
Efficient Distributed Source Detection
with Limited Bandwidth

Christoph Lenzen
Massachusetts Institute of Technology

32 Vassar Street
02139 Cambridge, USA

clenzen@csail.mit.edu

David Peleg
Dept. of Computer Science and Applied Math.

Weizmann Institute of Science
76100 Rehovot, Israel

david.peleg@weizmann.ac.il

ABSTRACT
Given a simple graph G = (V,E) and a set of sources S ⊆ V ,

denote for each node v ∈ V by L(∞)
v the lexicographically

ordered list of distance/source pairs (d(s, v), s), where s ∈ S.
For integers d, k ∈ N∪{∞}, we consider the source detection,
or (S, d, k)-detection task, requiring each node v to learn the

first k entries of L(∞)
v (if for all of them d(s, v) ≤ d) or all

entries (d(s, v), s) ∈ L(∞)
v satisfying that d(s, v) ≤ d (oth-

erwise). Solutions to this problem provide natural general-
izations of concurrent breadth-first search (BFS) tree con-
structions. For example, the special case of k =∞ requires
each source s ∈ S to build a complete BFS tree rooted at
s, whereas the special case of d = ∞ and S = V requires
constructing a partial BFS tree comprising at least k nodes
from every node in V .

In this work, we give a simple, near-optimal solution for
the source detection task in the CONGEST model, where
messages contain at most O(logn) bits, running in d + k
rounds. We demonstrate its utility for various routing prob-
lems, exact and approximate diameter computation, and
spanner construction. For those problems, we obtain algo-
rithms in the CONGEST model that are faster and in some
cases much simpler than previous solutions.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
algorithms, Path and circuit problems; C.2.4 [Computer-
Communication Networks]: Distributed Systems

Keywords
concurrent incomplete breadth-first search; distance and di-
ameter computation; all-to-all shortest paths; compact rout-
ing; additive spanners; Bellmann-Ford

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PODC’13, July 22–24 2013, Montréal, Québec, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

This work concerns a basic network-algorithmic task here-
after referred to as the source detection or (S, d, k)-detection
task. Given a subset S ⊆ V of source nodes and a node
v ∈ V , let L(∞)

v denote the (ascending) lexicographically
ordered list of pairs (d(v, s), s), where s ∈ S and d(v, s) is
the length of a shortest path from v to s. The (S, d, k)-
detection problem requires that each node v ∈ V learns the
first min{k, λdv} entries of L∞v , where λdv is the number of
sources s ∈ S satisfying that d(s, v) ≤ d. The paper devel-
ops a time efficient algorithm for this task in the CONGEST
model, and illustrates its usefulness by discussing some of its
applications.

To motivate the source detection task, and illustrate its
scope of applicability, let us discuss two application domains
where this task can be utilized. The first is the construction
of shortest-path spanning trees, which is one of the most fun-
damental problems in algorithmic graph theory. Shortest-
path spanning trees, and breadth-first search (BFS) trees
in the special case of unweighted graphs, play a key role in
a wide variety of applications in graph algorithms, commu-
nication networks, distributed and parallel computing, and
many other areas of computer science. In many cases one
is interested in but one complete shortest path (or BFS)
spanning tree. Nevertheless, frequently some other variant
is in demand. In particular, for certain applications one is
interested in finding all shortest path trees (or BFS trees)
of the given graph, one for each source node. In other ap-
plications, one is interested in a partial shortest path tree
(or BFS tree), e.g., one spanning all nodes at distance up
to d from the source. A basic task encompassing all of the
above variants of the problem is the multiple source partial
BFS trees problem. This problem is characterized by two
parameters: a subset S ⊆ V of source nodes, and an integer
d. The problem is to construct, for each source node s ∈ S,
a partial BFS tree T ds spanning all the nodes at distance at
most d from s. Clearly, this problem can be cast as a special
case of the source detection task.

A second application domain concerns fault-tolerant cen-
ters and facility location problems. Consider a setting where
it is necessary to place some service centers, or production
facilities, in some of the nodes of the graph at hand. Those
centers are planned to provide certain crucial services to
some other nodes of the network, acting as clients. A client
v ∈ V selects the nearest server, ϕ(v), and gets served by
that server. Hence the relevant efficiency measure is the
distance d(v, ϕ(v)) from v to its designated server (or some-
times the product of that distance times the demand issued

by v). Hence it is important to optimize the spread of servers
in the network. The problem of selecting locations for cen-
ters or facilities is typically NP-hard, and is not considered
here. Rather, we are concerned with the situation after a set
S of service centers has already been fixed. Let us further
concentrate on a scenario where service centers might occa-
sionally fail, forcing their clients to re-compute their choice
of a temporary designated server. In network settings, where
such failures occur frequently, it may be important to de-
vise an efficient distributed algorithm for re-computing the
assignment of centers to clients. In particular, one solution
approach would be to prepare to the eventuality of (up to
f) failures of centers by requiring each client node to learn
in advance a list of the f + 1 service centers closest to it,
so that in case some of its closest centers fail, it may switch
without delay to using the next closest center. (Here we as-
sume that failures make a center incapable of providing ser-
vice, but the associated network node can still be used for
communiation.) This fault-tolerant centers problem maps
to (S,∞, f + 1)-detection. If, in addition, clients refuse us-
ing very distant centers, then a threshold d, which is smaller
than the diameter D of the network (namely, the maximum
distance between network nodes) may be imposed on the
maximum allowed service distance, yielding an instance of
the (S, d, f + 1)-detection problem.

The complexity of the source detection task clearly de-
pends on the model at hand. Here we focus on the CON-
GEST model (cf. [19]), formally defined in Section 3, which
takes bandwidth limitations into account. The source de-
tection task has a straightforward optimal algorithm in a
distributed model with no bandwidth limitations, such as
the LOCAL model (which is identical to the CONGEST
model except that it imposes no restrictions on the size of
messages). Our main goal in this paper is to develop a time-
efficient distributed algorithm for the (S, d, k)-detection task,
and in turn, for the multiple source partial BFS trees prob-
lem, in the CONGEST model, where bandwidth is limited.
It is noteworthy that as a byproduct of our technique, one
may also compute for every node v the next hop on the
shortest paths to its sources. This makes our algorithm a
powerful tool for computing or approximating the network
diameter, routing, and many other related tasks.

Contributions
Our main contribution is the introduction of the basic para-
digm of (S, d, k)-detection in networks and an efficient dis-
tributed algorithm for solving it in the CONGEST model
in time min{d,D} + min{k, |S|} (Section 4). In contrast,
solving (S, d, k)-detection using existing techniques results
in time complexity Ω(|S|). Hence, we obtain improvements
of Θ(n) for extreme cases (where n is the number of nodes in
the network). Note that the time complexity of our solution
is not asymptotic, and the dependency on d and k is optimal
due to a trivial lower bound. (With respect to k this bound
requires that only one identifier fits into a message; other-
wise the lower bound, as well as the upper bound of the algo-
rithm, decrease by the respective factor in the k-summand.)
Even for the special case of (S,∞,∞)-detection (or, equiv-
alently, (S,D, n)-detection), the appealing simplicity of our
approach therefore results in (1+o(1))-optimal solutions for
several tasks granted that logD ∈ o(logn).1 While this is a

1Otherwise the size of distance counters is not negligible,
and we can conclude asymptotic optimality only.

mere constant-factor improvement over the results from [15,
20], we consider it valuable because it affects the complexity
of some fundamental tasks.

We further motivate this result by leveraging it for appli-
cations in Section 5:

• All-to-all shortest paths and diameter: Each
node needs to learn the distance and next routing hop
to each other node. From this information one can
also compute the diameter in O(D) time. Variations
of this problem result from considering different wake-
up mechanisms. In all cases, we obtain a deterministic
(n+O(D))-round solution.

• 3/2-approximation of the diameter: The task is

to compute an estimate D̃ of the diameter in the range
[2D/3, D]. Utilizing our solution for (S, d, k)-detection,
this can be done by a randomized algorithm within
O(
√
n logn+D) rounds.

• Approximation of all-to-all shortest paths: Here
it is required to construct a mechanism allowing all
nodes to determine the next routing hop on a path that
is at most by some multiplicative stretch factor longer
than a shortest path to the destination. Furthermore,
we allow assigning (new) labels to the nodes, replacing
their identifiers, as otherwise nodes cannot learn the
entire namespace quickly. For any γ ∈ {1, . . . , logn},
it is possible to construct such a mechanism ensuring
stretch O(γ) by a randomized preprocessing algorithm

requiring Õ(n1/2+1/γ +D) rounds.2

• Compact Routing: The task is the same as in the
previous case, but we now also ask for low memory
requirements by the routing tables. We can construct
such compact routing tables achieving stretch O(γ2)

and using O(n1/γ logO(1) n) memory by a randomized

preprocessing algorithm requiring Õ(n1/2+1/(2γ) + D)
rounds.

• Constructing 2-additive spanners: We seek to se-
lect a small subset of the edges so that in the result-
ing graph, distances do not increase by more than 2.
We obtain a randomized construction of running time
O(
√
n logn + D) that produces 2-additive spanners

with O(n3/2 logn) edges.

For all the listed tasks, previous solutions exist, but are
slower than the ones we provide. In addition, in many cases
our approach simplifies the resulting algorithms. All ran-
domized constructions succeed with high probability.

Before presenting our algorithm for (S, d, k)-detection, we
discuss related work in the following section and introduce
the system model in Section 3.

2. RELATED WORK
The all-pairs shortest path (APSP) problem has been

studied extensively in the sequential setting, and was also
given several solutions in the distributed setting [3, 8, 14,
16, 23]. The algorithm of [16] is fast (O(n) time) but in-
volves using large messages, hence does not apply in the
CONGEST model. The algorithm of [3] uses short (O(logn)

2Here, the Õ(x) notation hides any polylogarithmic factors
in x.

bits) messages, hence it can be executed in the CONGEST
model, but it requires time O(n logn), and moreover, it ap-
plies only to the special family of BHC graphs, which are
graphs structured as a balanced hierarchy of clusters. Most
of the distributed algorithms for the APSP problem aim at
minimizing the message complexity, rather than the time.
The algorithm of [14] requires time O(n2).

In the CONGEST model, a trivial lower bound of Ω(n) ap-
plies, which has independently been asymptotically matched
by two algorithms [15, 20]. Our solution improves on these
works in that we achieve an optimal multiplicative constant
with respect to n.

Note that the network diameter can easily be computed
exactly by first solving the APSP problem. It was shown in
[12] that, in the CONGEST model, computing the exact di-

ameter requires time Ω̃(n); this nontrivial lower bound holds
even for networks of constant diameter. Hence these results
also imply near-optimal algorithms for computing the exact
diameter in the CONGEST model. In the LOCAL model,
computing the diameter exactly trivially requires exactly D
rounds (using large messages). An efficient algorithm for
doing this in O(D) rounds (using O(n logn) bit messages)
is found in [2].

Similar to the exact setting, an approximation of the di-
ameter can be obtained by any algorithm that computes
an approximation of APSP (see for example [4, 9, 10]).
A sequential algorithm that approximates the diameter in
weighted directed graphs in Õ(n2 + |E|

√
n) steps was pre-

sented in [1]. This algorithm returns an acyclic path of
length at least 2D/3. It has been leveraged for computing
a distributed 3/2-approximation in the CONGEST model

in Õ(
√
nD) randomized rounds [20]. An algorithm that

computes a (1 + ε)-approximation of the diameter in time
O(n/D+D) was presented in [15], and combining these two
algorithms yielded a randomized 3/2-approximation within

time O(n3/4 + D). This running time was very recently

improved to Õ(
√
n + D) by the authors of [15, 20], rely-

ing also on a new result of [22]. The same result follows
from our technique, solely relying on the original algorithm
from [1], and with a smaller leading constant factor. These
results are tight up to a factor of O(log2 n), as is shown in
[12]: even approximating the diameter by a factor of 3/2− ε
may sometimes require Ω̃(

√
n) time, for any constant ε > 0.

(In contrast, a 2-approximation for D is easily computed in
time O(D) by constructing one BFS tree and measuring its
depth.)

Our results with respect to approximation of all-to-all
shortest paths build on recent results for this problem in
weighted graphs [18]. Specialized to the unweighted case,
our solution to (S, d, k)-detection can replace a subroutine
from [18] in order to achieve a stretch of O(γ) within time

Õ(n1/2+1/γ + D). This notably improves the trade-off be-
tween stretch and running time; for the same running time
bound, the stretch guarantee is O(γ log γ) for the algorithm
from [18]. In contrast to the results discussed above, this
non-constant improvement of the running time cannot be
achieved by previous algorithms for building multiple BFS
trees concurrently. The latter is due to the fact that the
algorithm from [18] requires to build partial trees only, i.e.,
k � n in the corresponding instances of (S, d, k)-detection.
The same holds for our statement on compact routing, where
we also build on [18]; however, [18] itself does not pro-

vide a result regarding compact routing, as we need to ex-
ploit that distances are unweighted in order to store routing
paths efficiently in a distributed manner. Both the shortest
paths and the compact routing problems have been stud-
ied extensively (cf. [4, 6, 13, 17, 19, 21, 24] and references).
However, most previous work on these problems either fo-
cused on efficient performance (stretch, memory) and ig-
nored the time-efficiency of the preprocessing stage, pro-
vided time-efficient seqential (centralized) preprocessing al-
gorithms, or gave time-efficient distributed algorithms in the
LOCAL model (which allows unbounded message size).

There are essentially three known constructions for addi-
tive spanners. Constructions for 2-additive spanners with
O(n3/2) edges were presented and expanded in [1, 9, 11,
21, 25]. An efficient construction for 6-additive spanners

with O(n4/3) edges was later presented in [5]. Recently,

a construction for 4-additive spanners with O(n7/5) edges
was presented in [7]. In the distributed case, the construc-
tion for 2-additive spanners requires to concurrently build
Õ(
√
n) complete BFS trees. Hence, it can be implemented

in the CONGEST model utilizing the results from [15] in

Õ(
√
n+D) randomized rounds. Again, employing our rou-

tine yields the same result, but with a smaller multiplicative
constant in the dominating term of the running time.

3. MODEL
We follow the CONGEST model as described in [19]. The

distributed system is represented by a simple, connected
graph G = (V,E) of n = |V | nodes. Each node v ∈ V has
a unique identifier of O(logn) bits that we identify with the
node, i.e., v denotes both the node and its identifier. Com-
munication is synchronous; in each round, each node v ∈ V
can send a (possibly distinct) message comprising O(logn)
bits to each of its neighbors Nv = {w ∈ V | {v, w} ∈ E}.
Initially, node v ∈ V is aware of Nv only. In the case of
randomized algorithms, each node has access to an indepen-
dent, infinite, and unbiased source of random bits.

We use the following additional notation. A path p of
length d is a sequence of nodes (v0, . . . , vd) satisfying that
{vi−1, vi} ∈ E for all i ∈ {1, . . . , d}. For v, w ∈ V , let
d(v, w) denote the minimal length of any path from v to w.
The diameter of the graph is then D = maxv,w∈V {d(v, w)},
the maximum distance between nodes in the graph.

We consider a setting where a subset S ⊆ V of the nodes
in the graph is marked as source nodes. In the distributed
context, each node v maintains a variable sv set to sv = v
if v ∈ S and sv = ⊥ otherwise. Given a node v ∈ V , the

S-proximity-list (or simply S-list) of v, denoted L(∞)
v , is the

(ascending) lexicographically ordered list of pairs (d(v, s), s),
for every s ∈ S. Here, by ascending lexicographical order we
mean that (d(v, s), s) < (d(w, s′), s′) iff d(v, s) < d(w, s′) or
d(v, s) = d(w, s′) and s < s′ (where the latter is determined
by an order on the node identifiers). For an integer d > 0,
denote the prefix of v’s S-proximity-list consisting of the

sources at distance at most d from v by L(d)
v = {s ∈ S |

d(v, s) ≤ d}, and let λdv = |L(d)
v |.

4. DETECTING NEARBY SOURCES
In this section, we present an efficient deterministic algo-

rithm for the source detection task. The (S, d, k)-detection
problem requires that each node v ∈ V learns the first

min{k, λdv} entries of L(∞)
v (i.e., either all sources up to dis-

tance d or just the k closest ones, if there are too many).
In absence of restrictions on bandwidth, the straightfor-

ward distributed implementation of the classical Bellmann-
Ford algorithm matches the requirements of this problem
perfectly. Each node v maintains a list Lv of the distance/
source pairs that it knows about. The list is initially empty
if sv = ⊥ and contains (0, sv) otherwise. In each round, each
node v broadcasts Lv. Upon reception of such a message,
for each received pair (ds, s) for which there is no own pair
(d′s, s) ∈ Lv, it adds (ds+1, s) to Lv. After d rounds, v knows
the sources within distance d from itself, and their correct
distance; thus it is able to order the source/distance pairs
correctly. This approach results in concurrently construct-
ing BFS trees for all sources s ∈ S up to depth d. (Note
that the algorithm as presented does not store the parent of
each node, but the respective modification is trivial.)

The situation gets more involved if nodes may only send
O(logn) bits in each round, as this implies that they can
communicate only a constant number of entries out of each
list per round. Trivially, one can simply dedicate |S| rounds
to the simulation of a single round of the unconstrained al-
gorithm. This results in a running time of O(|S|d) for an
algorithm solving (S, d, k)-detection for arbitrary k. More
generally, sending only the k ∈ N smallest distance/source
pairs (according to the lexicographical order) solves (S, d, k)-
detection in kd rounds (cf. [18]).

Observe, however, that a trivial lower bound of d+ k − 1
holds if one can send only one identifier per round. To see
this, consider a chain of nodes of length d − 1 and append
k sources to one of its endpoints; since the other endpoint
needs to receive the k source identifiers sequentially and the
first one arrives no earlier than round d, the lower bound
follows.

In light of this lower bound, the question arises whether
one can solve the task in O(d+k) rounds in the CONGEST
model. Clearly, such an improved time bound requires a
more sophisticated strategy, as resending the entire list Lv
is wasteful if there are no relevant updates. In [15, 20], n
BFS constructions are started in a staggered fashion, es-
sentially ensuring that on each round, at most one update
needs to be sent on every edge. In [15], a second algorithm
resolves this issue slightly differently, by giving the updates
preference according to the (total) order of source identi-
fiers and requiring that in each iteration only one update is
transmitted over each edge, i.e., for nodes v and w ∈ Nv
either v sends an update to w or vice versa, not both. It
is shown that this ensures that each node will receive ac-
curate distance information for each source with the first
update it receives regarding the respective source. Neither
of these strategies is sufficient to achieve a complexity bound
of O(d + k) for the (S, d, k)-problem for the entire range of
parameters, though, as they use the identifiers as the pri-
mary means of ordering, rather than the distances.

Consequently, in this paper we use the arguably even sim-
pler mechanism that assigns priorities according to distance:
In each round, each node v just sends to all neighbors the
smallest pair in Lv that it has not transmitted yet. Note
that this entails that a node might possibly send multiple
updates regarding the same source, each notifying its neigh-
bors that it learned that the respective source is in fact closer
to it than previously announced. The pseudo-code of this
approach is given by Algorithm 1.

We first establish correctness of the algorithm, by arguing
that eventually the lists Lv do not change any more, and this
final state must satisfy that all source/distance pairs reflect
actual distances in G. In order to formalize this statement,

denote by L
(r)
v the state of Lv at the beginning of round

r ∈ N of the algorithm.

Lemma 4.1. For any graph and any S ⊆ V , there is some
round r0 ∈ N such that no node v ∈ V sends messages or

modifies Lv in rounds r ≥ r0. Moreover, L
(r0)
v = L(∞)

v , i.e.,

ds = d(v, s) for every (ds, s) ∈ L(r0)
v .

Proof. Each list is initially empty or contains some pair
(0, s). For a source s ∈ S and round r ∈ N, define

dmax(s, r) = max{ds ∈ N | ∃v ∈ V : (ds, s) ∈ L(r)
v }.

Clearly, dmax(s, r+ 1) ≤ dmax(s, r) + 1, and in case of equal-

ity, some node v that did not have any pair (ds, s) ∈ L(r)
v

added such a pair to Lv in round r. Hence, dmax(s, r) is
uniformly bounded by n− 1 for all s and r. It follows that
each node v ∈ V modifies its variables only finitely often:
For each s ∈ S, it can add at most n− 1 pairs (ds, s) to Lv
during the course of the algorithm, and for each pair, it will
initialize sentv(ds, s) to false and set it to true at most
once.

Now consider a round r in which no node modifies the
contents of its variables; we just showed that such a round
exists. In particular, no node sends a message (as this results
in modifying the respective sent variable), implying that the
same must hold for the next round (because no node v had
an unsent entry in Lv, and contents of variables did not
change). Consequently, no node v adds an entry to Lv in
round r + 1, implying that no variables are changed in this
round either. Repeating this argument inductively, we see
that for the minimal round r0 in which no variables change,
it holds that the algorithm has reached a steady state in
which all local variables, in particular the lists Lv, become
invariant.

It remains to show that for all s ∈ S and v ∈ V it holds
that (d(v, s), s) ∈ L

(r0)
v (this is sufficient because (·, s) is

deleted from Lv before adding such an entry). We first prove

that we have (ds, s) ∈ L(r0)
v with ds ≤ d(v, s). To see this,

consider a shortest path (v0 = s, v1, . . . , vd(v,s) = v) from s
to v. Since s initializes Ls to (0, s) and sent(0, s) to false,
it will send (0, s) in the first round. We claim that each
node vi, i ∈ {1, . . . , d(v, s)}, will eventually receive a mes-
sage (di−1, s) with di−1 ≤ i − 1. This follows by induction
anchored at i = 1, where the step consists of observing that
if vi receives (di−1, s), it must have already sent or will even-
tually send a message (di, s) with di ≤ di−1 + 1.

To complete the proof, we now show that also ds ≥ d(v, s).
At initialization, the contents of all lists satisfy that they
represent accurate distance information, i.e., for the pairs
(0, s) ∈ Ls, s ∈ S, it holds that 0 = d(s, s). Hence, assume
for contradiction that the claim is false and suppose that v is
a node that adds (ds, s) with ds < d(v, s) to Lv in a minimal
round r ≥ 1. It follows that v received a message (ds − 1, s)
from some neighbor w ∈ Nv. Thus, this neighbor added
(ds − 1, s) to Lw in an earlier round (or at initialization).
However, since d(w, s) ≥ d(v, s)−1, it follows that there is an
earlier violation of the claim, contradicting the assumption
that r is minimal (or the observation that at initialization
the claim holds). Thus indeed ds = d(v, s) for all (ds, s) ∈
L

(r0)
v , v ∈ V , concluding the proof.

Algorithm 1: DBF(S): Distributed Bellmann-Ford at node v ∈ V . Each node initially only needs to know whether it is
in S itself. As stated, the algorithm does not terminate. The local termination condition depends on the application and
is discussed later on.

1 Lv := () // list of distance/source pairs (ds, s) ∈ N0 × S, lexicographically ordered
2 sentv : Lv → {true, false} // whether a pair in Lv has already been sent by v
3 if v ∈ S then
4 Lv := ((0, v))
5 sentv(0, v) := false

6 // each iteration of the loop takes one round
7 while true do
8 if ∃(ds, s) ∈ Lv : sent(ds, s) = false then
9 (ds, s) := argmin{(d′s, s′) ∈ Lv | sentv(d′s, s

′) = false}
10 send (ds, s) to all neighbors
11 sentv(ds, s) := true

12 for received (ds, s) from some neighbor do
13 if @(d′s, s) : d′s ≤ ds + 1 then
14 Lv := Lv \ {(·, s)} // remove outdated entry, if there is one
15 Lv := Lv ∪ {(ds + 1, s)}
16 sentv(ds + 1, s) := false

Since the algorithm accepts that we might “waste” mes-
sages by sending updates that contain incorrect distance in-
formation, we need to show that there are not too many
such wasted messages. As the previous lemma shows that
eventually the algorithm determines correct values, this can
be rephrased in terms of bounding the number of rounds for
which the k smallest entries of Lv might change. To this end,

for an entry (ds, s) ∈ L(r)
v , let `

(r)
v (ds, s) denote its index in

the (lexicographically ordered) list L
(r)
v .

Lemma 4.2. For every node v ∈ V and round r ∈ N of
Algorithm 1,

(i) v does not send a message (ds, s) with

(ds, s) + `(r)v (ds, s) < r

in round r,

(ii) v does not add a pair (ds, s) to Lv with

(ds, s) + `(r)v (ds, s) ≤ r

in round r.

Proof. Clearly, if (i) holds in round r ∈ N, then (ii) also
holds in round r because nodes increase ds by 1 upon adding
pairs to Lv. Moreover, (i) is trivially satisfied in round 1, as

`
(r)
v (ds, s) ≥ 1 for all v, ds, r, and s. Hence, in order to prove

the claim, assume for contradiction that there is a minimal
round r > 1 such that (i) is violated, while (ii) holds for all
rounds r′ < r.

Thus, some node v ∈ V sends a message (ds, s) with

ds + `(r)v (ds, s) < r

in round r. Note that ds 6= 0, i.e., (ds, s) is not one of the
entries of Lv at initialization since these are all sent in the
first round. This implies that v has added (ds, s) to Lv in

some round 1 ≤ r′ < r. Because `
(r)
v (ds, s) is non-decreasing

with r, we have that

`(r)v (ds, s) ≥ `(r
′)

v (ds, s).

By Statement (ii) for round r′, this entails that

r > ds + `(r)v (ds, s) ≥ ds + `(r
′)

v (ds, s) > r′,

yielding that in fact r′ ≤ r− 2 as the involved values are all
integer. Therefore, considering that v did not send (ds, s) in
round r−1 but in round r, it must have sent a different pair
(ds′ , s

′) in round r− 1. By Statement (i) for round r− 1, it
holds that

ds′ + `(r−1)
v (ds′ , s

′) ≥ r − 1.

However, since (ds′ , s
′) must be lexicographically smaller

than (ds, s), we have that

ds′ + `(r−1)
v (ds′ , s

′) < ds + `(r−1)
v (ds, s).

Overall, we arrive at the contradiction that

ds + `(r−1)
v (ds, s) > ds′ + `(r−1)

v (ds′ , s
′)

≥ r − 1

≥ ds + `(r)v (ds, s)

≥ ds + `(r−1)
v (ds, s),

where the last step once more applies the fact that `
(r)
v (ds, s)

is non-decreasing with r.

Together, both lemmas show that the algorithm is a near-
optimal solution to the (S, d, k)-detection problem.

Lemma 4.3. Given an instance of the (S, d, k)-detection
problem, for every v ∈ V and for any round r of an execution
of Algorithm 1 with

r ≥ r(S, d, k) = min{d,D}+ min{k, |S|},

L
(r)
v truncated to the (up to) k first entries (ds, s) ∈ L

(r)
v

with ds ≤ d solves (S, d, k)-detection.

Proof. Without loss of generality, d ≤ D (no source can
be further away) and k ≤ |S| (for any k ≥ |S| all nodes need
to learn about all sources). By Lemma 4.1, there is a round

r0 ∈ N such that for all v ∈ V and r′ ≥ r0, L
(r′)
v = L

(r0)
v =

L(∞)
v . By definition, the first (up to) k entries (ds, s) ∈ L(r0)

v

with ds ≤ d thus solve (S, d, k)-detection. By Lemma 4.2,
these entries do not change in any round r′ ≥ d + k =
r(S, d, k), completing the proof.

Theorem 4.4. Algorithm 1 solves (S, d, k)-detection in
time min{d,D}+ min{k, |S|}.

We conclude this section with two remarks. First, the
proof of Lemma 4.2 can be generalized to show that if up to
α ∈ N list entries are sent in each round, then node v will not

add pairs with (ds, s) + d`(r)v (ds, s)/αe ≤ r to Lv in round
r. Therefore, if α list entries may be sent, then (S, d, k)-
detection can be solved within min{d,D}+ dmin{k, |S|}/αe
rounds. Likewise, we have a trivial lower bound of d+dk/αe
for (S, d, k)-detection in this setting. Our technique is thus,
up to the bits encoding the distance information ds for an
entry (ds, s), optimal for the entire parameter range. In
particular, if logD ∈ o(logn), then it is (1 + o(1))-optimal
for arbitrary message size.

Secondly, the algorithm can be generalized to permit that
subsets of nodes are identified into a single “source cluster”
s ∈ S. This is done simply by passing all nodes v in cluster s
the input sv = s. The feasibility of this modification follows
from a simple simulation argument given in [18] that also
applies in the unweighted case.

5. APPLICATIONS
In this section, we present applications of our solution to

the generic (S, d, k)-detection problem.

Exact All-to-all Shortest Paths and Diameter
In the distributed version of the all-to-all shortest paths
problem, we require that each node v learns for each other
node w the next routing hop on a shortest path to w. This
is equivalent to constructing for each node v a BFS tree
rooted at it. The diameter then can be determined as the
maximum of the depths of the trees. These tasks can be
solved efficiently by means of Algorithm 1.

Corollary 5.1. All-to-all shortest paths routing tables
can be constructed in n+O(D) time by a uniform algorithm
(i.e., n and D are initially unknown to the nodes).

Proof. With a slight modification of Algorithm 1, con-
structing BFS trees rooted at the sources comes for free:
Instead of adding pairs (ds, s) to the list Lv, node v stores
triples (ds, s, p), where the sender p of the message (ds−1, s)
causing the triple to be stored becomes the parent of v in
the BFS tree rooted at s; p then is the next routing hop
from v to s.

To solve the problem, we first construct a single BFS tree
rooted at some node r (e.g., the one with smallest identifier),
determine its depth (i.e., a 2-approximation of D) and count
the number of nodes, and finally distribute these values to all
nodes. This can be done by standard techniques in O(D)
rounds (even with asynchronous wake-up). Subsequently
r initiates a run of (the modified version of) Algorithm 1
(another D rounds) with S = V that is stopped at all nodes

after n + D̃ rounds, where D ≤ D̃ ≤ 2D is twice the depth
of the BFS tree rooted at r. By Theorem 4.4, all nodes will
have accurate distance information on all other nodes, i.e.,
all constructed trees are indeed complete BFS trees.

Corollary 5.2. All nodes can learn the diameter D in
n+O(D) rounds, without any prior knowledge on n or D.

Proof. We construct for each node a BFS trees as in the
previous corollary. Note that along with their parent with
respect to each root, nodes store the distance to this parent.
We collect D = maxv∈V {maxs∈V {d(v, s)}} over the BFS
tree rooted at r and distribute it to all nodes. As this takes
at most 2D rounds, by the previous corollary the overall
running time is n+O(D).

3/2-Approximation of the Diameter
A deterministic centralized algorithm computing a 3/2-ap-
proximation to the diameter is given in [1]. A randomized
distributed implementation of this algorithm in the CON-
GEST model that runs in Õ(

√
nD) rounds with high prob-

ability3 (w.h.p.) is presented in [20]. This running time was

very recently improved to Õ(
√
n+D) by the authors of [15,

20], relying also on a new result of [22]. The same result fol-
lows from Algorithm 1 in a simpler way and with a smaller
leading constant factor.

Corollary 5.3. An estimate D̃ of the diameter D sat-
isfying that D ≤ D̃ ≤ 3D/2 can be computed by a uniform
randomized algorithm in O(

√
n logn+D) rounds w.h.p.

Proof. For a parameter σ ∈ {1, . . . , n}, the algorithm of
[1] operates as follows.

1. For each node v ∈ V , compute the partial BFS tree
consisting of the σ nodes closest to v.

2. Select a vertex v0 whose partial BFS tree is deepest.

3. For each node in the partial BFS tree of v0, construct
a complete BFS tree.

4. Select a subset W ⊆ V such that each node has a node
from W among its σ closest nodes.

5. For each node w ∈ W , construct the complete BFS
tree rooted at w.

6. Output 3/2 times the maximal depth of all constructed
partial and complete BFS trees.

As explained before, nodes can obtain n and a 2-approxima-
tion of D in O(D) rounds. Thus, each node can compute
the choice σ = d

√
n logne. By Theorem 4.4, running Algo-

rithm 1 with S = V for 2σ rounds (with the modification
from Corollary 5.1) is sufficient to determine, at each node,
the distances to the closest σ nodes; we will see that there is
no need to explicitly construct all partial BFS trees. Taking
the maximum such distance over all nodes, we can select and
publish v0 (using a convergecast over the distinguished BFS
tree we already used to determine n and a 2-approximation
D̃ of D). Since v0 already knows its closest σ nodes and
the next hop on a shortest path to them, informing all σ
nodes in its partial subtree of their membership can be per-
formed within another 2σ rounds (the depth of the tree is
at most σ and at most σ messages need to be sent over each
edge). Completing the third step of the algorithm thus can
be done by calling Algorithm 1 with the nodes in the partial
BFS tree of v0 as source set S and terminating the instance
after σ + D̃ rounds.

For the fourth step, we simply select each node with uni-
form and independent probability O(logn/σ). As each node

3That is, with probability at least 1− 1/nc for an arbitrary
predefined constant c > 0.

could be covered by σ + 1 nodes, by Chernoff’s bound all
nodes are covered and |W | ∈ Θ(n logn/σ) w.h.p. Conse-
quently, Theorem 4.4 shows that running Algorithm 1 a
third time with source set W for O(n logn/σ) + D̃ rounds
will, w.h.p., for each w ∈ W correctly construct the com-
plete BFS tree rooted at w. Finally, the last step of the
algorithm is done by a convergecast and flooding on the ini-
tially constructed distinguished BFS tree.

Overall, we obtain a running time of O(σ + n logn/σ +

D̃) = O(
√
n logn + D) w.h.p. Since, w.h.p., our algorithm

performs the same steps as a correct execution of the central-
ized algorithm of [1], the approximation ratio follows from
the analysis of [1].

Approximation of All-to-All Shortest Paths
In [18], it is shown how to distributedly construct routing
tables for approximate all-to-all shortest path, where the
actual routing path may be longer than an optimal one by
a multiplicative stretch. The bounds in [18] hold for the
weighted case, i.e., there is a non-negative cost incurred by
each traversed edge. A central subroutine employed in this
work is a solution to (S, d, k)-detection with certain parame-
ters, and the utilized subroutine is the aforementioned triv-
ial translation of the Bellmann-Ford algorithm to the CON-
GEST model of running time O(dk). As a result, [18] needs
to overcome the obstacle of the multiplicative running time
by a fairly involved construction. This comes at a cost: For
an overall running time bound of Õ(n1/2+1/γ+D), the algo-
rithm incurs a stretch of O(γ log γ) and has the disadvantage
that the destination’s label must be known in order to find
a routing path of bounded stretch;4 the latter issue can be
resolved, however only by suffering a much larger stretch of
O(γ3). For the unweighted case, the improved performance
of Algorithm 1 permits to construct the required structure,
ensuring a stretch of O(γ), in Õ(n1/2+1/γ +D) rounds.

Corollary 5.4. In Õ(n1/2+1/γ+D) rounds, one can as-
sign a unique label ψ(v) of size O(logn) to every node v and
construct routing tables, so that for each label ψ, w.h.p. the
routing tables indicate a routing path to the node w with
ψ(w) = ψ that is at most a factor O(γ) longer than the
shortest path between v and w. Moreover, the set of labels is
{1, . . . , n}.

Proof. The construction in [18] combines a short-range
and a long-range scheme. Using Algorithm 1 one can reduce
the number of levels in the hierarchical short-range scheme
to one as follows. The goal of the short-range construction
is to provide a (small) top-level set of skeleton nodes S and,
for each pair of nodes v, w ∈ V that are not sufficiently far
apart to suffer only a constant stretch when routing via the
closest nodes in S, to provide appropriate routing paths.

The set S is a uniformly random subset of V and there-
fore, if each node knows how to route to the O(n logn/|S|)
nodes closest to it, there will be a node from S among these
w.h.p. With Algorithm 1 at hand, we can achieve this in
O(n logn/|S|) rounds using source set V (as already used
in the proof of Corollary 5.3). If node v now cannot route
to some node w using this information, it follows that its
closest node sv ∈ S is closer than w. Moreover, the clos-
est node sw ∈ S to w satisfies that d(w, sw) ≤ d(w, sv) ≤
4The algorithm needs to assign new labels to the nodes, as
otherwise it is infeasible to achieve a running time that is
sublinear in n on all graphs of D ∈ o(n) [18].

d(v, w) + d(v, sv) ≤ 2d(v, w); another application of the tri-
angle inequality shows that d(sv, sw) ≤ 4d(v, w). Therefore,
routing via sv and sw incurs a constant stretch.

The remaining ingredients to the routing scheme (relabel-
ing of the nodes and constructing the routing paths from v
to sv, sv to sw, and sw to w) can be taken from [18] without
modification (where we use the variant that assigns labels
1, . . . , n from Theorem 5.9). In particular, the issues regard-
ing the constructed labels that arise from the use of multiple
levels in the short-range scheme are trivially resolved.

Compact Routing Tables
In [18], a variant of the routing scheme is used to compute

distance sketches of size O(n1/γ logO(1) n), computing la-
bels such that each node v, given the label ψ(w) of another
node w, is capable of computing an O(γ2) approximation
of the distance d(v, w). Because [18] considers weighted
distances, the approach does not yield full-fleged, memory-
efficient routing tables. The main obstacle preventing this is
that in the weighted case, if a shortest path from v to a node
w that is one of its k closest sources within d hops goes via
u ∈ Nv, this does not imply that w is among the k closest
sources within d hops of u as well: Since edge weights are
arbitrary, there could be a lot of sources that are exactly
d and d + 1 hops away from u and v, respectively, but are
among the sources closest to u in terms of weighted distance.
This requires storing routing pointers for each iteration of
the used variant of the Bellman-Ford algorithm, resulting in
memory requirements of Θ̃(dk).

This is not true for the unweighted case: If u is the next
hop on a shortest path from v to w, and (d(u,w′), w′) <
(d(u,w), w) (i.e., w′ is closer to u than w), then it follows
that (d(v, w′), w′) ≤ (d(u,w′) + 1, w′) < (d(u,w) + 1, w) =
(d(v, w), w). Thus, if w is among the k sources closest to
v and u is the next routing hop according to (the modified
version of) Algorithm 1, then w is also among the k sources
closest to v. Hence, storing routing pointers for the k first
entries of the final lists Lv when calling (the modified version
of) Algorithm 1 is sufficient for routing purposes.

Corollary 5.5. For any integer γ ∈ {1, . . . , logn}, in

Õ(n1/2+1/(2γ) + D) rounds it is possible to compute labels
of size O(γ logn) for each node and routing tables of size

O(n1/γ logO(1) n) with respect to these labels at each node v
that enable routing with stretch O(γ2) w.h.p.

Proof. We follow the strategy of Theorem 5.1 from [18],
augmenting the distance sketches by the required routing
information (cf. Corollary 4.20 in [18]). For routing, one
needs to store the next routing hop for each node detected
by a call to (the modified) Algorithm 1, which by the above

reasoning requires up to O(n1/γ logO(1) n) memory bits for

each of the γ ≤ logn calls, and O(γ logO(1) n) bits in order
to permit routing from the nodes that are higher in the
hierarchy to the nodes for which they serve as landmarks (see
[18] for details; this component remains unchanged).

2-Additive Spanners
A spanner for a given network is a (sparse) spanning sub-
graph enjoying certain useful properties. Spanner construc-
tions are often based on building (complete or partial) BFS
trees in the network. As a concrete example, consider addi-
tive spanners. An α-additive spanner H for the graph G is

a spanning subgraph with the property that for every two
nodes v and w the distance between v and w in H is at most
α greater than their distance in G.

The well-known construction for 2-additive spanners [1,
9] is based on two main components. The first involves
including in the spanner H all edges incident to nodes of
degree at most

√
n. This is a local step requiring no com-

munication. The second component requires selecting (say,
uniformly at random) a set of nodes M in the graph, of size
|M | = O(

√
n logn), and constructing a (complete) BFS tree

from every source s ∈ M . This part of the distributed con-
struction dominates the total cost. A naive distributed im-
plementation for this construction in the CONGEST model
might cost O(D

√
n logn) time in an n-node network of di-

ameter D. Using the techniques of [15], the distributed
time complexity of 2-additive spanner construction can be
reduced to O(

√
n logn+D). The same time bound (with a

better leading constant) can be achieved using our efficient
procedure for multiple source partial BFS tree construction.

Corollary 5.6. For any graph G, an additive 2-spanner
of G can be constructed in the CONGEST model within
O(
√
n logn+D) rounds w.h.p.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant Nos. CCF-AF-0937274,
CNS-1035199, 0939370-CCF and CCF-1217506, the AFOSR
under Contract No. AFOSR Award number FA9550-13-1-
0042, the Swiss National Science Foundation (SNSF), the
German Research Foundation (DFG, reference number Le
3107/1-1), the Israel Science Foundation (grant 894/09), the
United States-Israel Binational Science Foundation (grant
2008348), the Israel Ministry of Science and Technology (in-
frastructures grant), and the Citi Foundation.

6. REFERENCES
[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.

Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM Journal on
Computing, 28(4):1167–1181, 1999.

[2] P. Almeida, C. Baquero, and A. Cunha. Fast
distributed computation of distances in networks. In
Proc. 51st Conf. on Decision and Control (CDC),
pages 5215–5220, 2012.

[3] J. Antonio, G. Huang, and W. Tsai. A fast distributed
shortest path algorithm for a class of hierarchically
clustered data networks. IEEE Transactions on
Computers, 41:710–724, 1992.

[4] S. Baswana and T. Kavitha. Faster algorithms for
approximate distance oracles and all-pairs small
stretch paths. In Proc. 47th Symp. on Foundations of
Computer Science (FOCS), pages 591–602, 2006.

[5] S. Baswana, T. Kavitha, K. Mehlhorn, , and S. Pettie.
Additive spanners and (α, β)-spanners. ACM
Transactions on Algorithms, 7(1), 2010. Article No. 5.

[6] S. Baswana and S. Sen. Approximate distance oracles
for unweighted graphs in expected O(n2) time. ACM
Transactions on Algorithms, 2:557–577, 2006.

[7] S. Chechik. New additive spanners. In Proc. 24th
Symp. on Discrete Algorithms (SODA), 2013.

[8] S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni,
and A. Petricola. Partially dynamic algorithms for
distributed shortest paths and their experimental
evaluation. Journal on Computers, 2:16–26, 2007.

[9] D. Dor, S. Halperin, and U. Zwick. All-pairs almost
shortest paths. SIAM Journal on Computing,
29(5):1740–1759, 2000.

[10] M. Elkin. Computing almost shortest paths. ACM
Transactions on Algorithms, 1:283–323, 2005.

[11] M. Elkin and D. Peleg. (1 + ε, β)-spanner
constructions for general graphs. SIAM Journal on
Computing, 33(3):608–631, 2004.

[12] S. Frischknecht, S. Holzer, and R. Wattenhofer.
Networks cannot compute their diameter in sublinear
time. In Proc. 23rd Symp. on Discrete Algorithms
(SODA), pages 1150–1162, 2007.

[13] C. Gavoille and D. Peleg. Compact and localized
distributed data structures. Distributed Computing,
16:111–120, 2003.

[14] S. Haldar. An ‘all pairs shortest paths’ distributed
algorithm using 2n2 messages. Journal of Algorithms,
24(1):20–36, 1997.

[15] S. Holzer and R. Wattenhofer. Optimal distributed all
pairs shortest paths and applications. In Proc. 31st
Symp. on the Principles of Distributed Computing
(PODC), pages 355–364, 2012.

[16] S. Kanchi and D. Vineyard. An optimal distributed
algorithm for all-pairs shortest-path. International
Journal Information Theories and Applications,
11(2):141–146, 2004.

[17] T. Kavitha. Faster algorithms for all-pairs small
stretch distances in weighted graphs. In Proc. 27th
Conf. on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages
328–339, 2007.

[18] B. Patt-Shamir and C. Lenzen. Fast Routing Table
Construction Using Small Messages [Extended
Abstract]. In Proc. 45th Symposium on the Theory of
Computing (STOC), 2013. Full version at
http://arxiv.org/abs/1210.5774.

[19] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[20] D. Peleg, L. Roditty, and E. Tal. Distributed
algorithms for network diameter and girth. In Proc.
39th Colloquium on Automata, Languages, and
Programming (ICALP), pages 660–672, 2012.

[21] L. Roditty, M. Thorup, and U. Zwick. Deterministic
constructions of approximate distance oracles and
spanners. In Proc. 32nd Colloquium on Automata,
Languages, and Programming (ICALP), pages
261–272, 2005.

[22] L. Roditty and V. Williams. Approximating the
diameter of a graph. CoRR, abs/1207.3622, 2012.

[23] A. Segall. Distributed network protocols. IEEE
Transactions on Information Theory, 29:23–35, 1983.

[24] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM, 52:1–24, 2005.

[25] M. Thorup and U. Zwick. Spanners and emulators
with sublinear distance errors. In Proc. 17th Symp. on
Discrete Algorithms (SODA), pages 802–809, 2006.

http://arxiv.org/abs/1210.5774

	Introduction
	Related Work
	Model
	Detecting nearby Sources
	Applications
	References

