run. Since the logical clock value Lv
grows indefinitely, we disregard it in our analysis of the space complexity of Aopt.

Furthermore, we will consider the amount of memory that the implementations of

Aopt discussed in the previous section require.10

10 Note that the space complexity can be reduced by putting more information into the messages.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:25

Each node v must store the estimated clock skew Lv − Lw
v to each node w ∈ Nv

and the estimated difference Lmax
v − Lv to the maximum clock value. The value of

Lv − Lw
v is bounded by O(κ logμ/ε D) for all neighbors. Assuming that we choose

H0 ∈ �(T /μ) and κ ∈ �(T), the rounding of clock values to multiples of μH0

implies that the maximum memory requirement for these values is bounded by

O(� log logμ/ε D), where � denotes the maximum node degree. As Lmax
v − Lv

is bounded by G ∈ O(T D) and it is a multiple of H0, it can be encoded using

O(log(T D/H0)) = O(log(μD)) bits.

Furthermore, in order to properly adapt Lw
v , each node must store the amount

of local time elapsed since the last message from w ∈ Nv was received as in the

absence of better information v assumes that the neighbors’ clocks run at the same

rate as its own hardware clock. If the frequency of the hardware clock is f , i.e.,

roughly every 1/ f time an event is triggered at a node v , this requires O(log(f H0))

memory for each w ∈ Nv .11 However, the high accuracy of 1/ f is not needed.

Instead, a local counter of size O(log(f μH0)) is used to generate events every

�(T) local time, reducing the resolution to �(μH0) and the necessary memory

to O(1/μ) bits per neighbor, at the price of adding another term in the order of

O(μH0) to κ . Thus, these values require O(� log μ + log(f T)) bits in total.

If the proposed technique to update the estimates on Lmax only by constant

multiples of H0 is employed (in order to keep the bit complexity low), we have to

keep track of the updates that have already occurred. Since nodes send identical

messages to all neighbors, a node must store only another multiple of H0 bounded

by O(G), which requires O(log(μD)) bits. However, nodes may receive different

estimates from different neighbors. If messages are sent every �(H0) time, these

values may drift apart at an (amortized) rate of 2ε for O(G) time, until the (local)

estimates reach Lmax. Therefore, if these values are encoded relative to each other,

O(� log(εμD)) additional bits are needed.

The same is true if messages are also triggered upon receiving messages, but

nodes control the rate at which they forward estimates by means of their hardware

clocks. Setting the maximal amortized update rate to a constant factor times the

hardware clock rate (i.e., at least (1 + ε̂)(1 + μ)/(1 − ε̂) ∈ O(1)) ensures that

estimates are forwarded fast enough, but locally drift apart at a rate of at most O(ε).

Since the nodes with small clock values again receive information about larger

clock values quickly enough, the algorithm preserves its asymptotic bounds on

both the global and the local skew when following this approach.

Hence, adding all terms up, we see that Aopt needs to allocate in total at most

O(log(f T)+log(μD)+�(log(1/μ)+log(εμD)+log logμ/ε D)) bits of memory.12

7. Lower Bounds

The lower bounds on both the global and the local skew are proved using indistin-
guishability type arguments. Concretely, we construct indistinguishable executions

11 Of course, also hardware clocks do not offer a continuous time, rather they generate clock ticks

at a high frequency f . Naturally, the clock granularity 1/ f yields a trivial lower bound for the best

synchronization that can be guaranteed. In particular, we need that 1/ f ∈ O(T).
12 This notation is somewhat sloppy. To be formally correct, each summand has to be replaced by the

maximum of the term itself and 1.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:26 C. LENZEN ET AL.

for any given synchronization algorithm A and any graph G in such a way that at

least one of the executions causes large clock skews. Given two executions E and

Ē of an algorithm A on a graph G, let H E
v (t) and H Ē

v (t) denote the hardware clock

values of v at time t in E and Ē , respectively. The respective logical clock values

are denoted by LE
v (t) and L Ē

v (t). The following definition formalizes the concept of

indistinguishable executions.

Definition 7.1 (Indistinguishability of Executions). We call E and Ē indistin-
guishable at node v until hardware clock time H , if v observes the same message

pattern with respect to its local time Hv in both E and Ē until its hardware clock

reaches H . More precisely, if v receives a message at a time tr when H E
v (tr) ≤ H

in E , it receives an identical message in Ē at the time t̄r when H Ē
v (t̄r) = H E

v (tr), and

vice versa. Note that in this situation v behaves the same way in E and Ē until local

time H , i.e., if H E
v (t) = H Ē

v (t̄) ≤ H , it follows that LE
v (t) = L Ē

v (t̄) and v sends the

same messages (if any) at times t and t̄ in E and Ē , respectively.

We base the construction of indistinguishable executions E and Ē on a simple

principle called shifting where both the clock rates and the message delays are

“shifted” in such a way that all events occur at the same local times in E and

Ē [Lundelius Welch and Lynch 1984]. If it is clear from the context, we may omit

the specification of the execution in the notation and write, for example, Hv (t)
instead of H E

v (t). Throughout this section, we assume, without loss of generality,

that all nodes are initialized at time 0, that is, all messages of the initial flooding

activating the system have zero delay and are not considered in the following.

7.1. GLOBAL SKEW. In our model, we assumed that an algorithm only possesses

estimates of ε and T . If the estimates are inaccurate, κ is set to a value that is larger

than necessary, which has a negative impact on the bound on the local skew. The

following theorem gives a lower bound on the global skew that depends on the

accuracy of both ε̂ and T̂ .

THEOREM 7.2. Assume that a clock synchronization algorithm A is equipped
with initial parameters ε̂ ∈ (0, 1), and T̂ ∈ R

+ such that c1T̂ ≤ T ≤ T̂ and
c2ε̂ ≤ ε ≤ ε̂ for certain values c1, c2 ∈ (0, 1]. Define � := min{ε, (1−c2ε̂)/c1 −1}
∈ [−ε, ε]. If algorithm A is bound to satisfy Condition (1), it cannot avoid a global
skew of at least

(1 + �)DT

on any graph G of diameter D.

PROOF. For the sake of simplicity, we formally allow relative clock drifts of

ε + ε̃, where ε̃ is infinitesimally small.13

Let v0, vD ∈ V be any two nodes at distance D. Furthermore, define that T :=
c1T̂ , ε′ := c2ε̂, and T ′ := (1+�)T /(1−ε′). From the definitions we have ρ ≥ −ε′

13 The same result could be obtained, for example, by replacing ε by ε − ε̃, proving a bound of

(1 + � − O(ε̃))DT , and taking the limit ε̃ → 0.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:27

and c1(1 + ρ)/(1 − ε′) ≤ 1, implying that

c1T̂ = T ≤ T ′ ≤ T̂
c2ε̂ = ε′ ≤ ε ≤ ε̂.

Thus, it is possible that T ′ is the real delay uncertainty and ε′ is the real maximum

clock drift because both values lie in the legal range according to the definition of

c1 and c2. Assume that the delay uncertainty is in fact T ′ and the maximum clock

drift is ε′. Consider the following two executions:

E1 : The hardware clock rates of all clocks are 1 − ε′ at all times. The message

delays are always T ′ from any node v ∈ V to any node w ∈ Nv if d(v0, w) =
d(v0, v) − 1, and 0 otherwise.

E2 : The hardware clock rates of all clocks are 1 + ε′ at all times. The message

delays from node v ∈ V to node w ∈ Nv are (1 − ε′)T ′/(1 + ε′) if d(v0, w) =
d(v0, v) − 1, and 0 otherwise.

Executions E1 and E2 are obviously indeed executions as both the message de-

lays and the clock drifts are within the legal bounds. Furthermore, E1 and E2

are indistinguishable: In execution E1, if a node v sends a message to w at lo-

cal time Hv , w receives this message at a time t when Hw (t) = Hv + (1 − ε′)T ′ if

d(v0, w) = d(v0, v)−1 and Hw (t) = Hv otherwise. Since the clock rates are faster

by a factor of (1 + ε′)/(1 − ε′) and the message delay of any message that is sent

to a node that is closer to v0 is reduced by the same factor, the nodes receive and

send the same messages at the same hardware clock times in execution E2.

No node v can increase its logical clock at a rate lower than its hardware clock rate,

as otherwise it violates Condition (1) in execution E1. Likewise, v cannot increase

its logical clock faster than its hardware clock because the envelope condition would

be violated in execution E2. Thus, in both executions it must hold that Lv (t) = Hv (t)
at all times t .

Assume now that T is the correct delay uncertainty and ε is the correct maximum

clock drift. Consider the following execution:

E3 : The hardware clock rate of v ∈ V is 1 + � + (1 − d(v0, v)/D)ε̃, where

0 < ε̃ � |�| is infinitesimally small. At time t0 := (1 +�)DT /ε̃ all hardware

clock rates are switched to 1+�. If a node v sends a message at hardware clock

time Hv , the message delay is adjusted in such a way that it is received at time

t when Hw (t) = Hv + (1 − ε′)T ′ if d(v0, w) = d(v0, v) − 1 and Hw (t) = Hv
otherwise.

Note that execution E1 and E3, and hence also E2 and E3, are indistinguishable at

each node v ∈ V by construction. It remains to verify that E3 is a legal execution.

Since � ∈ [−ε, ε] and a clock drift of ε + ε̃ is allowed, the clock drifts of all clocks

are in the legal range. As far as the message delays are concerned, we have at all

times t ≤ t0 that Hw (t) − Hv (t) = ε̃ t/D ∈ [0, (1 + �)T] = [0, (1 − ε′)T ′] if

d(v0, w) = d(v0, v) − 1. First, consider a message sent from v to w . If Hw (t) −
Hv (t) = (1 − ε′)T ′, then the message delay is set to zero, which ensures that w
“sees” exactly a difference of (1 − ε′)T ′. If Hw (t) − Hv (t) = 0, the message must

be delayed. However, since the hardware clock rate of each node is at least 1 +�, it

takes at most (1 − ε′)T ′/(1 +�) = T time for w to reach the hardware clock value

Hv + (1 − ε′)T ′. Thus, in case of d(v0, w) = d(v0, v) − 1, the message delays are

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:28 C. LENZEN ET AL.

always in the range [0, T]. If w sends a message to v , the same arguments apply,

but, in this case, we need that the message delay is set to zero if Hw (t) − Hv (t) = 0

and at most (1 − ε′)T ′/(1 + �) = T if Hw (t) − Hv (t) = (1 − ε′)T ′. Note that if

d(v0, w) = d(v0, v), then Hv (t) = Hw (t) as in the other two executions, and the

message delay remains zero. Finally, the message delays remain in the range [0, T]

at any time t > t0, because all clocks run at the same rate, that is, the differences

between the hardware clock values do not change.

Since the nodes cannot distinguish between any of the three executions, it follows

that Lv (t) = Hv (t) for all nodes v ∈ V at all times t also in E3. The skew between

the clocks Lv0
and LvD in execution E3 at any time t ≥ t0 is

ε̃ t0
d(v0, vD) − d(vD, vD)

D
= ε̃ t0 = (1 + �)DT ,

which proves the stated lower bound on the global skew of any algorithm A that

satisfies Condition (1).

We can conclude from this theorem that the estimates of T and ε must be ex-

tremely accurate in order guarantee a better bound than (1 + ε)DT . However, even

if the exact values are known, a global skew of (1−ε)DT cannot be prevented sub-

ject to the condition that the logical clock values must be within a linear envelope

of real time.

COROLLARY 7.3. No clock synchronization algorithm without knowledge of
a lower bound on ε can avoid a global skew of DT . Furthermore, no algorithm
without knowledge of bounds on T stronger than T ∈ [(1 − ε)T̂ /(1 + ε), T̂] can
achieve a better bound on the global skew than (1 + ε)DT .

This corollary and Theorem 5.5 imply that Aopt is essentially optimal as far as

the global skew is concerned. What is more, it can be shown that a global skew of

DT /2 cannot be prevented even if the restriction that the algorithm must satisfy

Condition (1) is dropped [Biaz and Lundelius Welch 2001]. Thus, the bound on

the global skew of Aopt is roughly a factor of two worse than the bound on the

global skew of any algorithm whose behavior is not constrained by any additional

restrictions.

7.2. LOCAL SKEW. The concept of an extended execution will be useful when

proving the bounds on the local skew.

Definition 7.4 (Extended Executions). Given an executionE running from time

t1 to t2, E can be extended by specifying hardware clock rates and message delays

in a time interval [t2, t3]. We will refer to this extension as an execution E ′ running

from time t2 until time t3. Note that E ′ inherits the state of the system at time t2,

that is, the state of all nodes and any pending messages sent in E that did not reach

their destination until time t2.

The remaining lower bounds also exploit that specific executions cannot be dis-

tinguished. The following lemma, which is a variant of a lemma presented in the

original work that introduced the problem of bounding the clock skews between

neighboring nodes [Fan and Lynch 2004], states that for a specific execution E there

is an indistinguishable execution Ē such that the logical clock of v advances more

quickly in Ē than in E , but the clock of w does not. In the lemma, we consider special

executions for which the hardware clock rates and the message delays are always

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:29

within specific bounds. These executions, which we refer to as framed executions,

are defined as follows.

Definition 7.5 (Framed Executions). Given ϕ ∈ [0, 1/2], a ϕ-framed execu-

tion is any execution such that the hardware clock rates always lie in the interval

[1, 1 + ε] and all message delays are in the range [ϕT , (1 − ϕ)T].

LEMMA 7.6. Fix any clock synchronization algorithm, any graph, an arbitrary
pair of nodes v, w ∈ V and some ϕ ∈ [0, 1/(2(1+ε))]. Given a ϕ-framed execution
E0 that ends at a time tE0

, this execution can be extended by a ϕ-framed execution
E = E(E0, v, w, ϕ) with the following property. For any pair of nodes v ′, w ′ ∈ V
on a shortest path from v to w such that d(v, v ′) < d(v, w ′) and for any time
tE ≥ tE0

+ (1+ε)(1−2(1+ε)ϕ)d(v ′, w ′)T /ε, E can be modified into the ϕ-framed
execution Ē = Ē(E, v ′, w ′) such that at time tĒ := tE − (1 − 2(1 + ε)ϕ)d(v ′, w ′)T
we have that L Ē

v ′(tĒ) = LE
v ′(tE) and L Ē

w ′(tĒ) = LE
w ′(tĒ).

PROOF. Define �w
v (u) := d(w, u) − d(v, u). In execution E , there are no clock

drifts, that is, all hardware clock rates are always 1, and message delays from

node us ∈ V to ur ∈ Nus are (1 + ε)ϕT if �w
v (us) ≥ �w

v (ur) and (1 − (1 + ε)ϕ)T
otherwise. If possible, the delays of any messages sent in E0 that have not yet arrived

are the same, whereas messages already delayed by more are received immediately

at time tE0
.

Set t ′ := tĒ − (1 − 2(1 + ε)ϕ)d(v ′, w ′)T /ε ≥ tE0
. Execution Ē is defined as

follows: In execution Ē , the hardware clock rate of any node u ∈ V is

hu(t) :=
{

max

{
min

{
1 + ε − �w

v (v ′)−�w
v (u)

2d(v ′,w ′) ε, 1 + ε
}

, 1

}
if t ∈ [

t ′, tĒ
]

1 else.

Due to the prerequisites that d(v, v ′) < d(v, w ′) and v ′ and w ′ lie on a shortest path

from v to w , we have that �w
v (v ′)−�w

v (w ′) = 2d(v ′, w ′). Therefore, w ′ has a clock

rate of 1 at any time, that is, H Ē
w ′(tĒ) = H E

w ′(tĒ). As v ′ has clock rate 1+ε for exactly

tĒ −t ′ = (1−2(1+ε)ϕ)d(v ′, w ′)T /ε time in Ē , we have that H Ē
v ′(tĒ) = H E

v ′(tE). The

message delays are adjusted in such a way that E and Ē are indistinguishable at any

node u ∈ V . Hence, as both executions inherit the same state of the system from

the preceding execution E0, the statements L Ē
v ′(tĒ) = LE

v ′(tE) and L Ē
w ′(tĒ) = LE

w ′(tĒ)

are a direct consequence of the indistinguishability of E and Ē .

In order to finish the proof it remains to show that Ē is indeed a ϕ-framed

execution, that is, all hardware clock rates are in the range [1, 1 + ε] and message

delays are in the range [ϕT , (1 − ϕ)T]. The hardware clock rate of each node at

any point in time is between 1 and 1 + ε and thus always in the legal range. Hence,

we have to show that all messages received by some node u ∈ V arrive after at

least ϕT and at most (1 − ϕ)T time. Any message arriving immediately at time tE0

cannot violate these bounds because E0 is a ϕ-framed execution. Given a message

sent from a node us ∈ V to a node ur ∈ Nus that arrives later than tE0
in E , let

ts and tr denote the times when the message is sent and received, respectively, in

execution E (or E0), and let t̄s and t̄r be the corresponding times in execution Ē (or,

again, E0).

Starting at time t ′, the differences between the hardware clock values of neighbors

gradually shift in Ē compared to E , until these shifts attain their maximum at time

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:30 C. LENZEN ET AL.

tĒ . Inserting the definitions, we see that at this time we have that

H Ē
ur

(tĒ) − H E
ur

(tĒ) − (
H Ē

us
(tĒ) − H E

us
(tĒ)

)
=

{
�w

v (ur)−�w
v (us)

2
(1 − 2(1 + ε)ϕ)T if �w

v (us), �w
v (ur) ∈ [0, 2d(v ′, w ′)]

0 else.

Since before t ′ and after tE all clock rates are 1 in both executions, this means that

at any time t it holds that

H Ē
ur

(t) − H E
ur

(t) − (
H Ē

us
(t) − H E

us
(t)

)
∈

{
[−(1 − 2(1 + ε)ϕ)T , 0] if �w

v (us) ≥ �w
v (ur)

[0, (1 − 2(1 + ε)ϕ)T] else.

Thus, we see that the message delays tr − ts are defined in a way ensuring that

tr−ts−
(
H Ē

ur
(t) − H E

ur
(t) − (

H Ē
us

(t) − H E
us

(t)
)) ∈ [(1 + ε)ϕT , (1 − (1 + ε)ϕ)T] .

(33)

Moreover, as all clock rates are always in the interval [1, 1 + ε], we have that

H Ē
ur

(t̄r) − H E
ur

(t̄r) − (
H Ē

ur
(t̄s) − H E

ur
(t̄s)

) ∈ [0, ε(t̄r − t̄s)]. (34)

Given these relations, we can bound t̄r − t̄s . We compute

t̄r − t̄s = t̄r − tr − (t̄s − ts) + (tr − ts)

= H E
ur

(t̄r) − H E
ur

(tr) − (
H E

us
(t̄s) − H E

us
(ts)

) + (tr − ts)

= H E
ur

(t̄r) − H Ē
ur

(t̄r) − (
H E

us
(t̄s) − H Ē

us
(t̄s)

) + (tr − ts)

= −(
H Ē

ur
(t̄r) − H E

ur
(t̄r) − (

H Ē
ur

(t̄s) − H E
ur

(t̄s)
))

+ (tr − ts) − (
H Ē

ur
(t̄s) − H E

ur
(t̄s) − (

H Ē
us

(t̄s) − H E
us

(t̄s)
))

.

Inserting Bound (33) and Bound (34) into this equation, we obtain

ϕT ≤ t̄r − t̄s ≤ (1 − (1 + ε)ϕ)T ≤ (1 − ϕ)T ,

which completes the proof.

This technique allows us to enforce (linearly) growing average clock skews

on certain paths at the expense of exponentially shrinking the path lengths. The

subsequent theorem gives a lower bound on the local skew of �(T logb D), where

the base b depends on α, β, and ε. Recall that α and β denote the minimum and

the maximum logical clock rate, respectively.

THEOREM 7.7. Define b := �2(β − α)/(αε)�. No clock synchronization algo-
rithm A can prevent a local skew of

1 + �logb D�
2

αT ∈ �
(
αT

(
1 + log(β−α)/(αε) D

))
on any graph G of diameter D.

PROOF. Define D′ := b�logb D� ≤ D. We claim that for any k, where 0 ≤ k ≤
logb D′, there are two nodes vk and wk at distance d(vk, wk) = D′/bk such that the

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:31

clock skew between these nodes at the time tĒk
in an execution Ēk is

L Ēk
vk

(tĒk
) − L Ēk

wk
(tĒk

) ≥ k + 1

2
αd(vk, wk)T . (35)

We prove our claim by induction, starting at k = 0. Consider any two nodes v0

and w0 at distance d(v0, w0) = D′ and let ∅ denote the “empty” execution that

immediately ends at time 0. Define E0 to be the execution E(∅, v0, w0, 0) as in

Lemma 7.6 and set tE := (1 + ε)d(v0, w0)T /ε. In accordance with the lemma,

there is an execution Ē0 such that at the time tĒ0
= d(v0, w0)T /ε it holds that

LE0
v0

(tE0
) = L Ē0

v0
(tĒ0

) and LE
w0

(tĒ0
) = L Ē0

w0
(tĒ0

). Recall that all nodes are initialized

immediately at time 0. Since the minimum clock rate is α, we have that

L Ē0

v0
(tĒ0

) − L Ē0

w0
(tĒ0

) = LE0

v0
(tE0

) − LE0

w0
(tĒ0

)

= LE0

v0
(tE0

) − LE0

v0
(tĒ0

) + LE0

v0
(tĒ0

) − LE0

w0
(tĒ0

)

≥ αd(v0, w0)T + LE0

v0
(tĒ0

) − LE0

w0
(tĒ0

).

Thus, in one of the executions, we must have a skew of at least αd(v0, w0)T /2

between v0 and w0 at time tĒ0
. Renaming the respective execution to Ē0 and switching

the roles of v0 and w0, if necessary, proves Inequality (35) for k = 0.

Assume that the claim is true for k, where k < logb D′. Given such an execution

Ēk , we end it at time tĒk
and extend it by the execution Ek+1 := E(Ēk, vk, wk, 0) from

Lemma 7.6. Set tEk+1
:= tĒk

+ (1 + ε)D′T /(εbk+1) and tĒk+1
:= tĒk

+ D′T /(εbk+1).

The clock skew between the nodes vk and wk at time tĒk+1
is at least

LEk+1

vk
(tĒk+1

) − LEk+1

wk
(tĒk+1

)

≥
(

L Ēk
vk

(tĒk
) + α(tĒk+1

− tĒk
)

)
−

(
L Ēk

wk
(tĒk

) + β(tĒk+1
− tĒk

)

)
(35)≥ k + 1

2
αd(vk, wk)T − β − α

ε

D′

bk+1
T

≥ k + 1

2
αd(vk, wk)T − αb

2

d(vk, wk)

b
T

= k

2
αd(vk, wk)T .

Consequently, there must be two nodes vk+1 and wk+1 on a shortest path from vk to

wk for which d(vk, vk+1) < d(vk, wk+1), d(vk+1, wk+1) = d(vk, wk)/b = D′/bk+1,

and

LEk+1

vk+1
(tĒk+1

) − LEk+1

wk+1
(tĒk+1

) ≥ k

2
αd(vk+1, wk+1)T . (36)

We define that Ek+1 ends at the time tEk+1
and apply Lemma 7.6 to obtain the

execution Ēk+1 := Ē(Ek+1, vk+1, wk+1, 0) for which it holds that LEk+1
vk+1

(tEk+1
) =

L Ēk+1
vk+1

(tĒk+1
) and LEk+1

wk+1
(tĒk+1

) = L Ēk+1
wk+1

(tĒk+1
). Since it holds that

LEk+1

wk+1
(tEk+1

) − LEk+1

wk+1
(tĒk+1

)
(2)≥ αd(vk+1, wk+1)T , (37)

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:32 C. LENZEN ET AL.

the clock skew at time tĒk+1
between vk+1 and wk+1 in execution Ēk+1 is

L Ēk+1

vk+1
(tĒk+1

) − L Ēk+1

wk+1
(tĒk+1

) = LEk+1

vk+1
(tEk+1

) − LEk+1

wk+1
(tĒk+1

)

(37)≥ αd(vk+1, wk+1)T + LEk+1

vk+1
(tĒk+1

) − LEk+1

wk+1
(tĒk+1

)

(36)≥ k + 2

2
αd(vk+1, wk+1)T ,

which proves the claim. If k = �logb D�, the distance between the considered

nodes is 1, i.e., vk and wk are neighboring nodes. The local skew is thus at least

(�logb D� + 1)αT /2.

If we demand that the logical clocks run roughly at the same rates as the hardware

clocks, for example, α ∈ 1 − O(ε) and β ∈ 1 + O(ε), we get that b ∈ O(1) and

thus a lower bound of �(T log D), which matches the upper bound of algorithm

Aopt when μ ∈ �(ε) and H0 ∈ O(T /ε). Similarly, if we allow a logical clock rate

that is a constant times larger than real time, that is, β ∈ �(1), the lower bound

reduces to �(T log1/ε D). Algorithm Aopt guarantees an upper bound on the local

skew of O(T log1/ε D) when choosing μ ∈ �(1) and H0 ∈ O(T). More generally,

we get the following result.

COROLLARY 7.8. If κ ∈ O(T), Algorithm Aopt achieves an asymptotically
optimal local skew of �(T logμ/ε D).

A slightly more careful analysis yields a bound which is stronger by an asymptotic

factor of 2 [Lenzen et al. 2009a], revealing that the approximation ratio of Aopt with

respect to the local skew tends to (at most) 2T̂ /T if ε̂ → 0 and D → ∞.

What is more, Theorem 5.10 is shown by proving that the legal state is never

violated, whereas in the proof of Theorem 7.7 we iteratively constructed increasing

average skews between nodes of exponentially decreasing distance. Hence, we see

that Aopt features an asymptotically optimal gradient property as defined by Fan

and Lynch [2004]. We note that this result holds irrespective of α since Aopt can

exploit smaller values of α by simply reducing the speed of the logical clocks by

an appropriate factor.

COROLLARY 7.9. If β − α ∈ O(1), the best worst-case clock skew between
nodes at distance d any algorithm can achieve is �(αT d(1 + log(β−α)/(αε)(D/d))).

It is further important to see that the maximum clock skew among all neighboring

nodes can be �(αT logb D) for more than a constant period of time. The proof of

Theorem 7.7 reveals that, for example, for k = (logb D′)/2, the average clock skew

on a path of length �(
√

D) is half the local skew that is built up between two

neighbors until the end of the constructed execution. Since it takes �(T
√

D) time

to increase the clock skew to (�logb D� + 1)αT /2, for �(T
√

D) time there are

always some neighbors with a clock skew of �(αT logb D). More generally, for any

constant c < 1, the average clock skew on some path, and thus also the maximum

clock skew among all neighboring nodes, is �((αT logb D)/c) for �(D1−c T) time.

Moreover, it is evident from the proof of Theorem 7.7 that the same asymptotic

bound holds if the nodes are allowed to reduce their clock rates arbitrarily, even to or

below zero, as long as the average clock rate in an interval of length �(D1−c T), for

some c < 1, is at least α. This observation implies that it is not a severe limitation

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:33

that the progress rate of all clocks is always at least α. Note that if the clocks are

allowed to stand still for �(DT) time, a simple synchronizer [Awerbuch 1985],

which trivially guarantees a bound of �(αT) on the local skew, can be used instead

of a clock synchronization protocol.

7.3. LOCAL SKEW IF CLOCK RATES ARE UNBOUNDED. Theorem 7.7 leaves the

question open whether a smaller local skew can be maintained if clock rates are

not bounded by constants (β ∈ ω(1)) or clocks may even jump instantaneously

(β = ∞). The lower bound in Fan and Lynch [2004] was proved by showing

that, in specific executions, if any node has an average clock rate of ρ over a time

period of �(T), a local skew of �(ρT) can be enforced. Therefore, a clock skew

of �(αT log1/ε D/(log1/ε log1/ε D)) is inevitable. We will now improve this lower

bound to �(αT log1/ε D), which implies that nothing can be gained by relaxing

Inequality (2) further than β − α ∈ O(1). Thus, no algorithm that allows the clock

values to increase instantaneously by any amount can achieve a better asymptotic

bound on the global or the local skew than Aopt, even if Aopt only increases its clock

values at bounded rates.

In order to prove the theorem, we require a few more tools. Similarly to Fan and

Lynch [2004], we need to upper bound the clock rates an algorithm may utilize

without giving an adversary the means to introduce a large local skew directly. To

this end, we show that any ϕ-framed execution permits to introduce ϕT hardware

clock skew unnoticeably at arbitrary nodes.

LEMMA 7.10. Fix any clock synchronization algorithm and any graph. Let a
ϕ-framed execution E , a time t ≥ ϕT /ε, and a node v ∈ V be given, and define
that t ′ := t − ϕT /(1 + ε). We can indistinguishably modify E into an execution Ē
for which it holds that L Ē

v (t) = LE
v (t ′) and L Ē

w (t) = LE
w (t) for any node w ∈ V \{v}.

PROOF. We change E to Ē by reducing the hardware clock rate of node v by ε in

the time interval [0, (H E
v (t)− H E

v (t ′))/ε] and by modifying all delays in such a way

that indistinguishability is maintained. Certainly, we have that H E
v (t) − H E

v (t ′) ≤
(1 + ε)(t ′ − t) = ϕT , implying that t ≥ (H E

v (t) − H E
v (t ′))/ε. Therefore, it holds

that H Ē
v (t) = H E

v (t ′). Apparently, we also have that H Ē
w (t) = H E

w (t) for any other

node w �= v . The indistinguishability of E and Ē then implies the corresponding

statement on the logical clock values.

It remains to show that Ē is a valid execution. By construction we have that

H E
v (t ′′ − ϕT) ≤ H E

v (t ′′) − ϕT ≤ H Ē
v (t ′′) ≤ H E

v (t ′′)

at any time t ′′, implying that delays change by at most ϕT . Since E is a ϕ-framed

execution, all delays in Ē thus lie within the legitimate range of [0, T]. Similarly,

all hardware clock rates in E are at least 1, meaning that in Ē all clock rates are in

the interval [1 − ε, 1 + ε] as required.

This statement implies that if an algorithm has a clock rate of �((α log1/ε D)/ϕ)

(on average) in a ϕ-framed execution for ϕT /(1 + ε) time, it can be tricked into

building up a local skew of �(αT log1/ε D).

Combining Lemmas 7.6 and 7.10, we obtain the key lemma to the second lower

bound on the local skew. If an algorithm uses large logical clock rates to reduce

skews quickly, it trades a faster decrease of path lengths for a larger increase of the

average skew on such paths.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:34 C. LENZEN ET AL.

LEMMA 7.11. Fix any clock synchronization algorithm and any graph of di-
ameter D ≥ 1/ε. Assume that 1/ε is an integer (in particular, ε ≤ 1/2), and let
X := �12 log(8/ε)�. Set ϕε := ε/(2(1 + ε)) and ζ := 1 − ε − 12/X ≥ 1/4. Let a
ϕε-framed execution E0 ending at time tE0

≥ T /2 be given such that a shortest path
p := v0, . . . , vk with Lv0

(tE0
) − Lvk (tE0

) ≥ λαT k for some λ ∈ R exists, where
X/εn divides d(v0, vk) = k for some integer n ≥ 2 + log1/ε log1/ε D.

In this case, either E0 can be extended by a ϕε-framed execution Ē running from
tE0

until some time tĒ , such that two nodes v, w ∈ V exist for which

Lv (tĒ) − Lw (tĒ) ≥ (λ + mζ) αT d(v, w)

and d(v, w) = εmk/X for some m ∈ {1, . . . , n}, or two neighbors v, w ∈ V , an
execution, and some time t exist such that Lv (t) − Lw (t) ≥ αT log1/ε D.

PROOF. We extend E0 by the execution E = E(E0, v0, vk, ϕε) from Lemma 7.6.

Define for m ∈ {1, . . . , n} that tm := tE0
+ εm−1(1 − ε)T k/X . We make a case

differentiation. First, assume that we have LE
v0

(t1) − LE
vi

(t1) ≥ (λ − 12/X)αT i for

some i ≥ εk/X . Hence, there must be two nodes v, w ∈ p at distance d(v, w) =
εk/X such that

LE
v (t1) − LE

w (t1) ≥
(

λ − 12

X

)
αT d(v, w) (38)

and d(v0, v) < d(v0, w). Define tE := t1 + (1 − ε)d(v, w)T = tE0
+ (1 + ε)(1 −

ε)d(v, w)T /ε as the time when E ends. Observe that 1 − ε = 1 − 2(1 + ε)ϕε.

Thus, due to Lemma 7.6, we can modify E into the ϕε-framed execution Ē =
Ē(E, v, w, ϕε) such that L Ē

v (t1) = LE
v (tE) and L Ē

w (t1) = LE
w (t1). It follows that

L Ē
v (t1) − L Ē

w (t1) = LE
v (tE) − LE

v (t1) + (LE
v (t1) − LE

w (t1))

(2,38)≥ α(tE − t1) +
(

λ − 12

X

)
αT d(v, w)

= (λ + ζ) αT d(v, w).

Second, assume that a pair of nodes v, w ∈ p at distance d(v, w) = εmk/X ,

where m ∈ {2, . . . , n}, and a time tE ≥ tm + (1 − ε)d(v, w)T exist such that the

inequality

LE
v (tE) − LE

w (tĒ) ≥ (λ + mζ) αT d(v, w) (39)

holds, where tĒ := tE − εm(1 − ε)T k/X = tE − (1 − ε)d(v, w)T . Since tE is

sufficiently large, Lemma 7.6 states that if E ends at time tE , it can be changed into

the ϕε-framed execution Ē = Ē(E, v, w, ϕε) where

L Ē
v (tĒ) − L Ē

w (tĒ) = LE
v (tE) − LE

w (tĒ) ≥ (λ + mζ) αT d(v, w).

Third and last, assume that none of the former is true. Consider the following set

of pairs of times and nodes {(t j , v j) | j ∈ {0, . . . , jmax := (1−ε)(n−1)/ε2}}.Define

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:35

v0 := vi(0), where i(0) := k − (1 − εn−1)k/X . Let m j := 2 + �ε2 j/(1 − ε)� and

im j := i(0) + (1 − ε)k/(ε2 X)
∑m j −1

m=2 εm . Set

t j := tm j −1 −
(

j − (1 − ε)(m j − 2)

ε2

)
εm j (1 − ε)T k

X
≥ tm jmax −1 = tn > tE0

and v j := vi(j), where

i(j) := im j −1 + (
j − (1 − ε)(m j − 2)/

(
ε2 X

))
εm j k ≤ i(jmax) = in+1 = k.

These cumbersome choices of t j and v j ensure that, as the second case does not

apply, we have

LE
v j (t j) − LE

v j+1 (t j+1)
(39)
< (λ + m jζ)αT d(v j , v j+1)

for all j ∈ {0, . . . , jmax − 1}, because d(v j , v j+1) = i(j + 1) − i(j) = εm j k/X ,

t j+1 ≥ tm j , and t j − t j+1 = (1 − ε)d(v j , v j+1)T . Observe that v jmax = vk , t0 = t1
and t jmax = tn , and also that the v j are well defined because m j ≤ n for all but jmax,

that is, εm j k/X is an integer for all j ∈ {0, . . . , jmax − 1}.
Summing up over all j < jmax, we get the bound

LE
v0 (t1) − LE

k (tn) =
jmax−1∑

j=0

(
LE

v j (t j) − LE
v j+1 (t j+1)

)
(39)
<

n∑
m=2

∑
{ j | m j =m}

(λ + m jζ)αT d(v j , v j+1)

= λαT d(v0, vk) + ζαT k

X

n∑
m=2

(1−ε)/ε2∑
l=1

mεm

< λαT d(v0, vk) + (1 − ε)
ζαT k

X

∞∑
m=0

(m + 2)εm

< λαT d(v0, vk) + (1 − ε)2 αT k

X

2

(1 − ε)2

= λαT d(v0, vk) + 2αT k

X
. (40)

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:36 C. LENZEN ET AL.

As the first case does not apply and d(v0, v0) > (1 − 1/X)k > εk/X , we have

that LE
v0

(t1) − LE
v0 (t1) < (λ − 12/X)αT k. We obtain

LE
vk

(tn) − LE
vk

(tE0
) = LE

vk
(tn) − LE

v0 (t1) + (
LE

v0 (t1) − LE
v0 (tE0

)
)

+ (
LE

v0 (tE0
) − LE

v0
(tE0

)
) + (

LE
v0

(tE0
) − LE

vk
(tE0

)
)

(40)
>

(
−λd(v0, vk) − 2k

X
−

(
λ − 12

X

)
d
(
v0, v0

)
+ λd

(
v0, v jmax

))
αT

>

(
12

(
1 − 1

X

)
− 2

)
αT k

X
X>12
>

9αT k

X

≥ 9α(tn − tE0
)

ε
log1/ε D,

where we used that tn − tE0
= εn−1(1 − ε)T k/X ≤ εT /(X log1/ε D) since n ≥

2 + log1/ε log1/ε D. Thus, as we also have tn − tE0
> (1 − ε)T /ε ≥ T > ϕεT

because X/εn divides k and ε ≤ 1/2, there must be times t ∈ [tE0
+ϕεT /(1+ε), tn]

and t ′ := t − ϕεT such that

LE
vk

(t) − LE
vk

(t ′) ≥ 9αϕεT
(1 + ε)ε

log1/ε D
ε≤1/2≥ 2αT log1/ε D.

As E0 extended by E meets the prerequisites of Lemma 7.10 for t > tE0
≥ T /2 =

(1 + ε)ϕεT /ε, an execution Ē exists such that for any u ∈ Nv jmax the relation

L Ē
vk

(t) − L Ē
u (t) = LE

vk
(t ′) − LE

u (t) = LE
vk

(t ′) − LE
vk

(t) + LE
vk

(t) − LE
u (t)

holds. Thus, in one of the two executions, a skew of αT log1/ε D can be observed

between v jmax and u, which concludes the case differentiation and also the proof.

Our last theorem is proved similarly to Theorem 7.7. Using Lemma 7.11 repeat-

edly, we accumulate skew on paths of exponentially decreasing length.

THEOREM 7.12. No clock synchronization algorithm can achieve a better
bound on the local skew than

�(αT (1 + log1/ε D))

on any graph of diameter D. Furthermore, for any δ > 0 and some specific diam-
eters D and maximum drift rates ε, the local skew exceeds

(1 − δ)αT log1/ε D.

PROOF. If D ≤ (1/ε)c for any constant c, the claimed bound reduces to �(αT).

Such a clock skew can easily be enforced between two neighbors as shown in the

proof of Theorem 7.7.

Define ε′ := 1/�1/ε� > ε/2, that is, 1/ε′ is an integer. Throughout this proof,

we will use the notation of Lemma 7.11, however, with ε replaced by ε′. Set

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:37

b := �12 log(8/ε′)�/ε′ = X/ε′. As noted above, we may assume that D is suffi-

ciently large such that log1/ε′ log1/ε′ D is defined and we have that⌊
logb D

⌋
2

≥ 1 + �log1/ε′ log1/ε′ D� ∈ o(logb D).

Therefore, when setting D0 := (1/ε′)1+�log1/ε′ log1/ε′ D� we have that

D0 ≤
(

1

ε′

)�logb D�/2

≤
√

D,

implying that

� :=
⌊

logb

(
D

D0

)⌋
≥

⌊
logb D

⌋
2

.

We state the following induction hypothesis. Assume that for i ∈ {0, . . . , �− 1}
a ϕε′-framed execution Ei ending at a time ti ≥ T /2 and two nodes vi , wi ∈ V at

distance d(vi , wi) ≥ b�−i D0 exist such that

LEi
vi

(ti) − LEi
wi

(ti) ≥ iζαT d(vi , wi). (41)

We claim that in this case either the same is true for i + m, where m ∈ N, or an ex-

ecution exists where the clock skew between two neighbors becomes αT log1/ε′ D
at some time.

To start the induction, we define E0 to be the 1/2-framed execution ending at

time t0 := T /2 where all delays are T /2. Apparently, at time t0 we have two nodes

v0, w0 ∈ V within distance d(v0, w0) = b� D0 ≤ D from each other such that

LE0
v0

(t0) − LE0
w0

(t0) ≥ 0.

Now assume that Inequality (41) holds for some i ∈ {0, . . . , � − 1}. Because

b�−i D0 is an integer multiple of X/εn for n = 2 + �log1/ε′ log1/ε′ D�, the nodes

vi , wi and the execution Ei ending at time ti ≥ T /2 meet the requirements of

Lemma 7.11. Hence, either we immediately get some execution and two neighbors

exhibiting a skew of αT log1/ε′ D at some time, or for some m ∈ N a ϕε′-framed

execution Ei+m , two nodes v, w ∈ V at distance d(v, w) = (ε′)md(vi , wi)/X and

a time ti+m ≥ ti ≥ T /2 exist when

LEi+m
v (ti) − LEi+m

w (ti+m) ≥ (i + m)ζαT d(v, w).

Thus, there must also be two nodes vi+m, wi+m ∈ V at distance d(v, w)/Xm−1 =
d(vi , wi)/bm = bl−i−m D0 satisfying Inequality (41) for i +m, that is, the induction

step succeeds.

We conclude that either an execution exists in which a skew of αT log1/ε D
occurs, or Inequality (41) holds for an i ≥ � ∈ �(log1/ε D) in some execution. In

the latter case, however, the same inequality is also true for a pair of neighboring

nodes, implying that there is a clock skew of at least �ζαT ∈ �(αT log1/ε D)

between two neighbors. Finally, for ε → 0 we have 1/ε′−1/ε → 0 and ζ → 1, and

for D → ∞ we get ((log1/ε D) − �)/� → 1. Therefore, for any δ > 0, appropriate

choices of ε and D imply a local skew of at least (1 − δ)αT log1/ε D.

In other words, even if an algorithm makes use of arbitrary large logical clock

rates, it cannot beat a local skew of αT log1/ε D by a constant factor (independent of

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:38 C. LENZEN ET AL.

ε and D). Moreover, we infer that Aopt achieves an asymptotically optimal gradient

property even if clock rates are unbounded.

COROLLARY 7.13. If β −α ∈ �(1), the best possible worst-case bound on the
clock skew between nodes at distance d is �(αT d(1 + log1/ε(D/d))).

8. Different Models

In this section, we analyze the details of the model assumptions and point out to what

extend the results carry over to other prominent models of clock synchronization.

8.1. ESTIMATES OF T AND ε. Our model assumes that upper bounds T̂ ∈ O(T)

and ε̂ < 1 on T and ε are known. These assumptions can be justified as follows.

Assuming that T is completely unknown to the algorithm is no restriction. In

this case, nodes acknowledge every message, and perpetually measure the cor-

responding round trip times by means of their hardware clocks. Multiplying the

determined values by 1/(1 − ε̂) then yields an estimate of the round trip times that

is in O(T) and which upper bounds the delays of the messages. Nodes keep track

of the largest estimate they either measured themselves or received in a message.

If a larger (estimated) round trip time is detected, it is flooded through the system

and κ (and possibly H0) is adjusted accordingly. Note that it is not a problem if the

nodes underestimate T because, until the time when larger delays actually occur,

the skew bounds hold with respect to the smaller delays and thus the smaller κ .

In order to keep the number of messages low, one could initially use an estimate

of �(1/ f) and double it in every step, reducing the number of updates to at most

O(log(T / f)).14

As far as the assumption that ε is bounded by ε̂ < 1 is concerned, we point out

that an ε arbitrarily close to one means that we do not have clocks in the truest sense

of the word.15 In particular, ε = 1 would allow the hardware clocks to stand still,

a case in which nodes are not able to react to clock skews at all. In such a setting it

would be reasonable to drop the constraint that the progress rates must be bounded

at all times in favor of sudden clock jumps (i.e., μ = ∞ and therefore still “large

enough” to guarantee Inequality (6)). However, we do not cover this rather extreme

scenario in our discussion.

8.2. MINIMUM CLOCK RATE α. As pointed out in Section 7, the lower bound

on the local skew does not depend on clocks running always at least at a rate of α.

Requiring an average rate of α merely for intervals of a certain minimum length

does not change the asymptotic bounds, unless clocks are allowed to stand still (or

even run backwards) for almost DT time. Moreover, the lower bound on the global

skew of roughly DT trivially implies a bound of T on the local skew, that is, even

if we do not insist on a certain minimum progress rate, any algorithm guaranteeing

Condition (2) will suffer a clock skew of T between neighboring nodes in the worst

case. Considering that typically T log1/ε D ∈ O(T) and Aopt attains this bound on

the local skew, there is little point in choosing α < 1 − O(ε).

14 Recall that f denotes the hardware clock frequency.
15 A cheap quartz oscillator exhibits a relative drift of less than 10−4 and even the clock drift of a ring

oscillator under varying temperatures and support voltages is not considerably larger than 0.2.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:39

8.3. LOWER BOUNDED DELAYS. Throughout this article, we assumed that de-

lays are always in the range [0, T]. In many distributed systems, it is more adequate

to assume that all delays lie in a range [T1, T2], where T2 − T1 � T1. It is evident

from the proofs of the lower bounds that they still hold with T replaced by T2 − T1

in this situation. Similarly, the algorithm can be applied efficiently if we add T1 to

all values received. However, triggering messages when Lmax
v reaches a multiple

of H0 in order to bound the (amortized) message frequency does not work any

more. This can either be solved by simply sending messages every H0 local time

(as discussed in Section 6), or by enforcing one logical clock to be the fastest by

slowing down all other clocks slightly and performing “external” synchronization

where the distinguished node serves as the reference (cf. Section 8.5).

Another effect, however, might be of more concern: The skew bounds will de-

grade because the algorithm needs more time to react to clock skews. The global

skew will increase byO(εDT1), which is asymptotically optimal due to the fact that

distant nodes may not receive messages from each other for �(DT2) time because

of the slow information transport. Regarding the local skew, Lemma 5.7 has to be

adapted in that now �(·) reduces merely at an amortized rate of �(min{μ, κ/T2}),
implying that μ ≥ (T2 −T1)/T2 only improves the base σ of the logarithm at the ex-

pense of increasing κ linearly with σ . However, if T2 ≤ √
ε(T2 − T1), for instance,

choosing μ ∈ �(
√

ε) and κ appropriately will still result in an asymptotically

optimal local skew of O(κ log1/ε D).

8.4. DISCRETE CLOCK SYNCHRONIZATION. Apparently, real-world systems are

not able to resolve time arbitrarily precisely. Instead, hardware clocks generate

“clock pulses” or “ticks” at a slightly varying frequency f . Thus, (local) time be-

comes discrete in the sense that computations can distinguish only between different

ticks, and receiving and sending messages is only possible at specific times. The

impact of the limited granularity of the hardware clock on Aopt has been studied

in Lenzen et al. [2009a]. Not surprisingly, it turns out that T is basically replaced

by max{1/ f, T }, that is, typically the effects are negligible because 1/ f < T .

8.5. EXTERNAL CLOCK SYNCHRONIZATION. There is a lot of work on external
clock synchronization algorithms [Moses and Bloom 1994; Ostrovsky and Patt-

Shamir 1999; Patt-Shamir and Rajsbaum 1994], where a source of real time is

available and the objective is to synchronize all clocks to this source. Thus, there

is a single node v0 for which logical clock time, hardware clock time, and real

time are identical. In order to allow for the fact that a distant node v may not be

informed about the real time more accurately than T d(v, v0), Condition (1) has to

be changed to t − d(v, v0)T − τ ≤ Lv (t) ≤ t , where τ ∈ R
+ addresses the issue

that nodes should only send a finite number of messages in constant time.

Aopt can easily be adjusted to handle this modified constraint. The node v0 has

to propagate its clock value through the system periodically, at least every �(τ/ε̂)

time. The nodes behave the same as inAopt, except that they increase Lmax
v at the rate

hv/(1 + ε̂) and do the same with Lv whenever Lv = Lmax
v . This technique ensures

that the logical clock rates are upper bounded by 1 whenever the largest clock value

in the system is attained, implying that Lv (t) ≤ t at all times. On the other hand,

nodes still raise their clocks quickly when large estimates are received. Apparently,

the global skew is bounded by T D +O(τ), and the worst-case clock skew between

some node v and v0 is linearly bounded in the distance between the two nodes.

The main difference is that the minimum progress rate is now only bounded by

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:40 C. LENZEN ET AL.

(1 − O(ε̂)), which can easily be accounted for when determining μ and κ . Thus,

the algorithm still guarantees roughly the same skew bounds without significantly

increasing μ or κ . The amortized message frequency is �(τ/ε̂ + 1/H0).

8.6. HARDWARE CLOCK ENVELOPE CONDITION. A similar technique is appli-

cable if Condition (1) is replaced by

∀v ∈ V ∀t : min
w∈V

{Hw (t)} ≤ Lv (t) ≤ max
w∈V

{Hw (t)},
that is, the time envelope condition is sharpened to the requirement that all logical

clock values must always be at least the smallest and at most the largest hardware

clock value in the system. In this case, a node v ∈ V must reduce its clock rate

when Lv (t) > Hv (t), while still responding to clock skews. This is accomplished

by increasing Lmax
v at the reduced rate (1 − ε̂)hv/(1 + ε̂) whenever it exceeds Hv

and again refusing to increase Lv beyond Lmax
v . Thus, nodes will never have a larger

logical clock rate than 1 − ε if Lv (t) = Lmax
v (t) = maxw∈V {Hw (t)} > Hv (t). As

they also increase their logical clocks at the normal rate when Lv (t) = Hv (t), the

requested constraint is satisfied. Clock rates change merely by a factor of 1−O(ε̂),

therefore the bounds on κ and μ, and the impact of H0 remain basically the same.

9. Conclusion

We studied the well-known clock synchronization problem for arbitrary underlying

topologies. As our main result, we presented the synchronization algorithmAopt and

proved matching upper and lower bounds on the worst-case clock skew between

neighboring nodes and between arbitrary nodes in the distributed system. Remark-

ably, these results hold in a very general model where clock drifts and delays may

vary arbitrarily within unknown bounds. Surprisingly, strong bounds can also be

achieved if the logical clock rates must always be in the range [1−O(ε), 1+O(ε)]

and we require that �(T /ε) time elapses between message transmissions at each

node, where ε and T denote the maximum clock drift rate and the delay uncertainty,

respectively. Moreover, the bound on the global skew is essentially optimal and,

if upper bounds on both the clock drift and the delay uncertainty are known fairly

accurately, the asymptotic approximation ratio of the proposed algorithm with re-

gard to the local skew is 2. The algorithm Aopt can further be adjusted in order

to be applicable to various other models and constraints, which demonstrates the

generality and flexibility of our techniques.

Our results may be relevant for practical applications for the following reasons.

We showed that although the local skew must grow logarithmically in the diameter

D of the system network, the base of the logarithm can be bounded by �(1/ε).

Thus, if we have that D ∈ O(1/εc) for a constant c, a worst-case clock skew of

O(T) between neighboring nodes can be guaranteed. Since typical clock drifts are

in the order of 10−5 and the diameters of most current networks are not larger

than roughly 20 to 30, the clock skew between neighboring nodes can be bounded

by O(T) in most real-world systems. Furthermore, it is clearly desirable that the

clocks run smoothly and progress at reasonable rates at all times. It is possible to

achieve such a strong bound even if we impose tight restrictions on the rates of the

clocks, that is, the clocks are never allowed to change abruptly in order to correct the

observed clock skews. In particular, rates of 1 ±O(
√

ε) are sufficient to guarantee

an optimal global skew and a roughly 4-competitive local skew. Given that Aopt

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

Tight Bounds for Clock Synchronization 8:41

is further computationally efficient and that it requires a low message frequency,

we believe that practical protocols can be designed that guarantee not only small

global skews at low communication costs, but also small local skews and smoothly

progressing logical clocks. We hope that some of the ideas introduced in this work

might lead to further advances in clock synchronization protocols.

ACKNOWLEDGMENT. We would like to thank Fabian Kuhn and the anonymous

reviewers for many valuable comments.

REFERENCES

AWERBUCH, B. 1985. Complexity of network synchronization. J. ACM 32, 4, 804–823.

BIAZ, S., AND LUNDELIUS WELCH, J. 2001. Closed form bounds for clock synchronization under simple

uncertainty assumptions. Inf. Proc. Lett. 80, 3, 151–157.

ELSON, J., GIROD, L., AND ESTRIN, D. 2002. Fine-grained network time synchronization using reference

broadcasts. ACM SIGOPS Ope. Syst. Rev. 36, 147–163.

FAN, R., AND LYNCH, N. 2004. Gradient clock synchronization. In Proceedings of the 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC). ACM, New York, 320–327.

FÜGGER, M., SCHMID, U., FUCHS, G., AND KEMPF, G. 2006. Fault-tolerant distributed clock generation

in VLSI systems-on-Chip. In Proceedings of the 6th European Dependable Computing Conference
(EDCC-6). 87–96.

GANERIWAL, S., KUMAR, R., AND SRIVASTAVA, M. B. 2003. Timing-sync protocol for sensor networks. In

Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems (SenSys). ACM, New

York, 138–149.

KORTE, B., RAUTENBACH, D., AND VYGEN, J. 2007. BonnTools: Mathematical innovation for layout and

timing closure of systems on a chip. Proc. IEEE 95, 3, 555–572.

KUHN, F., LOCHER, T., AND OSHMAN, R. 2009. Gradient clock synchronization in dynamic networks. In

Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM,

New York, 270–279.

LENZEN, C., LOCHER, T., AND WATTENHOFER, R. 2008. Clock synchronization with bounded global and

local skew. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS). IEEE Computer Society Press, Los Alamitos, CA, 500–510.

LENZEN, C., LOCHER, T., AND WATTENHOFER, R. 2009a. Tight bounds for clock synchronization. In Pro-
ceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM,

New York, 46–55.

LENZEN, C., SOMMER, P., AND WATTENHOFER, R. 2009b. Optimal clock synchronization in networks. In

Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys). ACM, New

York.

LOCHER, T. 2009. Foundations of aggregation and synchronization in distributed systems. Ph.D. dissertation,

ETH Zurich.

LOCHER, T., AND WATTENHOFER, R. 2006. Oblivious gradient clock synchronization. In Proceedings of the
20th International Symposium on Distributed Computing (DISC). 520–533.

LUNDELIUS WELCH, J., AND LYNCH, N. 1984. An upper and lower bound for clock synchronization. Inf.
Cont. 62, 2/3, 190–204.

MARÓTI, M., KUSY, B., SIMON, G., AND LÉDECZI, Á. 2004. The flooding time synchronization protocol.

In Proceedings of the 2nd ACM Conference on Embedded Networked Sensor Systems (SenSys). ACM,

New York, 39–49.

MEIER, L., AND THIELE, L. 2005. Brief announcement: Gradient clock synchronization in sensor networks.

In Proceedings of the 24th Annual ACM Symposium on Principles of Distributed Computing (PODC).
ACM, New York, 238.

MILLS, D. 1991. Internet time synchronization: The network time protocol. IEEE Trans. Commu. 39, 1482–

1493.

MOSES, Y., AND BLOOM, B. 1994. Knowledge, timed precedence and clocks. In Proceedings of the 13th
Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM, New York, 294–303.

OSTROVSKY, R., AND PATT-SHAMIR, B. 1999. Optimal and efficient clock synchronization under drifting

clocks. In Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing
(PODC). ACM, New York, 400–414.

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

8:42 C. LENZEN ET AL.

PALCHAUDHURI, S., SAHA, A. K., AND JOHNSON, D. B. 2004. Adaptive clock synchronization in sensor

networks. In Proceedings of the 3rd ACM/IEEE International Symposium on Information Processing in
Sensor Networks (IPSN). ACM, New York, 340–348.

PATT-SHAMIR, B., AND RAJSBAUM, S. 1994. A theory of clock synchronization. In Proceedings of the 26th
Annual ACM Symposium on Theory of Computing (STOC). ACM, New York, 810–819.

SOMMER, P., AND WATTENHOFER, R. 2009. Gradient clock synchronization in wireless sensor networks.

In Proceedings of the 8th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). ACM, New York, 37–48.

SRIKANTH, T. K., AND TOUEG, S. 1987. Optimal clock synchronization. J. ACM 34, 3, 626–645.

RECEIVED JULY 2008; REVISED SEPTEMBER 2009; ACCEPTED SEPTEMBER 2009

Journal of the ACM, Vol. 57, No. 2, Article 8, Publication date: January 2010.

