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Abstract

Consider the following problem. An unknown number k of ants, initially located at the nest, searches
the plane for a treasure. The identical, deterministic ants take steps asynchronously, until eventually an
ant moves onto the location of the treasure. The only means to record the progress of the search is by
marking each explored grid point with a pheromone. It is well-known that ants have this capability, as
well as being able to determine the direction in which the nest lies.

Under these assumptions, we provide an extremely simple algorithm that is factor 5.5-optimal in
terms of the worst-case number of asynchronous rounds required to find the treasure. This shows that
the proposed mechanism of marking searched areas by pheromone is very powerful: Feinerman et al.
proved that, without it, ants need to be given a constant-factor approximation of k to achieve asymptotic
optimality, even when randomization is available.

1 Introduction

Their strength lying in numbers, ants need to be highly collaborative. Yet, despite the apparent simplicity
of individual ant behavior and substantial research efforts, we lack understanding of how ants jointly solve
tasks that exceed the capacity of individuals by far. Foraging, building, collecting, raising the offspring, and
carrying large objects are examples of tasks that not only require a large number of ants, but must also be
executed efficiently and reliably to ensure the survival of the colony.

In a recent paper, Feinerman et al. [3] approached one of these tasks, foraging for food, using distributed
computing theory as a lens. The hope here is that casting the problem into a simple model and examining
the performance algorithms can achieve in this abstract setting, one might identify algorithmic principles
employed by the ants. More concretely, the authors argued that, according to current knowledge, little or no
communication seems to take place between the foraging ants outside the nest, and therefore it should be
asked how the ants coordinate to search efficiently.

Rephrasing this question, they examined how many bits of information the ants need to receive before the
start of the search to find a food item hidden in the plane (after the auxiliary bits are determined) efficiently.
If the food is at distance at most D from the nest and there are k ants, clearly Ω(D + D2/k) rounds are
required (in expectation) to find the food: It takes Ω(D) steps for an ant to move to the food, and Ω(D2) grid
points need to be searched. If k and D are known, it is straightforward to match this bound asymptotically
by a randomized algorithm: each ant loops through (i) moving to a uniformly random grid point within
distance at most D from the nest and (ii) doing a spiral search covering Θ(D2/k2) grid points. Feinerman
et al. discuss how to generalize this approach by using a double loop (the outer loop increasing a guess of D
by factor 2 in each step) to work for unknown D; the inner loop can be dropped at the expense of accepting
to miss the treasure with arbitrarily small constant probability ε > 0. An advantage of such an algorithm
is its robustness to ant faults; since ants are identical and do not rely on communication, even if some ants
die, subsequent ants perform the search instead. However, the main result of [3] is that, for any constant
ε > 0, any O(log1−ε k)-competitive algorithm requires Ω(log log k) bits of auxiliary information. Since k
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is the only relevant piece of information that is known a priori, this translates to a constant approximation
of k—and the aforementioned algorithm works just as well with such an approximation.

Some aspects of the work by Feinerman et al. raise questions. First, while ants appear to be capable of
estimating the size of their colonly, it is not clear whether they have a notion of the number of ants that are
actually foraging. Is such a subroutine is really necessary for foraging? Second, the looping behavior of
their algorithms, in particular double loops, seems somewhat unlikely to evolve without necessity, and is not
backed up by observations. Considering the lower bound from [3], we believe it unlikely that such a fairly
involved, yet in its early stages probably inefficient foraging strategy could have evolved if other options
were available. And we know that this is indeed the case: ants are known to make use of pheromones,
permitting to communicate without any direct ant-to-ant interaction.

In this paper, we provide an extremely simple foraging algorithm that works asynchronously with iden-
tical ants, based on marking visited grid points (by pheromone). Our algorithm is deterministic and 5.5-
competitive, and simple modifications and use of randomization could potentially improve this ratio sig-
nificantly. While the approach is lacking robustness to “faults” (e.g., ants being eaten during the search),
we see it as proof-of-concept for the marking technique. It demonstrates that there is a simple mechanism
that avoids the complexity issue arising in the model of Feinerman et al., and therefore is a more promising
candidate for a naturally evolved algorithmic foraging mechanism.

Further Related Work. Other works solving ant/graph exploration fall into two main categories: the-
oretical work of graph exploration by single or multiple agents [1], [4], [5], and experimental results that
show how different exploration strategies compare to each other in specific models [2], [6].

In the first line of work, most of the results deal with specific types of graphs: in [1] the authors consider
solving the p-traveling salesman problem on a tree; in [4], the problem at hand is determining how many
agents are necessary to explore a line graph; in [5], the authors provide an algorithm and lower bounds for
the problem of collective exploration of a tree by multiple agents with different models of communication.

In the second line of work, the main results are established through simulation, so they do not provide
precise complexity bounds. The authors of [6] evaluate the performance of four different heuristics for
real-time search methods. Each of them is given by a limited local look-ahead rule which the agents use to
determine their next step in the search. Other experimental results focus on other biological species, like
honeybees [2], to determine the importance of communication during foraging in different situations.

2 Model

We consider an infinite two-dimensional square grid with coordinates chosen from Z2 with a predetermined
unique vertex s (the nest). For notational convenience, we assume that s = (0, 0), i.e., the origin. The grid
will be explored by identical, deterministic agents (ants) by visiting the vertices of the grid. Initially, all
k ∈ N ants are on vertex s. Ants can move to adjacent vertices, that is, the closest four grid points. When
an ant visits a vertex on the grid, the vertex is marked as visited (the ant releases a pheromone at that spot).
Each vertex of the grid may be occupied by multiple ants at the same time. We assume that the motion of
the ants in the grid and the arrival of new ants proceeds asynchronously. We measure the time complexity
of algorithms in terms of asynchronous rounds. Round i ∈ N is complete once all ants took at least r steps.

Our exploration algorithm is going to be deterministic and ants will decide on where to move next
independently, based on their local views. When an ant is at a given vertex in the grid, it can sense whether
the neighboring four vertices have been visited. Moreover, ants know the direction in which the nest s lies,
and can distinguish “right from left”, i.e., between turning clockwise and counter-clockwise. An algorithm
is given by a decision rule stating the move of an ant that takes a step solely based on the above information
(the order in which ants take steps is determined by an adversarial scheduler).

We hide a target (i.e., a food item) at some vertex t = (t1, t2). We say that the food is at distance
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Figure 1: Vertices (x1, y1) and (x1, y2) connected by an edge are located at the same distance from the
nest in the sense that max{|x1|, |y1|} = max{|x2|, |y2|}. In both figures, clock(x, y) is located at the same
distance as (x, y) and to the clockwise direction of it. In Figure (a), vertex (x, y) is not located in a corner,
so away(x, y) is located at distance one more than (x, y) from the nest. In Figure (b), vertex (x, y) is located
at a corner, so there are two neighboring vertices at distance one more that the distance of (x, y) from the
nest; therefore, away(x, y) is defined as just one of these vertices (always chosen consistently).

D := max{|t1|, |t2|} from the nest. The goal of an exploration algorithm is to find the food as quickly as
possible, i.e., move an ant onto vertex t in as few rounds as possible. Note that in order for a deterministic
algorithm to guarantee the target is visited, it has to search all vertices in the grid up to distance D. Therefore,
the same algorithm is also capable of locating multiple targets within distance D.

3 Algorithm

In this section, we present a very simple algorithm and we show that it performs optimally in terms of
the number of rounds needed to reach vertex t. Informally, at each step, each ant moves clockwise, if the
respective vertex has not been visited yet, and otherwise moves away from the nest. The pseudocode for the
algorithm is presented in Figure 1. The definition of the functions clock(x, y) and away(x, y) is illustrated
in Figure 1. We remark that the precise definition of away(x, y) is irrelevant, as long as the distance from
the nest is exactly by one larger than the one of (x, y).

Algorithm 1: Ant exploration algorithm for an ant located at vertex (x, y)

1 if clock(x, y) is not visited then move to clock(x, y) else move to away(x, y);

Analysis. We denote vertex (x, y) as spearhead, iff (x, y) is visited but clock(x, y) is not.

Lemma 1. At each time, all spearheads are occupied by ants.

Proof. Suppose (x, y) is a spearhead. Thus, (x, y) has been visited by some ant. If this ant has not taken
another step since it moved to (x, y), the claim of the lemma holds for this spearhead. Hence, assume for
contradiction that the ant took another step. It either moved to clock(x, y), thereby visiting clock(x, y), or
clock(x, y) was already visited when it took its step. In both cases, (x, y) is not a spearhead anymore.

Lemma 2. If an ant is at distance D from the nest, at most 8D rounds later all vertices at distance at most
D from the nest have been visited.

Proof. If an ant is at distance D from the nest, at least one vertex of each layer 1 ≤ d ≤ D has been visited.
Clearly, each such layer that has not been fully explored yet contains a spearhead. By Lemma 1, on each
spearhead (x, y) we have an ant. After one asynchronous round, clock(x, y) will be visited (either because
the ant on the spearhead moves there or another one does first). Hence, in each layer d ≤ D that is not fully
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explored yet, in each round at least one new vertex will be explored. As layers at distance d ≤ D from the
nest have at most 8D vertices, the claim of the lemma follows.

Theorem 3. The number of rounds needed for the algorithm to terminate is smaller than 9D+4D(D+1)/k.
This is optimal up to factor 5.5.

Proof. Initially, the number of unvisited vertices at distance at most D from the nest is exactly
∑D

d=1 8d =
4D(D + 1). In each asynchronous round, each ant increases its distance from the nest or explores a new
vertex (and does not decrease its distance from the nest). Therefore, after D+4D(D+1)/k rounds, there is
an ant at distance at least D from the nest. By Lemma 2, at most 8D asynchronous rounds later, all vertices
at distance D from the nest are explored. Hence the treasure must have been found.

To show the bound on the competitive ratio, observe that, in the worst case, it takes at least (i) 2D
asynchronous rounds to reach, e.g., vertex (D,D) and (ii) d4D(D + 1)/ke rounds to explore all vertices at
distance at most D from the nest. If 2D ≥ 4D(D + 1)/k, then 9D + 4D(D + 1)/k ≤ 11D = 11/2 · 2D.
Otherwise, 9D + 4D(D + 1)/k ≤ 11/2 · 4D(D + 1)/k.

We remark that requiring ants to also explore the grid in counter-clockwise direction reduces the com-
petitive ratio to 3.5, but requires more careful reasoning. Moreover, the arguments for the lower bound are
simplistic. The type of algorithms we consider is restricted to memoryless agents with a local view, which
entails that (except for the first few ants) randomization or some other means of symmetry breaking is nec-
essary to send the ants into different directions from the nest. We conjecture that without such symmetry
breaking information, it is not possible to improve the competitive ratio further.

4 Further Research Questions

So far we have only considered simple deterministic algorithms. If we use randomization together with
the ants’ capability to communicate through pheromones, it may be possible to achieve an even better
competitive ratio. Our conjecture is that if ants determine the initial direction to leave the nest randomly and
then move both clockwise and counter-clockwise, we can achieve an near-optimal competitive ratio.

In addition to the simple model described in this paper, there are many further issues to consider.
• Use of multiple pheromones in concurrent or repetitive searches (e.g., to increase robustness).
• Obstacles in the plane.
• Removal of agents during the algorithm.
• Ants may start the search at different times.
• Ants may refuse to move to occupied grid points.
• Multiple targets appear over time.
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