
Towards Optimal Synchronous Counting

Christoph Lenzen
clenzen@mpi-inf.mpg.de

Max Planck Institute for
Informatics

Joel Rybicki
joel.rybicki@aalto.fi
Max Planck Institute for

Informatics

Helsinki Institute for
Information Technology HIIT,
Dept. of Computer Science,

Aalto University

Jukka Suomela
jukka.suomela@aalto.fi

Helsinki Institute for
Information Technology HIIT,
Dept. of Computer Science,

Aalto University

ABSTRACT
Consider a complete communication network of n nodes, in
which the nodes receive a common clock pulse. We study
the synchronous c-counting problem: given any starting
state and up to f faulty nodes with arbitrary behaviour,
the task is to eventually have all correct nodes count mod-
ulo c in agreement. Thus, we are considering algorithms
that are self-stabilising despite Byzantine failures. In this
work, we give new algorithms for the synchronous counting
problem that (1) are deterministic, (2) have linear stabil-
isation time in f , (3) use a small number of states, and
(4) achieve almost-optimal resilience. Prior algorithms either
resort to randomisation, use a large number of states, or
have poor resilience. In particular, we achieve an exponen-
tial improvement in the state complexity of deterministic
algorithms, while still achieving linear stabilisation time and
almost-linear resilience.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems

Keywords
synchronous counting; self-stabilisation; Byzantine fault-
tolerance

1. INTRODUCTION
In this work, we design space-efficient, self-stabilising, Byz-

antine fault-tolerant algorithms for the synchronous counting
problem. We are given a complete communication network
on n nodes, with arbitrary initial states. There are up to f
faulty nodes. The task is to synchronise the nodes so that all
non-faulty nodes will count rounds modulo c in agreement.
For example, here is a possible execution for n = 4 nodes,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3617-8 /15/07 ...$15.00.
DOI: http://dx.doi.org/10.1145/2767386.2767423.

f = 1 faulty node, and counting modulo c = 3; the execution
stabilises after t = 5 rounds:

Stabilisation Counting

Node 1: 2 2 0 2 0 0 1 2 0 1 2 . . .
Node 2: 0 2 0 1 0 0 1 2 0 1 2 . . .
Node 3: faulty node, arbitrary behaviour . . .
Node 4: 0 0 2 0 2 0 1 2 0 1 2 . . .

Synchronous counting is a coordination primitive that
can be used e.g. in large integrated circuits to synchronise
subsystems so that we can easily implement mutual exclusion
and time division multiple access in a fault-tolerant way.
Note that in this context it is natural to assume that a
synchronous clock signal is available, but the clocking system
usually will not provide explicit round numbers. Solving
synchronous counting thus enables us to construct highly
dependable round numbers for subcircuits.

Counting modulo c = 2 is closely related to binary consen-
sus: given a synchronous counting algorithm one can design
a binary consensus algorithm and vice versa [3, 4, 5]—in
particular, many lower bounds on binary consensus apply
here as well [6, 9, 10]. However, the existing implementations
of counting from consensus incur a factor-f overhead in space
and message size, rendering them very costly even in small
systems.

1.1 Prior Work
It is fairly easy to design space-efficient randomised al-

gorithms for synchronous counting [3, 7, 8]: as a simple
example, the nodes can just pick random states until a clear
majority of them has the same state, after which they start
to follow the majority. However, this approach yields algo-
rithms with exponential stabilisation time. Given a shared
coin, it is possible to obtain fast randomised algorithms by
defaulting to the value of the shared coin whenever no clear
majority is observed [1]; unfortunately, existing shared coins
are highly inefficient in terms of space and communication.

In comparison, it is even more challenging to come up
with space-efficient deterministic algorithms for synchronous
counting [3, 4, 5], and it remains open to what extent ran-
domisation helps in designing space-efficient algorithms that
stabilise quickly. Fast-stabilising deterministic algorithms
build on a connection to Byzantine consensus, but require a
large number of states per node [3, 4].

For small values of the parameters (e.g., n = 4 and f = 1)
the synchronous counting problem is amenable to algorithm

resilience stabilisation time state bits deterministic references

f < n/3 (*) O(1) nO(1) (*) no [1]
f < n/3 O(f) O(f log f) yes [4]

f < n/3 22(n−f) 2 no [7, 8]

f < n/3 min{22f+2 + 1, 2O(f2/n)} 1 no [3]
f = 1, n ≥ 4 7 2 yes [3]
f = 1, n ≥ 6 6 1 yes [3]
f = 1, n ≥ 6 3 2 yes [3]

f = n1−o(1) O(f) O(log2 f) yes this work

Table 1: Summary of synchronous 2-counting algorithms. “(*)” indicates that details vary, but all known
shared coins with large resilience require large states and messages. For randomised algorithms, we list the
expected stabilisation time. In [3], further trade-offs between n, the stabilisation time, and the number of
state bits are given (for f = 1).

synthesis: it is possible to use computers to automatically
design both space-efficient and time-efficient deterministic
algorithms for synchronous counting. For example, there is
a computer-designed algorithm that solves the case of n ≥ 4
and f = 1 with only 3 states per node, and another algorithm
that solves the case of n ≥ 6 and f = 1 with only 2 states per
node; both of these are optimal [3, 5]. Unfortunately, this
approach does not scale, as the space of possible algorithms
for given parameters n and f grows rapidly with n.

In summary, currently no algorithms for synchronous count-
ing are known that simultaneously scale well in terms of
resilience f , stabilisation time t, and the state that needs to
be preserved between rounds. Here, it is worth noting that
existing deterministic solutions with small state in essence
run Ω(f) concurrent instances of consensus, which implies
that the respective overhead extends to message size and the
amount of local computations as well.

1.2 Contributions
Our main contribution is a recursive construction that

shows how to “amplify” the resilience of a synchronous count-
ing algorithm. Given a synchronous counter for some values
of n and f , we will show how to design synchronous counters
for larger values of n and f , with a very small increase in
time and state complexity. This has two direct applications:

1. From a practical perspective, we can apply existing
computer-designed algorithms (e.g. n = 4 and f = 1) as
a building block in order to design efficient deterministic
algorithms for a moderate number of nodes (e.g., n = 36
and f = 7).

2. From a theoretical perspective, we can now design de-
terministic algorithms for synchronous counting for any
n and for f = n1−o(1) faulty nodes, with a stabilisation
time of O(f), and with only O(log2 f/ log log f) bits of
state per node.

The state complexity is an exponential improvement over
prior work, and the stabilisation time is asymptotically op-
timal for deterministic algorithms [9]. A summary of the
related work and our contributions is given in Table 1.

In our deterministic algorithms, each node only needs to
store a few number of bits between consecutive rounds, and
thus, a node can afford to broadcast its entire state to all
other nodes in each round. However, the small number of
state bits bears the promise that the communication load
can be reduced further. To substantiate the conjecture that

finding algorithms with small state complexity may lead
to highly communication-efficient solutions, we proceed to
consider a slightly stronger synchronous pulling model. In
this model, a node may send a request to another node and
receive a response in a single round, based on the state of
the responding node at the beginning of the round. The
cost for the exchange is then attributed to the pulling node;
in a circuit, this translates to each node being assigned an
energy budget that it uses to “pay” for the communication it
triggers. In this model, it is straightforward to combine our
recursive construction with random sampling to obtain the
following results:

1. We can achieve the properties of the deterministic
algorithm with each node pulling polylog n messages in
each round. The price is that the resulting algorithm
retains a probability of n− polylogn to fail in each round
even after stabilisation.

2. If the failing nodes are chosen independently of the
algorithm, we can fix the random choices. This results
in a pseudo-random algorithm which stabilises with
a probability of 1− n− polylogn and in this case keeps
counting correctly.

1.3 Structure
This paper is organised as follows. In Section 2 we formally

define the model of computing and the synchronous count-
ing problem. Section 3 gives the main technical result—a
construction for creating a synchronous counting algorithm
of larger resilience from several copies of an algorithm with
smaller resilience. Section 4 uses this construction to derive
deterministic synchronous counting algorithms with linear
stabilisation time and polylogarithmic state complexity. Fi-
nally, in Section 5, we discuss the pulling model and how
randomised sampling can be used to reduce the total number
of communicated bits.

2. PRELIMINARIES
We consider a fully-connected distributed message-passing

system consisting of n processors, also called nodes, with
unique identifiers from the set [n] = {0, 1, . . . , n− 1}. The
computation proceeds in synchronous communication rounds,
where in each round each processor: (1) broadcasts its local
state to all processors, (2) receives a vector of messages (that
is, states) from all other processors, and (3) updates its local
state according to the received messages. The initial state

of every node is arbitrary. Moreover, up to f nodes may be
Byzantine, i.e., exhibit arbitrary behaviour, including to send
different messages to every node. Thus, different nodes may
receive different vectors depending on what the Byzantine
nodes do.

2.1 Algorithms and Executions
A deterministic algorithm in this model is a tuple A =

(X, g, h), where X is the set of all possible states for a node,
g : [n]×Xn → X is the state transition function, and h : [n]×
X → [c] maps the internal state of a node to an output value.
That is, when node i ∈ [n] receives a vector x ∈ Xn of
messages, it will update its internal state to g(i,x) = s
and output h(i, s) ∈ [c]. The state complexity S(A) of an
algorithm A is the total number of bits required to store
the state of a node between consecutive rounds. That is,
S(A) = dlog |X|e.

For any given set F ⊆ [n] of faulty nodes, we define a
projection πF as follows: for any received message vector
x ∈ Xn, let πF (x) be a vector e such that ei = ∗ if i ∈ F
and ei = xi otherwise. We call πF (Xn) = {πF (x) : x ∈ Xn}
the set of configurations. That is, a configuration consists
only of the state of all non-faulty nodes.

We say that a configuration d is reachable from configura-
tion e if for every non-faulty node i /∈ F there exists some
x ∈ Xn satisfying πF (x) = d and g(i,x) = di. This means
that when the system is in configuration e, the Byzantine
nodes can send node i such messages that i chooses to switch
to state di. Given the set of faulty nodes, an execution
of an algorithm A is an infinite sequence of configurations
ξ = 〈e0, e1, e2, . . . 〉 such that et+1 is reachable from et.

2.2 Synchronous Counters
We say that an execution ξ of algorithm A = (X, g, h)

stabilises in time t if there is some r0 ≥ 0 so that for every
non-faulty node i ∈ [n] the output satisfies

h(i, xt+r,i) = r − r0 mod c for all r ≥ 0.

That is, within t steps all non-faulty nodes agree on a common
output and start incrementing their counters modulo c each
round. Moreover, we say that A is a synchronous c-counter
with resilience f if there exists a t such that for every F ⊆ [n],
|F| ≤ f , all executions of A stabilise in t rounds. We say that
the stabilisation time T (A) of algorithm A is the minimal
such t. In what follows, we use A(n, f, c) to denote the family
of synchronous c-counters of resilience f that run on n nodes.

3. BOOSTING RESILIENCE
In this section, we show that given a family of synchronous

c-counters for a small number of nodes n and resilience f , we
can construct a new family of C-counters of a larger resilience
without increasing the number of nodes in the network or
the stabilisation time by too much. More precisely, we prove
the following main result.

Theorem 1. Given n, f ∈ N, pick N,F,C ∈ N, where

• the number of nodes is N = kn for some number of
blocks 3 ≤ k ∈ N,
• the resilience is F < (f + 1)m, where m = dk/2e, and
• the counter size is C > 1.

Choose any c ∈ N that is a multiple of 3(F + 2)(2m)k. Then
for any A ∈ A(n, f, c) there exists a B ∈ A(N,F,C) with

T (B) ≤ T (A) + 3(F + 2)(2m)k,

S(B) = S(A) + dlog(C + 1)e+ 1.

3.1 High-level Idea of the Construction
Given a suitable counter A ∈ A(n, f, c), we construct a

larger network with N = kn nodes and divide the nodes in k
blocks of n nodes. Each block runs a copy of A that is used
to (1) determine a “leader block” and (2) output a consistent
round counter within a block.

Due to the bound on F , only a minority of the blocks
(fewer than m) contains more than f faulty nodes. Thus, the
counters of a majority of the blocks stabilise within T (A)
rounds. By dividing the counters within each block, we let
them “point” to one of m possible leader blocks for a fairly
large number of consecutive rounds. Block i switches through
leaders by a factor of 2m faster than block i+1. This ensures
that, eventually, all stabilised counters point to the same
leading block for 3(F + 2) rounds.

Using a majority vote on the pointers to leader blocks, we
can make sure that all correct nodes—also those in blocks
with more than f faulty nodes—will recognise the same
block as the leader for sufficiently long. In fact, eventually
this will happen for each of the m blocks that may become
leaders, one of which must have fewer than f faulty nodes.
In particular, its counter will be stabilised and can be “read”
by all other nodes based on taking the majority value within
that block. Hence, we can guarantee that at some point all
nodes agree on a common counter value for at least 3(F + 2)
rounds. This value is used to control an execution of the
well-known phase king protocol [2], which solves consensus in
Θ(F) rounds in systems of N > 3F nodes. As the constraint
F < (f + 1)m also ensures that F < N/3, we can use the
phase king protocol to let all nodes agree on the current value
of the C-counter that is to be computed. It is straightforward
to guarantee that, once this agreement is achieved, it will not
be lost again and the counter is incremented by one modulo
C in each round.

3.2 Setup
Our goal is to construct a synchronous C-counter that runs

in a network of N = kn nodes and tolerates F < (f + 1)m
faults. We divide the nodes into k blocks, each of size n. We
identify each node v ∈ [kn] with a tuple (i, j) ∈ [k] × [n].
Thus, node v = (i, j) is the jth node of block i. Blocks
that contain more than f faulty nodes are said to be faulty.
Otherwise, a block is non-faulty.

We will have each block i run a synchronous counter Ai

constructed as follows. Define τ = 3(F+2) and ci = τ(2m)i+1

for i ∈ [k]. Let A = (X, g, h) ∈ A(n, f, c) be the given
synchronous c-counter, where c = ατ(2m)k for some integer
α. Now for any i ∈ [k], we obtain a synchronous ci-counter
Ai = (X, g, hi) by defining the output function as hi(x) =
h(x) mod ci. That is, Ai outputs the output of A modulo ci.
It follows that T (Ai) = T (A) and S(Ai) = S(A). Thus, if
block i is non-faulty, then Ai will stabilise in T (A) rounds.

We interpret the value of the counter of (non-faulty, sta-
bilised) block i as a tuple (r, y) ∈ [τ] × [(2m)i+1], where r
is incremented by one modulo τ each round, and y is incre-
mented by one whenever r “overflows” to 0. We refer to the
counter value that node (i, j) currently has according to Ai

as (r[i, j], y[i, j]). Note that this value can be directly inferred
from its state, so by broadcasting its state (i, j) implicitly
announces its current counter value to all other nodes. We
stress that there is no guarantee whatsoever on how these
variables behave in faulty blocks, even for non-faulty nodes
in faulty blocks—the only guarantee is that non-faulty nodes
in non-faulty blocks will count correctly after round T (A).

We define the short-hand

b[i, j] =

⌊
y[i, j]

(2m)i

⌋
mod m.

The value b[i, j] indicates the block that the nodes in block i
currently consider to be the “leader block” by interpreting
the counter given by Ai appropriately.

Let bq[i, j] and rq[i, j] denote the values of b[i, j] and r[i, j]
in round q. We will now show that after stabilisation, a
non-faulty block i will within ci rounds point to every block
β ∈ [m] for at least τ consecutive rounds. For notational
convenience, we let c−1 = τ .

Lemma 1. Let i ∈ [k] be a non-faulty block and t ≥ T (A).
For any β ∈ [m], there exists some t ≤ w ≤ t + ci − ci−1

such that if (i, j) is non-faulty, then bq[i, j] = β for w ≤ q <
w + ci−1.

Proof. By round t, the counter Ai has stabilised and all
non-faulty nodes (i, j) agree. First observe that since Ai

is a ci-counter, b[i, j] cycles through the set [m] twice in ci
rounds. Moreover, once b[i, j] changes its value, it will keep
the new value for ci−1 = τ(2m)i consecutive rounds.

More formally, let (i, j) be a non-faulty node and u ≥ t be
the minimal u such that ru[i, j] = 0 and yu[i, j] ∈ {0, ci/(2τ)}.
In particular, at round u we have bu[i, j] = 0. Moreover,
u ≤ t + ci/2. Since b[i, j] retains the same value for ci−1

consecutive rounds, we get that at round w = u+ (β−1)ci−1

the value b[i, j] changes to β. Now we have that bw′ [i, j] = β
for w ≤ w′ < w + ci−1. A simple check confirms that
w + ci−1 ≤ t+ ci.

Using this lemma, we can show that after stabilisation, all
non-faulty nodes in non-faulty blocks will within ck rounds
point to each β ∈ [m] simultaneously for at least τ rounds.

Lemma 2. Let t ≥ T (A) and β ∈ [m]. There exists some
t ≤ u ≤ t+ ck − τ such that if (i, j) is a non-faulty node in
a non-faulty block, then bq[i, j] = β for u ≤ q < u+ τ .

Proof. We prove the statement for the special case that
all blocks are non-faulty. As there is no interaction between
the algorithm Ai of different blocks, the lemma then follows
by simply excluding all nodes in faulty blocks. We prove the
following claim using induction; see Figure 1 for illustration.

Claim: For any round t ≥ T (A), block β ∈ [m] and h ∈ [k],
there exists a round t ≤ u(h) ≤ t+ ch − τ such that for all
non-faulty nodes (i, j) where i ≤ h we have bq[i, j] = β for
u(h) ≤ q < u(h) + τ .

In particular, the lemma follows from the case h = k of
the above claim. For the base case of the induction, observe
that case h = 0 follows from Lemma 1 as c−1 = τ . For the
inductive step, suppose the claim holds for some h ∈ [k − 1]
and consider the non-faulty block h+ 1. By Lemma 1 there
exists t ≤ w ≤ t + ch+1 − ch such that bq[h + 1, j] = β for
all w ≤ q < w + ch where (h + 1, j) is a non-faulty node.
Applying the induction hypothesis to w we get u(h). Setting
u(h+1) = u(h) yields that u(h+1) ≤ w+ch−τ ≤ t+ch+1−τ .
This proves the claim and the lemma follows.

�

� � �

Block h + 1

Block h

t t + chu u + ch�1

Block h + 2
�

time

Figure 1: Counters in non-faulty blocks will even-
tually coincide. The picture illustrates the output
of b[·] for three blocks i ∈ {h, h + 1, h + 2} run-
ning τ(2m)i+1-counters with base 2m = 6. For ev-
ery β ∈ [m], we can find an interval (highlighted
segments) where all non-faulty blocks point to the
same value β for sufficiently long, even though the
counters may cycle at different time points.

3.3 Voting Blocks
Next, we define the voting scheme for all the blocks. Define

the majority operation for every message vector x ∈ Xkn as
follows:

majority x =

{
a if a appears in x more than kn/2 times,

∗ otherwise,

where the symbol ∗ indicates that the function may evaluate
to an arbitrary value, including different values at different
non-faulty nodes. We use the following short-hands as local
variables:

bi = majority{b[i, j] | j ∈ [n]},

B = majority{bi | i ∈ [k]},
R = majority{r[B, j] | j ∈ [n]}.

Note that these functions can be locally computed from
the received state vectors by checking for a majority and
defaulting to, e.g., 0, when no such majority is found: by
definition, the majority function may return an arbitrary
value if kn/2 or fewer correct nodes “vote” for the same value;
as non-faulty nodes broadcast the same state to all nodes,
there can only be one such majority value.

In words, bi denotes the block which the nodes in block
i support as a leader; different correct nodes may “observe”
different values of bi only if i is a faulty block or Ai has not
yet stabilised. As F < (f + 1)m = (f + 1)dk/2e, majority
of the blocks are non-faulty. Hence, if all non-faulty blocks
support the same leader block β ∈ [m], then B evaluates to
β at all correct nodes. By Lemma 2, this is bound to happen
eventually. Finally, R denotes the round counter of block
B, which is “read” correctly by all non-faulty nodes if B is
non-faulty.

Analogously to before, let i′ ∈ [k] and denote by Bq[i, j]
and Rq[i, j], respectively, the values to which the above
functions evaluate in round q at node (i, j). Then we can
conclude from Lemma 2 that eventually all non-faulty nodes
agree on R for τ rounds.

Lemma 3. There is a round t ≤ T (A) + ck − τ such that:

(a) Rq[i, j] = Rq[i
′, j′] for any t ≤ q < t+ τ and non-faulty

nodes (i, j) and (i′, j′).

(b) Rq+1[i, j] = Rq[i, j] + 1 mod τ for any t ≤ q < t+ τ − 1
and non-faulty node (i, j).

Proof. As F < (f + 1)m, there is a non-faulty block
β ∈ [m]. By applying Lemma 2 to round T (A), there is
a round t ≤ T (A) + ck − τ such that bq[i, j] = β for each
t ≤ q < t+τ and non-faulty node (i, j) in a non-faulty block i.
Therefore, biq = β for all non-faulty blocks i. As F < (f+1)m,
the number of faulty blocks is at mostm−1 = dk/2e−1 < k/2,
and thus, the majority vote yields B = β.

Since T (A) ≤ t ≤ q < t + τ , we have that block β has
stabilised by round t and therefore, rq[β, j] = rq[β, j

′] for
all non-faulty nodes (β, j), (β, j′) in the non-faulty block β.
Moreover, as block β is non-faulty, it contains at most f
faulty nodes. In particular, it must be that f < n/3 < n/2
as otherwise counting cannot be solved and A ∈ A(n, f, c).
Hence, a majority vote yields R = rq[β, j], where (β, j) is
any non-faulty node in block β proving claim (a).

To show (b), observe that since block β is non-faulty and
has stabilised by round t we have that Rq[i, j] = rq[β, j

′].
Moreover, non-faulty nodes in block β increment r[β, j] by
one modulo τ in the considered interval.

3.4 Executing the Phase King
We have now built a voting scheme that allows the nodes to

eventually agree on common counter for τ rounds. Roughly
speaking, what remains is to use this common counter to con-
trol a non-self-stabilising F -resilient C-counting algorithm.

We require that this algorithm guarantees two properties.
First, all non-faulty nodes reach agreement and start counting
correctly within τ rounds provided that the underlying round
counter is consistent. Second, if all non-faulty nodes agree
on the output, then the agreement persists regardless of the
round counter’s value. It turns out that a straightforward
adaptation of the classic phase king protocol [2] does the job.

From now on, we refer to nodes by their indices v ∈ [N].
The phase king protocol (like any consensus protocol) requires
that F < N/3. It is easy to verify that this follows from the
preconditions of Theorem 1.

Denote by a[v] ∈ [C] ∪ {∞} the output register of the
algorithm, where ∞ is used as a “reset state”. There is
also an auxiliary register d[v] ∈ {0, 1}. Define the following
short-hand for the increment operation modulo C:

increment a[v] =

{
a[v]← a[v] + 1 mod C if a[v] 6=∞,
no action if a[v] =∞.

For ` ∈ [F + 2], we define the instruction sets listed in
Table 2. First, we show that if these instructions are executed
in the right order by all non-faulty nodes for a non-faulty
leader ` ∈ [F + 2], then agreement on a counter value is
established.

Lemma 4. Suppose that for some non-faulty node ` ∈
[F+2] and a round q, all non-faulty nodes execute instruction
sets I3`, I3`+1, and I3`+2 in rounds q − 2, q − 1, and q,
respectively. Then aq+1[v] = aq+1[u] 6=∞ for any two non-
faulty nodes u, v ∈ [N]. Moreover, dq+1[v] = 1 at each
non-faulty node.

Proof. This is essentially the correctness proof for the
phase king algorithm. Without loss of generality, we can
assume that the number of faulty nodes is exactly F . By
assumption, we have F < N/3 and hence 2(N − 2F) >
N − F . It follows that it is not possible that two non-faulty

nodes v, u ∈ [N] satisfy both aq−1[v], aq−1[u] ∈ [C] and
aq−1[v] 6= aq−1[u]: this would imply that there are at least
N − 2F non-faulty nodes w that had aq−2[w] + 1 mod C =
aq−1[v] and the same number of non-faulty nodes w′ with
aq−2[w′] + 1 mod C = aq−1[u]; however, there are only N −
F < 2(N − 2F) non-faulty nodes. Therefore, there is some
x ∈ [C] so that aq−1[v] ∈ {x,∞} for all non-faulty nodes v.
Checking I3`+2 and exploiting that 2(N − F) > N − F once
more, we see that this also implies aq[v] ∈ {x+ 1 mod C,∞}
for any non-faulty node v.

We need to consider two cases. In the first case, all non-
faulty nodes execute the first instruction of I3`+2 in round
q. Then aq+1[v] = min{C, aq[`]} + 1 mod C for any non-
faulty node v. In the second case, there is some node v not
executing the first instruction of I3`+2. Hence, dq[v] = 1,
implying that v computed zaq−1[v] ≥ N − F in round q − 1.
Consequently, at least N−2F > F non-faulty nodes u satisfy
aq−1[u] = aq−1[v]. We infer that aq[v] = x′ for all non-faulty
nodes v: the third instruction of I3`+1 must evaluate to
x′ ∈ [C] at all non-faulty nodes. Clearly, this implies that
aq+1[v] = aq+1[u] 6=∞ for non-faulty nodes v, u, regardless
of whether they execute the first instruction of I3`+2 or not.
Trivially, dq+1[v] = 1 at each non-faulty node v due to the
second instruction of I3`+2.

Next, we argue that once agreement is established, it
persists—it does not matter any more which instruction sets
are executed.

Lemma 5. Assume that aq[v] = x ∈ [C] and dq[v] = 1
for all non-faulty nodes v in some round q. Then aq+1[v] =
x+ 1 mod c and dq+1[v] = 1 for all non-faulty nodes v.

Proof. Each node will observe at least N −F nodes with
counter value x, and hence at most F nodes with some value
y 6= x. For non-faulty node v, consider all possible instruction
sets it may execute.

First, consider the case where instruction set I3` is executed.
In this case, v increments x, resulting in aq+1[v] = x +
1 mod C and dq+1[v] = 1. Second, executing I3`+1, node v
evaluates zx ≥ N − F and zy ≤ F for all y 6= x. Hence it
sets dq+1[v] = 1 and aq+1[v] = x+ 1 mod C. Finally, when
executing I3`+2, node v skips the first instruction and sets
dq+1[v] = 1 and aq+1[v] = x+ 1 mod C.

3.5 Proof of Theorem 1
We can now prove the main result. As shown in Lemma 3

we have constructed a τ -counter that will remain consistent
at least τ rounds. This is a sufficiently long time for the
nodes to execute the phase king protocol in synchrony. This
protocol will stabilise the C-counter for the network of N
nodes. More precisely, each node (i, j) runs the following
algorithm:

1. Update the state of algorithm Ai.
2. Compute the counter value R.
3. Update state according to instruction set IR of the

phase king protocol.

By Lemma 3, there is a round t ≤ T (A) + ck − τ so that
the variables Rq[i, j] meet the requirements of τ -counting for
rounds t ≤ q < t+ τ . For each round q, all non-faulty nodes
execute the same set of instructions. In particular, as τ =
3(F + 2), no matter from which value the τ -counting starts,
for at least F + 1 values ` ∈ [F + 2] the instruction sets I3`,

Set Instructions

I3`: 1. If fewer than N − F nodes sent a[v], set a[v]←∞.
2. increment a[v].

I3`+1: 1. Let zj = |{u ∈ [N] : a[u] = j}| be the number of j values received.
2. If za[v] ≥ N − F , set d[v]← 1. Otherwise, set d[v]← 0.
3. Set a[v]← min{j : zj > F}.
4. increment a[v].

I3`+2: 1. If a[v] =∞ or d[v] = 0, then set a[v]← min{C, a[`]}.
2. Set d[v]← 1 and increment a[v].

Table 2: Phase king instruction sets for node v ∈ [N].

I3`+1, and I3`+2, in this order, will be jointly executed by all
non-faulty nodes at some point during rounds t, . . . , t+ τ − 1.

As there are only F faulty nodes, there are at least two non-
faulty nodes ` ∈ [F + 2]. Thus, the prerequisites of Lemma 4
are satisfied in some round q ≤ t + τ ≤ T (A) + ck. By
an inductive application of Lemma 5, we conclude that the
variables aq[v] are valid outputs for C-counting, and therefore,
we have indeed constructed an algorithm B ∈ A(N,F,C).

The bound on q yields that T (B) ≤ T (A) + ck = T (A) +
3(F+2)(2m)k. Concerning the state complexity, observe that
each non-faulty node (i, j) needs the to store the state for
executing (1) the algorithm Ai, which needs S(Ai) = S(A)
bits of state, and (2) the phase king protocol, which needs
dlog(C+1)e bits to store aq[v] ∈ [C]∪{∞} and one additional
bit to store dq[v].

4. THE RECURSIVE CONSTRUCTION
In this section, we show how to use Theorem 1 recursively

to construct synchronous c-counters with a near-optimal
resilience, linear stabilisation time, and a small number of
states (see Figure 2 for an illustration). First, we show how
to satisfy the preconditions of Theorem 1 in order to start the
recursion. Then we demonstrate the principle by choosing a
fixed value of k throughout the construction; this achieves
a resilience of Ω(n1−ε) for any constant ε > 0. However, as
the number of nodes in the initial applications of Theorem 1
is small, better results are possible by starting out with
large values of k and decreasing them later. This yields an
algorithm with a resilience of n1−o(1) and O(f) stabilisation
time using O(log2 f/ log log f + log c) state bits.

4.1 The Base Case
To apply Theorem 1, we need counters of resilience f >

0. For example, one can use the space-efficient 1-resilient
counters from [3] as base of the construction. Alternatively,
we can use as a starting point trivial counters for n = 1
and f = 0. Then we can apply the same construction as in
Theorem 1 with the parameters n = 1, f = 0, k = N , and
F < N/3. The same proof goes through in this case and
yields the following corollary. Note that here the resilience
is optimal but the algorithm is inefficient with respect to
stabilisation time and state complexity.

Corollary 1. For any c > 1, there exists a synchronous
c-counter with optimal resilience f < n/3 that stabilises in

fO(f) rounds and uses O(f log f + log c) bits of state.

Proof. For any f > 0, we can construct a f -resilient
counter for 3f + 1 nodes. We use the trivial 0-resilient

counter for one node as the base case for Theorem 1 and
set k = 3f + 1, that is, each block consists of a single node.
Theorem 1 yields an f -resilient algorithm that stabilises
in (3f + 2)(2m)k = fO(f) rounds, where the O(f) term is
(3 + o(1))f .

4.2 Using a Fixed Number of Blocks
For the sake of simplicity, we will first discuss the recursive

construction for a fixed value of k here. Improved resilience
can be achieved by varying k depending on the level of
recursion which we show afterwards.

Theorem 2. Let 1 > ε > 0 and 2 ≤ c ∈ N. There
exists a synchronous c-counting algorithm with a resilience

of f = Ω(n1−ε) that stabilises in O(221/εf) rounds and uses

O(21/ε log f + log2 f + log c) bits of state per node.

Proof. Fix 0 < ε < 1 and let k = 2h ≥ 4 be minimal
such that ε ≥ 1/ log h. Assume f = 2j for some j ≥ h and
let L = log f/ log h; w.l.o.g., assume that L ∈ N. We will
analyse how many nodes are required to get to a resilience
of Ω(n1−ε) by applying Theorem 1 for L ≤ ε log f iterations.

For all i ≥ 0, let fi = hi and ni = 4ki. At iteration i+ 1
we use Theorem 1 to construct algorithms in A(ni+1, fi+1, c)
(for any c) using ni and fi as the input parameters. Since
fi+1 = fih < (fi + 1)dk/2e and ni+1 = kni, the conditions
of Theorem 1 are satisfied. To start the recursion, we will
use an algorithm with parameters f0 = 1 and n0 = 4. By
Corollary 1, such an algorithm with a stabilisation time of
T0 = O(1) and a state complexity of S0 = O(log c) exists.

Every iteration increases the resilience by a factor of at least
h = k/2. After L iterations, we tolerate at least f = fL = hL

failures using n = nL = 4kL nodes. This gives

n

f
= 4

(
k

k/2

)L
= 4 · 2L ≤ 8fε < 8nε.

and it follows that the resilience is Ω(n1−ε).
It remains to analyse the stabilisation time and state com-

plexity of the resulting algorithm; both follow from Theo-
rem 1. The stabilisation time of layer i+ 1 is

Ti+1 ≤ Ti + 3(fi+1 + 2)hk,

where h = dk/2e. From the definition of fi, we get the bound∑L
i=0 fi = O(fL) = O(f). Hence, overall stabilisation takes

T = TL ≤ O

(
hk

L∑
i=0

fi

)
= O(hkf)

A(12, 3)

A(12, 3)

A(12, 3)

A(36, 7)

Figure 2: Recursive application of our construction
using k = 3 blocks. The small circles represent the
nodes. Each group of four nodes runs a 1-resilient
counter A(4, 1). On top of this, each larger group of
12 nodes runs a 3-resilient counter A(12, 3). At the
top-most layer, the nodes run a 7-resilient counter
A(36, 7). Faulty nodes are black and faulty blocks
are gray.

rounds. From Theorem 1, we get that the state complexity
of layer i+ 1 is at most

Si + dlog(3(fi+2 + 2)hk + 1)e+ 1 = Si +O(k log h+ log f).

As L ≤ ε log f , the total number of bits is then bounded by

L∑
i=0

Si +O(log c) = O(εk log h log f + log2 f + log c).

Recall that h = k/2 is minimal such that ε ≥ 1/ log h. Thus

k = O(21/ε) and log h = O(1/ε), yielding the claimed bounds
on time and state complexity.

Choosing a constant ε, we arrive at the following corollary.

Corollary 2. For any constant 1 > ε > 0 and any
2 ≤ c ∈ N, there exists a synchronous c-counter with re-
silience f = Ω(n1−ε) that stabilises in O(f) rounds and uses
O(log2 n+ log c) bits of state.

4.3 Varying the Number of Blocks
Obviously, the factor 221/ε makes the previous construction

impractical unless 1/ε is small. However, it turns out that we
can still achieve good resilience without a doubly-exponential
blow-up in the stabilisation time by carefully varying the
number of blocks at each level.

Theorem 3. For any c > 1, there exist synchronous c-
counters with a resilience of f = n1−o(1) that stabilises in
O(f) rounds and uses O(log2 f/ log log f + log c) state bits
per node.

Proving this theorem boils down to choosing k in each itera-
tion as large as possible without violating the bound on the
stabilisation time. We again rely on Theorem 1, but instead
of using a fixed number of blocks at each iteration, we divide
the construction into P phases. During each phase, we use a
different number of blocks and iterations of Theorem 1. The
goal is to have the running time of the last phase dominate
the running time of earlier phases.

Proof. We set each phase 1 ≤ p ≤ P to use kp = 4 ·
2P−p > 3 blocks per layer and then iterate Theorem 1 exactly

Rp = 2kp times. During phase p, we use iteration 1 ≤ i+1 ≤
Rp to get an algorithm from Theorem 1 that tolerates

fi+1,p =
fi,pkp

2
< (fi,p + 1)

⌈
kp
2

⌉
failures, where f0,p = fRp−1,p−1 and fR0,0 = f0,0 = 1. Thus,
for any p and i, the values kp and fi,p satisfy the conditions
of Theorem 1. Again, to start the recursion we may use
any algorithm tolerating a single fault among 4 nodes giving
f0,0 = 1.

Now, every phase p increases the resilience by a factor of

dp =

(
fi+1,p

fi,p

)Rp

=

(
kp
2

)Rp

.

As there are in total P phases, this means that the total
resilience and number of nodes n are given by

f = fP =

P∏
p=1

dp =

P∏
p=1

(
kp
2

)Rp

and n = nP = 4

P∏
p=1

k
Rp
p .

In order to get resilience of f ≥ n1−ε, where ε = o(1), we
want to ensure that

n

f
= 4

P∏
p=1

2Rp = 4

P−1∏
j=0

22·2j = 22(2P−1) ≤ fε,

which is equivalent to

2(2P − 1) = 4 · 2P−1 − 2 = k1 − 2 ≤ ε log f.

Hence, it is feasible to choose ε = k1/ log f . Observe that∑P
p=1 kp = 4(2P − 1) < 2k1. It follows that

log f = log

P∏
p=1

(kp/2)Rp = 2

P∑
p=1

kp log(kp/2) = Θ(k1 log k1),

implying that k1 = Θ(log f/ log log f). We conclude that
ε = Θ(1/ log log f). Note that it is always possible to in-
crease n by letting additional nodes simply adopt the majority
counter value among those that execute the “actual” algo-
rithm. Hence, for any sufficiently large n, we can construct
an algorithm with resilience f ≥ n1−ε = n1−o(1).

Let us now analyse the stabilisation time and state com-
plexity of the construction.

Lemma 6. The algorithm stabilises in O(f) rounds.

Proof. To analyse the stabilisation time, we first bound
the stabilisation time of each phase p separately. By Theo-
rem 1, iteration i+ 1 of phase p has stabilisation time

Ti+1,p = Ti,p +O
(
fi+1,p · kkpp

)
.

Analogously to the proof of Theorem 2, we again get a
geometric series and the total stabilisation time of phase p is
bounded by

Rp∑
i=1

Ti+1,p = O(TRp,p) = O
(
fp · kkpp

)
.

Therefore, the total stabilisation time is

T =

P∑
p=1

Tp = O

(
P∑
p=1

fp · kkpp

)
.

For 1 ≤ p ≤ P − 4, using the shorthand λ = kp+1, we get

fp+1

fp
· λ

λ

k
kp
p

= dp+1
λλ

(2λ)2λ
=
λ2λ

22λ
· λλ

(2λ)2λ
=

(
λ

16

)λ
≥ 2.

Thus, we get a geometric series
∑P−3
p=1 Tp ≤ 2TP−2 = O(f),

and since also TP−2 + TP−1 + TP = O(f), the stabilisation
time of all phases is bounded by O(f).

Lemma 7. Every node uses at most O(log2 f/ log log f +
log c) bits to encode its state.

Proof. By Theorem 1, the number of state bits increases
each iteration by Θ(logCi), where Ci is the counter size
needed for iteration i. During phase p, the counter size is

O(f · kkpp) in each iteration. There are Rp = 2kp iterations
phase p, and thus the number of bits we need is bounded by

Sp = O(kp (log f + kp log kp)) = O
(
kp log f + k2p log kp

)
.

From earlier computations, we know that
∑P
i=1 kp = O(k1)

and k1 = O(ε log f). Thus, we use

S =

P∑
p=1

Sp = O

(
P∑
p=1

(kp log f + k2p log kp)

)
= O(ε log2 f + ε2 log2 f(log ε+ log log f))

= O

(
log2 f

log log f

)
bits in total, as ε = Θ(1/ log log f). Storing the output of the
resulting c-counter introduces additional O(log c) bits.

5. SAVING ON COMMUNICATION USING
RANDOMISATION

So far we have considered the model where each node
broadcasts its entire state every round. In the case of
the algorithm given in Theorem 3, every node will send
S = O(log2 f/ log log f + log c) bits in each round. As there
are Θ(n2) communication links, the total number of com-
municated bits in each round is Θ(n2S). In this section, we
consider a randomised variant of the algorithm that achieves
better message and bit complexities in a slightly different
communication model.

5.1 The Pulling Model
Throughout this section we consider the following model,

where in every synchronous round: (1) each processor con-
tacts a subset of other nodes by pulling their state, (2) each
contacted node responds by sending their state to the pulling
nodes, and (3) all processors update their local state accord-
ing to the received messages. As before, faulty nodes may
respond with arbitrary states that can be different for differ-
ent pulling nodes. We define the (per-node) message and bit
complexities of the algorithm as the maximum number of
messages and bits, respectively, pulled by a non-faulty node
in any round.

The motivation for this model is that it permits to attribute
the energy cost for a message to the pulling node. In a circuit,
this means that the pulling node provides the energy for the
signal transitions of the communication link: logically, the
link is part of the pulling node’s circuitry, whereas the“sender”
merely spends the energy for writing its state into the register
from which all its outgoing links read.

Our goal will be to keep the number of pulls by non-faulty
nodes small at all times. This way a small energy budget
per round per node suffices in correct operation. By limiting
the energy supply of each node, we can also effectively limit
the energy consumption of the Byzantine nodes.

5.2 The High-Level Idea
To keep the number of pulls, and thus number of messages

sent, small, we modify the construction of Theorem 1 to
use random sampling where useful. Essentially, the idea
is to show that with high probability a small set of sam-
pled messages accurately represents the current state of the
system and the randomised algorithm will behave as the de-
terministic one. There are two steps where the nodes rely on
information broadcast by all the nodes: the majority voting
scheme over the blocks and our variant of the phase king
algorithm. Both can be shown to work with high probability
by using concentration bound arguments.

More specifically, for any constant κ ≥ 1 we can bound
the probability of failure by η−κ by sampling M = Θ(log η)
messages; here η denotes the total number of nodes in the
system. The idea is to use a union bound over all levels of
recursion, nodes, and considered rounds, to show that the
sampling succeeds with high probability in all cases. For
the randomised variant of Theorem 1, we will require the
following additional constraint: when constructing a counter
on N = kn nodes, the total number of failures is bounded
by F < N

3+γ
, where γ > 0 is some constant. Since the

resilience of the recursive construction is suboptimal anyway,
this constraint is always going to be satisfied. This allows
us to construct probabilistic synchronous c-counters in the
sense that the counter stabilises in time T if for all rounds
t ≥ T all non-faulty nodes count correctly with probability
1− η−κ.

5.3 Sampling Communication Channels
There are two steps in the construction of Theorem 1 where

we rely on deterministic broadcasting: the majority sampling
for electing a leader block and the execution of the phase
king protocol. We start with the latter.

Randomised Phase King. Instead of checking whether
at least N −F of all messages have the same value, we check
whether at least a fraction of 2/3 of the sampled messages
have the same value. Similarly, when checking for at least
F + 1 values, we check whether a fraction 1/3 of the sampled
messages have this value.

Lemma 8. Let x ∈ [C] ∪ {∞} and suppose a node sam-
ples M values from the other nodes. Then there exists
M0(η, κ, γ) = Θ(log η) so that M ≥M0 implies the following
with high probability.

(a) If all non-faulty nodes agree on value x, then x is seen
at least 2/3 ·M times.

(b) If the majority of non-faulty nodes have value x, then
more than 1/3 ·M sampled values will be x.

(c) If at least 2/3 ·M sampled values have value x, then x
is a majority value.

Proof. Define δ = 1− 2
3
· 3+γ
2+γ

and let the random variable
X denote the number of x values sampled from non-faulty
nodes.

(a) If all non-faulty nodes agree on value x, then

E[X] =

(
1− F

N

)
M >

2 + γ

3 + γ
M.

As δ satisfies (1− δ) E[X] > 2/3 ·M , Chernoff’s bound yields

Pr

[
X <

2

3
M

]
≤ Pr[X < (1− δ) E[X]] ≤ exp

(
−δ

2

2
E[X]

)
≤ exp

(
−δ2 2 + γ

2(3 + γ)
M0

)
.

For sufficiently large M0(N, κ, γ) = Θ(logN) this probability
is bounded by N−κ.

(b) If a majority of non-faulty nodes have value x, then
E[X] ≥ 1

2
· 2+γ
3+γ

M . As above, by picking the right constants
and using concentration bounds, we get that

Pr

[
X ≤ 1

3
M

]
≤ Pr[X < (1− δ) E[X]]

≤ exp

(
−δ

2

2
E[X]

)
≤ exp

(
−δ2 2 + γ

4(3 + γ)
M0

)
≤ N−κ.

(c) Suppose the majority of non-faulty nodes have values
different from x. Defining X̄ as the random variable counting
the number of samples with values different from x and
arguing as for (b), we see that

Pr

[
X ≥ 2

3
M

]
= Pr

[
X̄ <

1

3
M

]
≤ N−κ,

where again we assume that M0(N, κ, γ) = Θ(logN) is suffi-
ciently large. Thus, X ≥ 2/3·M implies with high probability
that the majority of non-faulty nodes have value x.

As a corollary, we get that when using the sampling scheme,
the execution of the phase king essentially behaves as in the
deterministic broadcast case.

Corollary 3. When executing the randomised variant
of the phase king protocol from Section 3 for ηO(1) rounds,
the statements of Lemma 4 and Lemma 5 hold with high
probability.

Proof. The algorithm uses two thresholds, N − F and
F +1. As discussed, these are replaced by 2/3 ·M and 1/3 ·M
when taking M samples. Using the statements of Lemma 8,
we can argue analogously to the proofs of Lemma 4 and
Lemma 5; we apply the union bound over all rounds and
samples taken by non-faulty nodes (N − F < η per round),

i.e., over ηO(1) events.

Randomised majority voting. It remains to handle the
case of majority voting in the construction of Theorem 1.
Consider some level of the recursive construction, in which we
want to construct a counter of N = kn nodes out of k n-node
counters. If N � log η/ log log η, we can perform the step in
the recursive construction using the deterministic algorithm,
that is, pulling from all kn nodes. Otherwise, similar to the
above sampling scheme for randomised phase king, each node
will from each block uniformly sample M ≥ M0(η, κ, γ) =
Θ(log η) states. Again by applying concentration bounds, we
can show that with high probability, the non-faulty nodes
sample a majority of non-faulty nodes from non-faulty blocks.
Thus, we can get a probabilistic version of Lemma 3.

Analogously to Section 3, we define the following local
variables at node (i, j) in round q:

bi
′
q [i, j] = majority{bq[i′, j′] : (i′, j′)

sampled by (i, j) in round q},

Bq[i, j] = majority{bi
′
q [i, j] | i′ ∈ [k]},

Rq[i, j] = majority{r[Bq[i, j], j′] : (i′, j′)

sampled by (i, j) in round q}.

Here we sample with repetition and the above sets are mul-
tisets; this means all samples from a block are independent
and we can readily apply Chernoff’s bound.

Lemma 9. Suppose x ∈ [k] is a non-faulty block, M0 =
Θ(log η) is sufficiently large, and all non-faulty blocks count
correctly in round q. If for all non-faulty blocks i and non-
faulty nodes (i, j) it holds that bq[i, j] = x, then with high
probability

1. bi
′
q [i, j] = x for all non-faulty blocks i′,

2. Bq[i, j] = x, and
3. Rq[i, j] = rq[x, j

′] for an arbitrary non-faulty node
(B, j′) in block x.

Proof. Consider a non-faulty block (recall that a block
is non-faulty if it has at most f faulty nodes). Let X denote
the number of states of non-faulty nodes sampled from this
block by (i, j) in round q. As f < n/3, we have that E[X] ≥
M(n − f)/n > 2/3 · M . Applying Chernoff’s bound for
δ = 1/4 and choosing sufficiently large M0(η, κ) = Θ(log η),
we obtain that

Pr[X ≤M/2] ≤ Pr[X ≤ (1− δ) E[X]]

≤ exp

(
−δ

2

2
E[X]

)
≤ η−κ.

Applying the union bound to all nodes and all blocks, it
follows that, with high probability, non-faulty nodes always
sample a majority of non-faulty nodes from non-faulty blocks.
The first statement follows, immediately yielding the second
as a majority of the blocks is non-faulty. The third statement
now holds because we assume that non-faulty blocks count
correctly and x is non-faulty.

5.4 Randomised Resilience Boosting
Define P(n, f, c, η, κ) as the family of probabilistic syn-

chronous c-counters on n nodes with resilience f , where
probabilistic means that an algorithm P ∈ P(n, f, c, η, κ)
of stabilisation time T (P) merely guarantees that it counts
correctly with probability 1− η−κ in rounds t ≥ T (P). Thus
with high probability, eventually all non-faulty nodes agree
on a common counter for sufficiently many rounds. Together
with Corollary 3, we get a randomised variant of Theorem 1.

Theorem 4. Given n, f, η ∈ N, pick N,F,C ∈ N and
κ > 0, where

• the number of nodes N = kn ≤ η for some number of
blocks 3 ≤ k ∈ N,
• the resilience F < (f + 1)m, where m = dk/2e,
• C > 1 is the new counter size, and
• κ is a constant.

Choose any c ∈ N that is an integer multiple of 3(F+2)(2m)k.
Then for any A ∈ A(n, f, c), there exists P ∈ P(N,F,C, η, κ)
with the following properties.

1. T (P) = T (A) + 3(F + 2)(2m)k, and
2. S(P) = S(A) + dlog(C + 1)e+ 1.
3. Each node pulls O(k log η) messages in each round.

We can choose to replace A ∈ A(n, f, c) by Q ∈ P(n, f, c, η, κ)
when applying this theorem, arguing that with high probabil-
ity it behaves like a corresponding algorithm A ∈ A(n, f, c)
for polynomially many rounds. Applying the recursive con-
struction from Section 4 and the union bound, this yields
Corollary 4. By always choosing k = O(log η), each node
pulls O(log2 η) messages from other nodes for each layer.

Corollary 4. For any c > 1, there exist probabilistic
synchronous c-counters with a resilience of f = n1−o(1) that
stabilise in O(f) rounds, use O(log2 f/ log log f + log c) state
bits per node, and in which the number of messages pulled
by a non-faulty node is O(log η(log f/ log log f)2) per round.

We note that it is also possible to boost the probability
of success, and thus the period of stability, by simply in-
creasing the sample size. For instance, sampling polylog η
messages yields an error probability of η− polylog η in each
round, whereas in the extreme case, by “sampling” all nodes
the algorithm reduces to the deterministic case.

5.5 Oblivious Adversary
Finally, we remark that under an oblivious adversary, that

is, an adversary that picks the set of faulty nodes indepen-
dently of the randomness used by the non-faulty nodes, we
get pseudo-random synchronous counters satisfying the fol-
lowing: (1) the execution stabilises with high probability
and (2) if the execution stabilises, then all non-faulty nodes
will deterministically count correctly. Put otherwise, we can
fix the random bits used by the nodes to sample the com-
munication links once, and with high probability we sample
sufficiently many communication links to non-faulty nodes
for the algorithm to (deterministically) stabilise. This gives
us the following result.

Corollary 5. For any c > 1, there exist pseudo-random
synchronous c-counters with a resilience of f = n1−o(1)

against an oblivious fault pattern that stabilise in O(f) rounds
with high probability, use O(log2 f/ log log f +log c) state bits
per node, and in which the number of messages pulled by a
non-faulty node is O(log η(log f/ log log f)2) per round.

6. CONCLUSIONS
In this work, we showed that there exist (1) deterministic

algorithms for synchronous counting that have (2) linear
stabilisation time, (3) need to store a very small number of
state bits between consecutive rounds while still achieving
(4) almost-optimal resilience—something no prior algorithms
have been able to do. In addition, we discussed how to
reduce the total number of communicated bits in the network,
while still achieving (2)–(4) by considering probabilistic and
pseudo-random synchronous counters.

We conclude by highlighting a few open problems:

1. Are there randomised or deterministic algorithms with
optimal resilience of f < n/3 that use polylog f state
bits and stabilise in O(f) rounds (with small constant
factors)?

2. Are there deterministic algorithms that use substan-
tially fewer than log2 f state bits?

3. Are there communication-efficient and space-efficient
algorithms with high resilience that stabilise quickly in
the usual synchronous model?

Acknowledgements
We thank Tuomo Lempiäinen and the anonymous reviewers
for helpful comments.

7. REFERENCES
[1] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast

self-stabilizing Byzantine tolerant digital clock
synchronization. In Proc. 27th Annual ACM
Symposium on Principles of Distributed Computing
(PODC 2008), pages 385–394. ACM Press, 2008.
doi:10.1145/1400751.1400802.

[2] Piotr Berman, Juan A. Garay, and Kenneth J. Perry.
Towards optimal distributed consensus. In Proc. 30th
Annual Symposium on Foundations of Computer
Science (FOCS 1989), pages 410–415. IEEE, 1989.
doi:10.1109/SFCS.1989.63511.

[3] Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H.
Korhonen, Christoph Lenzen, Joel Rybicki, Jukka
Suomela, and Siert Wieringa. Synchronous counting
and computational algorithm design, 2015.
arXiv:1304.5719v2.

[4] Danny Dolev and Ezra N. Hoch. On self-stabilizing
synchronous actions despite Byzantine attacks. In Proc.
21st International Symposium on Distributed
Computing (DISC 2007), volume 4731 of Lecture Notes
in Computer Science, pages 193–207. Springer, 2007.
doi:10.1007/978-3-540-75142-7_17.

[5] Danny Dolev, Janne H. Korhonen, Christoph Lenzen,
Joel Rybicki, and Jukka Suomela. Synchronous
counting and computational algorithm design. In Proc.
15th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS 2013), volume
8255 of Lecture Notes in Computer Science, pages
237–250. Springer, 2013.
doi:10.1007/978-3-319-03089-0_17.
arXiv:1304.5719v1.

[6] Danny Dolev and Rüdiger Reischuk. Bounds on
information exchange for Byzantine agreement. Journal
of the ACM, 32(1):191–204, 1985.
doi:10.1145/2455.214112.

[7] Shlomi Dolev. Self-Stabilization. The MIT Press,
Cambridge, MA, 2000.

[8] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing
clock synchronization in the presence of Byzantine
faults. Journal of the ACM, 51(5):780–799, 2004.
doi:10.1145/1017460.1017463.

[9] Michael J. Fischer and Nancy A. Lynch. A lower bound
for the time to assure interactive consistency.
Information Processing Letters, 14(4):183–186, 1982.
doi:10.1016/0020-0190(82)90033-3.

[10] Marshall C. Pease, Robert E. Shostak, and Leslie
Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, 1980.
doi:10.1145/322186.322188.

http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1109/SFCS.1989.63511
http://arxiv.org/abs/1304.5719v2
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1007/978-3-319-03089-0_17
http://arxiv.org/abs/1304.5719v1
http://dx.doi.org/10.1145/2455.214112
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1145/322186.322188

	Introduction
	Prior Work
	Contributions
	Structure

	Preliminaries
	Algorithms and Executions
	Synchronous Counters

	Boosting Resilience
	High-level Idea of the Construction
	Setup
	Voting Blocks
	Executing the Phase King
	Proof of Theorem 1

	The Recursive Construction
	The Base Case
	Using a Fixed Number of Blocks
	Varying the Number of Blocks

	Saving on Communication Using Randomisation
	The Pulling Model
	The High-Level Idea
	Sampling Communication Channels
	Randomised Resilience Boosting
	Oblivious Adversary

	Conclusions
	References

