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PulseSync: An Efficient and Scalable
Clock Synchronization Protocol

Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer

Abstract—Clock synchronization is an enabling service
for a wide range of applications and protocols in both
wired and wireless networks. We study the implications of
clock drift and communication latency on the accuracy of
clock synchronization when scaling the network diameter.
Starting with a theoretical analysis of synchronization
protocols, we prove tight bounds on the synchronization
error in a model that assumes independently and randomly
distributed communication delays and slowly changing
drifts. While this model is more optimistic than traditional
worst-case analysis, it much better captures the nature of
real-world systems such as wireless networks.

The bound on the synchronization accuracy, which
is roughly the square-root of the network diameter, is
achieved by the novel PulseSync protocol. Extensive ex-
periments demonstrate that PulseSync is able to meet the
predictions from theory and tightly synchronizes large net-
works. This contrasts against an exponential growth of the
skew incurred by the state-of-the-art protocol for wireless
sensor networks. Moreover, PulseSync adapts much faster
to network dynamics and changing clock drifts than this
protocol.

Index Terms—wireless networks, probabilistic analysis

I. INTRODUCTION

Clock synchronization is a fundamental service to
establish a common notion of time across multiple nodes
forming a communication network. Accurate synchro-
nization enables a wide range of application and services.
For instance, precise synchronization is mandatory for
systems that measure the occurence of events such
as acoustic or seismic signals, where synchronization
errors considerably affect the measurement accuracy.
Furthermore, precise timing information is mandatory
for coordination amongst different nodes. Wireless net-
works can greatly benefit from synchronized clocks
when scheduling medium access and significantly reduce
periods of idle listening.

Many approaches rely on establishing a hierarchical
structure amongst multiple nodes. Here, nodes with
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the highest clock accuracy serve as reference and time
information is passed on, possibly traversing multiple
intermediate hops. Typical examples of such structured
networks include the Global Positioning System (GPS)
or Internet time servers using the Network Time Protocol
(NTP) [1]. GPS satellites continuously broadcast time
information based on their atomic clocks, which are
synchronized from ground-based stations. GPS receivers
employ data packets from the GPS satellites to provide
an accurate clock signal. NTP uses a GPS clock, atomic
clock or radio clock as its timesource, which is attached
to a time server. NTP clients synchronize to a time
server by measuring the round-trip delay of UDP packets
containing the current timestamp. In order to reduce the
round-trip delay, clients typically only synchronize to a
nearby time server, which itself is synchronized to other
time servers higher up in the hierarchy.

This approach is not well-suited to, for instance,
wireless sensor networks, which consist of resource-
constrained nodes deployed for in-situ monitoring of
physical phenomena. Access to a GPS clock is often not
feasible due to constraints in terms of energy, costs, and
satellite coverage (e.g. indoors). During the last decade,
several synchronization protocols have been proposed
tailored to the constrained nature of wireless embedded
systems (see related work in Section II). In contrast to
NTP, which exchanges UDP packets with a time server
possibly multiple hops away, in this setting the protocol
has control over the behaviour of the intermediate nodes.
In particular, the synchronization protocol runs also
on these nodes and can be utilized to communicate
considerably more precise timing information.

Challenges. A crucial part of clock synchronization
lies in the ability to compare time information between
different spatially separated entities. Ideally, a client
node is able estimate its clock offset and drift relative to a
reference node based on the comparison of its local clock
and the reference clock. The accuracy of this estimation
depends highly on the delay required to transfer a
clock reading from one place to another and the extent
to which non-deterministic contributions to the overall
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delay can be eliminated. Clearly, the synchronization
error between adjacent nodes will also influence the
synchronization accuracy of nodes further away from the
reference node. Furthermore, the network size and the
chosen strategy for forwarding time information through
the network effects the latency required to synchronize
the network and to adapt to dynamics such as changes
in the network topology or ambient temperature.

We identify the following key challenges for synchro-
nization in wireless multi-hop networks:
• Accuracy: A synchronization protocol has to pro-

vide accurately synchronized clock for all nodes.
The synchronization error should be kept small,
even when a node is multiple hops away from the
reference node.

• Latency: Time information has to propagate as
quickly as possible from the reference node to every
other node in the network.

• Efficiency: The number of messages sent by each
node and the energy budget dedicated to the syn-
chronization routine should be small.

Contributions. While existing protocols meet these
requirements reasonably well for networks of small
diameter (i.e., those where all nodes can be reached with
a small number of hops), they fail to achieve timely
and accurate synchronization over larger distances. To
overcome this issue, we introduce an appropriate model
(Section III) and analyze the achievable bounds on accu-
racy, latency, and efficiency in this setting (Section V).
We propose the new protocol PulseSync (Section VI)
and prove that it offers asymptotically optimal trade-offs
between these design goals (Section VIII).

Simulations on networks with a diameter of up to
D = 100 nodes give insights about the synchronization
accuracy to expect on larger networks that exceed the
dimensions of most sensor networks deployed today.
Comparing PulseSync to the Flooding Time Synchro-
nization Protocol (FTSP), the de facto state-of-the-art in
synchronization of wireless sensor networks, we show
an exponential improvement in the dependence of the
maximal clock skew on D (Figure 1). Note that the
figure shows that PulseSync features a clearly sublinear
dependence of the skew on D, as predicted by our
analysis. This justifies the choice of a more optimistic
system model, as it is known for long that the skew
must be linear in D in the worst case [2]. These findings
are not artifacts of unrealistic simulation parameters or
network diameters; careful experiments confirm consid-
erable improvements already for 5-10 hops.

Furthermore, by construction most existing synchro-
nization protocols cannot adapt quickly to changes in
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Fig. 1. Simulations of FTSP and PulseSync on line topologies.
Message delays were sampled from the normal distribution fitted to the
measurement data (see Figure 2, 1 tick = 1µs), clock drifts uniformly
at random from [-40,40] ppm and kept constant during each run. The
curve for FTSP flattens near diameter 70 due to overflowing variables.

clock drifts (e.g. due to variances in temperature, humid-
ity, or battery voltage) or network connectivity. This is
to be attributed to the unaligned sending patterns that are
typically employed because they simplify accessing the
wireless medium without significant message loss due
to interference. A crucial disadvantage of this approach
is that the time to spread information throughout the
network grows as the product of the (average) time
between local updates and the network diameter. Pulse-
Sync avoids this issue by flooding rapid, short “pulses”
through the network. Hence it has a much shorter ini-
tialization phase and adjusts much faster to changes in
topology or drifts, in time in the order of the sum of the
time between local updates and the network diameter.
Our experimental data supports this conclusion.

Note that this mechanism comes with the additional
advantage that there is no need for nodes to listen
between pulses once they detected any pulse, both on
initialization or when joining the network later on. This
permits to save energy by turning off radio receivers for a
large fraction of the time, without sacrificing robustness
of the synchronization technique.

All mentioned experimental results are obtained from
a prototype of PulseSync on the Opal wireless sensor
platform using TinyOS (Section VII) that is published
online [3]. The experimental evaluation of the perfor-
mance of this implementation was carried out on a
testbed of diameter D = 30 (Section IX). The parameters
used in the simulations shown in Figure 1 were derived
from these measurements. To allow for a fair compari-
son, we also performed an experiment with a standard
implementation of FTSP on a matching setup.

The remaining sections cover related work (Sec-
tion II), some properties of normally distributed random
variables and linear regression we use in our formal
analysis (Section IV), and conclusions we draw from

2

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2309805

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



our results (Section X). We remark that the theory and
practice parts of the article are self-contained, with the
obvious reservation that the high-level description of
PulseSync in Section VI is relevant to both parts.

II. RELATED WORK

Clock synchronization has been studied extensively
both in wired and wireless networks. The Network Time
Protocol (NTP) [1] is commonly used to synchronize
devices over the Internet. It uses UDP packets to pe-
riodically poll a time server. Packets are timestamped
at both the client and server, which allows the client
to calculate its clock offset and the message delay.
Different algorithms are used to discard packets that
contain outliers. In contrast to NTP, which timestamps
packets only at the start and the end of a path, syn-
chronization protocols for wireless networks employ
MAC layer timestamping [4], [5]. Hence, these protocols
achieve improved accuracy since the effects of non-
deterministic delays due to buffering in the radio driver
or random backoff are mitigated. Reference Broadcast
Synchronization (RBS) [6] exploits the broadcast na-
ture of the physical channel to synchronize a set of
receivers. Since differences in the propagation times are
small in most wireless networks, packets arrive almost
simultaneously at all receivers, yielding a common event
serving as a reference point. The Timing-sync Protocol
for Sensor Networks (TPSN) [5] builds a spanning tree
of the network. Nodes synchronize to their parent by a
two-way message exchange to estimate delay and offset.

The Flooding-Time Synchronization Protocol (FTSP)
[4] uses flooding and MAC layer timestamping to reduce
the number of messages to one per node and synchro-
nization interval. A root node is elected which period-
ically floods timestamps into the network, inducing a
tree structure. The root node is dynamically elected by
the network based on the smallest node identifier. Each
node uses a linear regression table to convert between
its local hardware clock and the clock of the reference
node. Nodes that are synchronized to the root node start
broadcasting their local estimation of the global clock.

While in FTSP every node broadcasts synchroniza-
tion beacons periodically, the Routing Integrated Time
Synchronization protocol (RITS) [7] uses a reactive
approach to provide post-facto synchronization. Clocks
are synchronized only when an event is detected. While
the timestamp of an event is forwarded towards the sink
node, it is converted from the local time of the sender
to the receiver’s local time at each hop. Similar to our
approach, Rapid Time Synchronization (RATS) [8] em-
ploys a network-wide flooding to disseminate the local

time of the root node, however, no drift compensation
is implemented for the forwarding of synchronization
beacons. Recently, Ferrari et al. [9] proposed Glossy,
which combines flooding and time synchronization by
exploiting constructive interference of radio packets.
While Glossy allows for flast flooding of synchronization
pulses, it requires specialized radio receivers providing
very low jitter in the message delay (e.g. the TI CC2420
radio [10]). Furthermore, the differences in the propaga-
tion delay between nodes cannot exceed 0.5 microsec-
onds in order to exploit constructive interference at the
receivers, which limits the use of Glossy to deployments
with short (<150 m) radio links only.

In contrast, PulseSync achieves provably sublinear
skews with respect to D in a quite generic setting that
merely assumes that the expected communication delay
is known. This bound is probabilistic, whereas the worst-
case accuracy that can be achieved is no smaller than
D/2 in a general model where message delays vary
arbitrarily in the range [0, 1] and clocks are perfect [2].
A worst-case upper bound of (1 + ρ)D can be achieved
by a simple algorithm even if in addition clock speeds
maybe vary arbitrarily between 1−ρ and 1+ρ [11]. This
upper bound is essentially tight (not only up to factor
2(1 + ρ)) if one also requires that the computed clocks
remain within an optimal envelope of real time [12].1

III. MODEL

In a wireless network, communication takes place
by radio. In theory, in order to send a message, a
node powers up its radio, transmits the message, and
powers the radio down. In practice, of course, there
are a number of issues. Does the receiver listen on
the respective channel? Is there interference with other
transmissions? Is an acknowledgement to be sent? If
so, was it successfully received, etc. We will not delve
into these matters, although one has to respect the
peculiarities of wireless communication when devising
clock synchronization protocols for such systems.

Keeping these issues in mind, we choose a simplistic
description of the network as a static graph G = (V,E),
where V is the set of nodes and E is the set of bidi-
rectional, reliable communication links. If node v ∈ V
sends a message, all neighbors w ∈ Nv listening on
the channel can receive this message. We focus on the
following aspects of wireless systems:

Communication is expensive. The energy consumption
of a node whose radio is powered on is orders of
magnitude larger than that of a sleeping node (cf. [13]).

1Formally, if all local clocks are initialized to 0, at time t the
computed clock values must be within (1 − ρ)t and (1 + ρ)t.

3

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2309805

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



In fact, in many cases radio usage determines the life-
time of a sensor node. Therefore, we would like to
minimize the amount of communication dedicated to the
synchronization routine. Consequently, we require that
nodes send and receive (on average) one message per
beacon interval B only.

Communication is inexact. In a distributed system,
it is not possible to learn the exact clock values of
communication partners. In the wireless setting, this is
mainly due to two causes. Firstly, transmission times
vary. This effect can be significantly reduced by MAC
layer time-stamping [4], yet a fraction of the trans-
mission time cannot be determined exactly. Secondly,
the resolution of the sensor nodes’ clocks is limited.
Thus, quantization errors are introduced that make it
impossible to determine the time of arrival of a message
precisely (this can also be improved [10]). As these
fluctuations are typically not related between different
messages, we model them as independently distributed
random variables. For the sake of our analysis, we
assume their distributions to be identical and refer to
the respective standard deviation as jitter J . Our results
hold for most “reasonable” distributions. For simplicity,
we will however assume normally distributed variables
with zero mean2 in this article, a hypothesis which is
supported by empirical study [6] as well as our own
measurements (see Figure 2).

Sending times are constrained. Due to signal inter-
ference, in wireless networks one cannot simply send a
message whenever it is convenient. In order to account
for this, we define the time it takes in each beacon
interval between a node receiving and sending a message
to be predefined and immutable by the algorithm. For
the reason that every node will receive and transmit
only once during every interval, we need only a single
value τv ∈ R+ for each node v ∈ V , denoting the time
difference between receiving and sending the respective
messages. This time span also accounts for the fact that it
takes some time to receive, send, and process messages.
Note that this is a simplification in that this time span
is variable for several reasons. However, the respective
fluctuations are small enough to have negligible effects,
as in a real system the fact that radios are powered down
most of the time necessitates that nodes can predict when
the next message arrives in order to activate the receiver
and listen on the appropriate channel.

Message size is constrained. The number of bits in
radio messages should be small for various reasons.
Hence, we restrict the “payload” of a message to a small

2I.e., the expected value of the variable is known and can be
subtracted, yielding a distribution of zero mean.
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Fig. 2. Measurement of the message delay between two Atmel
AT86RF231 radio transceivers. The fitted normal distribution has a
mean of 213.8 µs and a variance of 0.18 µs. The probability mass
corresponding to each bar is the product of its width and height.

(constant) number of values. We do not formalize this in
our model; in particular, we assume unbounded clocks.
In practice, a limited number of bits is used to represent
clock values and a wrap-around is implemented.

Dynamics. Which nodes can communicate directly
may depend on various environmental conditions, in
particular interference from inside or outside the net-
work. Thus, in contrast to the previous definition of
G, the communication graph is typically not static.
Moreover, the speed of the nodes’ clocks will vary,
primarily due to changes in the nodes’ temperatures; we
remark that nodes equipped with temperature sensors can
significantly reduce this influence [14], [10]. We do not
capture these aspects in our model, which assumes a
static configuration of the system, both with regard to
communication and clock rates. This aspect is addressed
by the design of the proposed algorithm, which strives
for dependency of computed clock values on a short
period of time. Thus, the algorithm will adapt fast to
changes in topology or clock speeds.

Let us now formalize the clock synchronization prob-
lem in this communication model. Each node v ∈ V has
a local hardware clock Hv : R+

0 → R+
0 . It is an affine

linear function Hv(t) = ov+hv ·t, where ov ∈ R+
0 is the

offset and hv is the rate of v’s clock. Node v has access
to Hv(t) only, i.e., it can read its local clock value, but
does neither know ov nor hv . The rate hv determines by
how much a local measurement of a difference between
two points in time deviates from the correct value. We
require that the relative drift of Hv is bounded, i.e.,
ρv := |hv − 1| ≤ ρ < 1. Here ρ is independent of the
number of nodes n, meaning that each clock progresses
at most by a constant factor slower or faster than real
time. Typical hardware clocks exhibit drifts of at most
50 ppm, i.e., ρ ≤ 5 · 10−5.

Observe that given an infinite number of messages,
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two neighboring nodes could estimate each other’s clock
values arbitrarily well. Sending clock updates repeatedly
and exploiting independence of message jitters, node v
can approximate the function Hw(Hv(t)), w ∈ Nv , ar-
bitrarily precisely with probability arbitrarily close to 1.
For theory, it is thus mainly interesting to study local
clocks with fixed drift in combination with algorithms
whose output at time t depends on a bounded number
of messages only. In light of our previous statements, the
same follows canonically from our goals to (i) minimize
the number of messages nodes send in a given time
period and (ii) enable the algorithm to deal with dy-
namics by making it oblivious to information that might
be outdated. If we relied on clock values from a large
period of time (where the meaning of “large” depends
on the speed of changes in environmental conditions),
the assumption of clock drifts being constant (up to
negligible errors) would become invalid.

A clock synchronization algorithm is asked to derive
at each node v a logical clock Lv := R+

0 → R+
0 based

on local computations, its hardware clock readings, and
the messages exchanged. The goal is to minimize the
global skew G(t) := maxv,w∈V {|Lv(t)−Lw(t)|}, using
few messages and only recent information.

Note that so far a trivial solution would be to simply
set Lv(t) := 0 for all times t and nodes v. Naturally,
we rather want Lv to behave like a “real” clock. In
particular, we expect clock speeds to be close to one
and clock values to be closely related to real time. To
avoid a cluttered notation, we will adopt the following
convention. There is a distinguished root node r ∈ V
that has a perfect clock, i.e., Hr(t) = t = Lr(t) at all
times t, and nodes try to synchronize their logical clocks
with Lr. This is known as external synchronization in
the literature, as opposed to the closely related concept
of internal synchronization where there is no reference to
the real time and nodes synchronize their clocks to each
other. Note that for the purpose of internal synchroniza-
tion it is feasible to choose an arbitrary node as reference
and assume its clock to be “perfect” without significantly
affecting the bounds on the relative drift. Observe that
G(t) ≤ 2 maxv∈V {|Lv(t)−Lr(t)|}, i.e., minimizing the
global skew is essentially equivalent to synchronizing
clocks to t = Lr(t). We do not impose explicit restric-
tions on the progress speeds of the logical clocks in our
model. However, we note that one can ensure smoothly
progressing clocks by interpolation techniques, without
weakening the synchronization guarantees.

IV. PRELIMINARIES

This section summarizes some standard tools used
throughout the article.

Lemma 1. Given normally distributed random variables
X1, . . . , XN , their sum X :=

∑N
i=1Xi is normally

distributed with expectation E[X] =
∑N
i=1 E[Xi] and

variance Var[X] =
∑N
i=1 Var[Xi].

Lemma 2. Any normally distributed random variable
X satisfies that P [|X − E[X]| >

√
Var[X]] ∈ Ω(1)

and P
[
|X − E[X]| ≤ δ

√
Var[X]

]
∈ 1 − e−Ω(δ2 log δ)

for any δ ∈ R+.

Definition 3 (Simple Linear Regression). Given data
points (xi, yi), i ∈ {1, . . . , N}, such that not all xi
are the same, their linear regression is the line f̂(x) =
ŝx + t̂, where ŝ, t̂ ∈ R are minimizing the expression∑N
i=1(f̂(xi) − yi)

2. Denoting by · the average of the
respective values ·i, i ∈ {1, . . . , N}, we have

ŝ =
xy − x̄ȳ
x2 − x2

and t̂ = y − ŝ x.

Theorem 4. Assume that we are given a set of measure-
ments (xi, ŷi) of data points (xi, yi), i ∈ {1, . . . , N},
obeying the relation f(xi) = yi, where f(x) = sx + t.
Furthermore, assume that ŷi = yi + Xi, where the Xi

are identically and independently normally distributed
random variables with expectation µ and variance σ2.
Denote by f̂(x) = ŝx + t̂ the linear regression of the
data set {(xi, ŷi)}i∈{1,...,N}. Then we have that
(i) ŝ is normally distributed with E[ŝ] = s and

Var[ŝ] = σ2/
∑N
i=1(xi − x̄)2,

(ii) f̂(x̄) − f(x̄) is normally distributed with mean µ
and variance σ2/N .

V. LOWER BOUND

In order to derive our lower bound on the global skew
of any algorithm in our model, we first examine how well
a neighbor of the root can synchronize its clock to Lr.

Lemma 5. Assume that r sends at most k ∈ N messages
within T := (t−kB, t] ⊂ R+

0 . Suppose v ∈ Nr computes
an estimate ôv(t) of ov(t) := Hv(t)−t without—directly
or indirectly—relying on any events preceding T . Then
the probability that ôv(t) has an error of J /

√
k is at

least constant, i.e., P [|ôv(t)− ov(t)| ≥ J /
√
k] ∈ Ω(1).

Proof: We claim that w.l.o.g. (i) no other nodes
relay information about r’s clock values to v, (ii) r sends
all messages at time t and (iii) each message contains
only the clock value at the time of sending.

To see this, observe first that even if another node
knew the state of r exactly, it could do no better than r as
its messages are subject to the same variance in delay as
r’s. Next, including several values into a single message
does not help in estimating ov(t), as the crucial point is

5

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2309805

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



that the time of delivery of the message in comparison
to the expected time of its delivery is unknown to both
sender and receiver. Thus, all estimates that v derives on
r’s clock values are inflicted with exactly the same error
due to jitter. Moreover, sending a different value than
the one at the time of sending only meant that v had to
guess, based on its local clock and the messages from
r, the value of Hv(t

′) at the time t′ when r read the
respective clock value. This however could only reduce
the quality of the estimate. As we deliberately lifted any
restrictions r had on sending times, there is no advantage
in sending the message at a different time than t. Finally,
since we excluded the use of any information on times
earlier than t− kB in the preconditions of the lemma, r
has no valuable information to share except its hardware
clock reading at time t.

In summary, r can at best send k messages containing
t at time t, such that v will learn that r sent k messages at
time t that have been registered at local times Hv(t+Xi),
where Xi, i ∈ {1, . . . , k}, are independent normally
distributed random variables with zero mean and vari-
ance J 2. Since Xi is unknown to v, it cannot determine
Hv(t)− t. At best, it can read the k values Hv(t+Xi)
and take each value Hv(t+Xi)− t as an estimate. This
can be seen as k measurements of ov(t) suffering from
independent normally distributed errors hvXi ∈ Θ(Xi)
(as |hv − 1| = ρv ≤ ρ and ρ < 1 is a constant). Hence,
ôv(t) is (at best) the mean of v’s clock readings minus
t. By Lemma 1, this value is normally distributed with
mean ov(t) and variance Θ(J 2/k), which by Lemma 2
gives the claimed bound.

At first glance, it seems tempting to circumvent this
bound by just increasing the time interval information is
taken from. Indeed this improves synchronization quality
as long as the model assumption that clock rates and
topology do not change remains (approximately) valid.
As soon as conditions change quickly, the system will
however require more time to adapt to the new situation,
thus temporarily incurring larger clock skews.

The given bound on the synchronization quality be-
tween neighbors generalizes to multihop communication.

Corollary 6. Assume that for a shortest path (v0 :=
r, v1, . . . , vd) and some k ∈ N, kd messages are sent
and received by the nodes on the path within a time
interval T := (t − kB, t] ⊂ R+

0 . Suppose vd computes
an estimate ôvd(t) of its hardware clock offset ovd(t) at
time t that does not rely on any events before T . Then
the probability that ôvd(t) has an error of J

√
d/k is

constant, i.e., P [|ôvd(t)− ovd(t)| ≥ J
√
d/
√
k] ∈ Ω(1).

Proof: Assume w.l.o.g. that hvi = 1 for all

i ∈ {1, . . . , d}. Denote by oi := ovi(t) − ovi−1
(t),

i ∈ {1, . . . , d} the offset between the clocks of vi and
vi−1. Consider the following scheme. First v1 determines
an estimate ô1(t) of ov1(t) = o1, then v2 an estimate
ô2 of the offset o2 towards v1, and so on. Thus, by
incorporating the results into the messages, vi, i ∈
{1, . . . , d}, can estimate ovi(t) by ôvi(t) =

∑i
j=1 ôj(t).

Since clocks do not drift and there are no “shortcuts” as
(v0, . . . , vd) is a shortest path, this scheme is at least as
good as an optimal one (obeying the model constraints).
Let ki, i ∈ {1, . . . , d}, denote the number of messages
node vi receives from its predecessor. As seen in the
proof of Lemma 5, ôi is normally distributed with mean
oi and variance J 2/ki. By Lemma 1, it follows that
ôvd is normally distributed with mean ovd and variance∑d
i=1 J 2/ki. Because

∑d
i=1 ki = kd, this variance is

minimized by the choice ki = k for all i ∈ {1, . . . , d}.
We get that Var[ôvd(t)] ≥ J 2d/k, which by Lemma 2
yields the desired statement.

Next, we infer our lower bound on the global skew.

Theorem 7. Suppose that k ∈ N and each node sends
and receives on average at most one message in B time.
If a clock synchronization algorithm determines Lv(t) at
all nodes v ∈ V and times t ∈ R+

0 depending on events
that happened after time t− kB only, then at uniformly
random times t from a sufficiently large time interval we
have that E[|Lv(t)− t|] ∈ Ω(J

√
d/
√
k), where d is the

distance of v from the root.

Proof: Let (v0 := r, v1, . . . , vd := v) denote a
shortest path from r to v. Because all nodes receive on
average at most one message in B time, for symmetry
reasons we may w.l.o.g. assume that all estimates v
obtains on its offset depend on messages along this
path only. Let E be the event that at a time t sampled
uniformly at random from a sufficiently large time period
it holds that the nodes vi, i ∈ {0, . . . , d − 1}, sent and
received in total at most 2kd messages during the interval
(t− kB, t]. Because nodes send and receive on average
at most one message in B time, linearity of expectation
and Markov’s bound imply that the probability of E must
be at least 1/2. If E occurs, Corollary 6 yields that any
estimate v may compute of Hv(t) − t has an error of
J
√
d/
√

2k with at least constant probability.
Seen from a different angle, this result states how

quickly the system may adapt to dynamics. It demon-
strates a trade-off between the contradicting goals of
minimizing message frequency, global skew, and the
time period logical clock values depend on. Given a
certain stability of clock rates and having fixed a desired
bound on the global skew, for instance, one can derive
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a lower bound on the number of messages nodes must
at least send in a given time period to meet these
conditions. Similarly, the theorem yields a lower bound
on the time span it takes until a node (re)joining the
network may achieve optimal synchronization for a given
message frequency, granted that the other nodes make no
additional effort to support this end.

VI. PULSESYNC

The central idea of the algorithm is to distribute
information on clock values as fast as possible, while
minimizing the number of messages required to do
so. In particular, we would like to avoid that it takes
Ω(BD) time until distant nodes learn about clock values
broadcast by the root node r. Obviously, a node cannot
forward any information it has not received yet, enforc-
ing that information flow is directed. An intermediate
node on a line topology has to wait for at least one
message from a neighbor. On the other hand, after
reception of a message it ought to forward the derived
estimate as quickly as possible in order to spread the new
knowledge throughout the network. Thus, we naturally
end up with flooding a pulse through the network. In
order to keep the number of hops small, the flooding
takes place on a breadth-first search (BFS) tree.

To keep clock skews small at all times, each node
v ∈ V does not only minimize its offset towards the
root whenever receiving a message, but also employs a
drift compensation, i.e., tries to estimate hv and increase
its logical clock at the speed of Hv divided by this
estimate. As we modeled Hv as an affine linear function
and the fluctuations of message delays as independently
normally distributed random variables, linear regression
is a canonical choice as a means to compute Lv(t) out
of Hv(t) and the k most recent clock updates received.

We need to specify how nodes that are not children
of the root obtain accurate estimates of r’s clock. Recall
that nodes are not able to send a message at arbitrary
times. Thus, it is necessary to account for the time span
τv that passes between the time when node v ∈ V
receives a clock estimate from a parent and the time
when it can send a (derived) estimate to its children.
The most simple approach here is that if v obtains an
estimate t̂ of the root’s clock value Lr(t) = t from a
message received at time t, it sends at time t + τv the
value t̂ + (Hv(t + τv) − Hv(t)) to its children. Thus,
the quality of the estimate will deteriorate by at most
|(Hv(t+τv)−Hv(t))−((t+τv)−t)| = |hv−1|τv ≤ ρτv .
We will refer to this as simple forwarding. Intuitively,
granted that τv is small, i.e., maxv∈V {ρvτv} � J /

√
D,

the additional error introduced by simple forwarding is
dominated by message jitter and thus negligible.

In our test setting, this technique already turned out
to be sufficient for achieving good results. However, this
might not be true in general, due to different hardware,
larger networks, harsh environments, etc. Hence we
devise a slightly more sophisticated scheme we call com-
pensated forwarding. As discussed before, it is fatal to
replace the term Hv(t+τv)−Hv(t) by Lv(t+τv)−Lv(t),
i.e., approximate the progress of real time by means of
the regression line that is computed partially based on
the estimate t̂ obtained at time t. Instead, we use an
independent estimate ĥv of hv to compensate the drift.
To this end, given k ∈ 2N, node v ∈ V computes
the regression line defining Lv according to the k/2
most recent messages only. The remaining k/2 messages
nodes may take information from are used to provide
clock estimates with simple forwarding. From these
values a second regression line is determined, whose
slope s should be close to 1/hv . As we know that
hv ∈ [1−ρ, 1 +ρ], nodes set ĥv to 1−ρ if the outcome
is too small and to 1 + ρ if it is too big. All in all,

ĥv :=

1− ρ if 1/s ≤ 1− ρ
1 + ρ if 1/s ≥ 1 + ρ
1/s otherwise.

Apart from sending t̂+Hv(t+τv)−Hv(t) at time t+τv
after receiving a message at time t, node v now also
includes the value t̂+ (Hv(t+ τv)−Hv(t))/ĥv into the
message. This (usually) more precise estimate is then
used to derive the regression line defining Lv from the
k/2 most recent messages. Obviously, one cannot use
compensated forwarding until nodes received sufficiently
many clock estimates; for simplicity, we disregard this
in the pseudocode of the algorithm. We remark that a
similar approach has been proposed for high latency
networks where the drift during message transfer is a
major source of error [15].

The pseudocode of the algorithm for non-root nodes
is given in Algorithm 2. The root follows Algorithm 1.
In the abstract setting, a message needs to contain the
two estimates of the root’s clock value only. For clarity,
in the pseudocode we utilize sequence numbers i ∈ N,
initialized to one. In practice, a message may contain
additional useful information, such as an identifier, the
identifier of the (current) root, or the (current) depth of
a node in the tree. For the root node, the logical clock is
simply identical to the hardware clock. Any other node
computes Lv(t) as the linear regression of the k/2 most
recently stored pairs of hardware clock values and the
corresponding estimates with compensated forwarding,
evaluated at Hv(t). As stated before, the value ĥv(t) is
computed out of the k/2 estimates with simple forward-
ing from the preceding pulses, as the inverse slope of
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the linear regression of these values.

Algorithm 1: Whenever Hr(t) mod B = 0 at the
root node r.

wait until time t+ τr when allowed to send
send 〈t+ τr, t+ τr, i〉 // Hr(t+ τr) = t+ τr
i := i+ 1

Algorithm 2: Node v 6= r receives its parent’s
message 〈t̂, t̃, i〉 with sequence number i at local time
Hv(t).

delete 〈·, ·, ·, i− k + 1〉
store 〈Hv(t), t̂, t̃, i〉
wait until time t+ τv when allowed to send
send 〈t̂+Hv(t+ τv)−Hv(t), t̃+ Hv(t+τv)−Hv(t)

ĥv
, i〉

i := i+ 1

VII. IMPLEMENTATION

We present a prototype implementation of the Pulse-
Sync protocol on Opal wireless nodes to verify the
feasibility of our approach in practice.

Hardware Platform. The hardware platform used for
the implementation of PulseSync is the Opal wireless
sensor network platform [16]. It features a low-power
Atmel SAM3U microcontroller, which is based on an
ARM Cortex-M3 core providing 256 KBytes of pro-
gram flash and 52 KBytes of RAM. Two separate ra-
dio transceivers (Atmel AT86RF212/231) provide multi-
band communication capabilities in the 900 MHz and
2.4 GHz ranges according to the IEEE 802.15.4 standard.
The clock frequency of the Cortex-M3 core can be scaled
up to 96 MHz by multiplying the signal from a 12 Mhz
external quartz crystal using a phased-locked loop. We
configured the microcontroller to further divide the core
clock frequency to generate a 1 Mhz clock used as an
input for the Timer Counter block of the SAM3U. The
hardware clock is built on top of a 16-bit hardware clock
register plus an additional 16-bit software counter that
is increased at every overflow of the underlying counter
register. Thus, the local clock of the node is a 32-bit
integer that is being increased at a frequency of 1 Mhz.

PulseSync Implementation. We implemented Pulse-
Sync on the Opal platform using TinyOS 2.x [17]. The
protocol implementation provides access to a globally
synchronized logical clock for other components of the
application running on the node.

After startup, the PulseSync component is initialized
by setting the logical clock to the current hardware
clock value and nodes start overhearing the wireless

channel for synchronization messages. If no synchro-
nization messages have been received for a certain time,
the node will declare itself as the reference node and
starts to broadcast periodic synchronization pulses. Each
synchronization message contains a global timestamp,
sequence number, and root node identifier. After the
bootstrap phase, a node will receive periodic pulses
from nodes located closer to the reference node. No
synchronization pulses will be received if the reference
node stops broadcasting due to a hardware failure or
the node gets disconnected from the rest of the network.
When a node does not receive synchronization messages
from a reference node with lower id for the duration of
several consecutive beacon intervals, it starts to advertise
itself as the new reference node. When a node learns
about a change in the network topology, e.g., a reference
node with a lower id than the existing one is advertised,
it forwards the synchronization packet immediately in
order to propagate topology changes as quickly as pos-
sible through the network.

Depending on the network topology, a node receives
synchronization messages from multiple neighbors. Only
the first packet of each pulse arriving at a node will
be forwarded. It is very likely that this pulse has been
forwarded on a path with minimal hop count from the
root node and, therefore, the jitter accumulated along
this path is assumed to be smaller than on longer paths.
To detect duplicate pulses, we insert a sequence number
field into the synchronization message which is increased
by the reference node r after each sent pulse.

MAC Layer Timestamping. To minimize clock skews,
it is essential that the computed clock estimates are
unbiased. Timestamping radio packets at the MAC layer
allows to reduce uncertainties in the message delay as
much as possible and to account for the expected delay
by applying respective corrections [4], [5]. For example,
the TinyOS driver for the RF231 radio employs a random
backoff between 320 and 4960 microseconds for medium
access. In addition, processing delays (e.g., transferring
the packet between microcontroller and radio) can ac-
count for up to several hundred microseconds.

Ultimately, the accuracy of MAC layer timestamping
depends on the resolution of the local hardware clock
and the latency of the interrupt occurring on the start of
frame delimiter (SFD). Since the hardware clock is dis-
crete, the estimate obtained with an imagined continuous
hardware clock is rounded up to the next integer.

Furthermore, the SFD interrupt might be delayed
when the microcontroller is within an atomic section
of another task. Here comes the tightly concentrated
flooding of pulses to our advantage: Following the slotted
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programming approach proposed in [18], we can ensure
that the nodes are ready to handle synchronization mes-
sages without blocking efficient operation of application
code. Under this assumption, it is reasonable to expect
that the mean interrupt handling time is, again up to
minor errors, fixed for any given combination of hard-
ware and message handling code. Such error terms may
strongly depend on the combination of radio transceiver,
microcontroller, and message handling code, but are
uniform in time and independent of the specific sensor
node. Hence, it is feasible to determine the (expected)
error experimentally during a calibration phase. Note
that this has the additional advantage of accounting for
possible unidentified further contributions to the error
made at each hop. Overall, MAC layer timestamping
typically results in an effective jitter of roughly one clock
tick, which is equal to 1 µs in our setup.

Wireless Flooding. PulseSync seeks to quickly dissem-
inate time information through the network. Therefore,
nodes start to transmit synchronization pulses shortly
after reception of a new pulse from a neighbour closer to
the root. However, in a wireless network radio packets
used for these pulses might collide due to interference.
This problem is known as the broadcast problem in
wireless networks and has been studied extensively in the
literature. For the sake of brevity, we keep the discussion
concise and refer to [19] for additional details.

In the context of wireless sensor networks, the abil-
ity to quickly flood packets through the network is a
fundamental primitive for various network protocols and
applications, such as data dissemination [20] or time
synchronization [4], [7]. Several protocols have been
proposed to increase the reliability of flooding, e.g.,
the Robust Broadcast Protocol (RBP) [21] or Collective
Flooding (CF) [22], which exploit information on the
neighborhood of a node.

Rather than trying to avoid interference completely,
other approaches employ concurrent transmissions to re-
duce the latency of flooding. Thereby, the Flash flooding
protocol [23] exploits the power capture effect, where
a receiver is able to successfully decode the strongest
packet amongst multiple concurrent transmissions [24].
Recently, Ferrari et al. proposed Glossy [9], which
provides a flooding latency of a few milliseconds for
networks with a small diameter by exploiting construc-
tive interference by precisely timing the forwarding of
the same radio packet at different nodes.

Although we did not employ these sophisticated al-
gorithms in our prototype implementation, they demon-
strate that efficient solutions to tackle the broadcast
problem are feasible in practice. With such techniques

it is possible to complete pulses in less than B time on
any real-world topology. Even if the previous pulse has
not been completed before the next one is started, the
spatial separation of two pulses is large enough not to
cause additional collisions.
Energy Efficiency. Energy is one of the limiting factors
one has to keep in mind when designing applications and
protocols for sensor networks. Current time synchroniza-
tion algorithms, e.g., FTSP, broadcast periodic beacons
at a certain rate (e.g., every 10 seconds). However,
the exact time point when a node broadcasts the next
time synchronization beacon is not coordinated with
its neighbors. One advantage of this approach is its
simplicity since neighboring nodes do not need to agree
on a common schedule when beacons can be sent or
received. However, a drawback of uncoordinated send-
ing in low-power operation scenarios is that topology
changes result in changes in the listening schedules that
need to propagate through the network.

In contrast, PulseSync simplifies low-power operation,
since pulses will arrive only during a specific and short
time interval, independently of changes in the flooding
tree. A synchronization beacon can be transmitted in
roughly 1.4 ms using the RF231 radio. Forwarding a
received packet requires only a few milliseconds depend-
ing on the amount of random backoff introduced by the
MAC protocol. This permits to operate the radio chip at
a very low duty-cycle, even with guard times of a few
hundred microseconds. For example, having the radio
active for receiving and transmitting beacons during a
period of 500 ms (an entire pulse in our 31-node net-
work) within every beacon interval of 10 seconds results
in a duty-cycle of 5%. As long as a node is synchronized
to the rest of the network, it can easily calculate when the
next synchronization pulse will arrive and switch on the
radio accordingly. Significant further improvements can
be achieved by exploiting knowledge on the transmission
schedule (for our setup: ≈10 ms radio activity, resp.
0.1% duty cycle) or by increasing the beacon interval B;
the latter comes at the expense of a slower initialization
and response to possible dynamics. What is more, this
approach allows for a temporal decoupling of sensing,
computation, and communication tasks, as proposed in
the slotted programming approach [18].

VIII. ANALYSIS

In this section, we prove a strong probabilistic upper
bound on the global skew of PulseSync. To this end, we
will first derive a bound on the accuracy of the estimates
nodes compute of their hardware clock rates. Then we
will proceed to bounding the clock skews themselves.
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Definition 8 (Pulses). Pulse i ∈ N is complete when
all messages with sequence number i have been sent.
We say that pulses are locally separated if for all i ∈ N
each node sends its message with sequence number i at
least αB time before receiving the one with sequence
number i+ 1, where α ∈ R+ is a constant.

After the initialization phase is over, i.e., once all
nodes filled their regression tables, nodes are likely to
have good estimates on their clock rates. Interestingly,
the quality of the estimates is independent of the clock
drifts, as the respective systematic errors are the same
for all estimates of the root’s clock and thus cancel out
when computing the slope of the regression line.

Lemma 9. For v ∈ V and arbitrary δ ∈ R+ we
define that ∆h := min{2ρ, δJ

√
D/(k3/2B)}. Suppose

that pulses are locally separated. Then, at any time t
when at least k ∈ 2N pulses are complete, it holds that
P [|hv/ĥv(t)− 1| ≤ ∆h] ∈ 1− e−Ω(δ2 log δ).

Proof: Assume that (v0 := r, v1, . . . , vd := v) is
the path from r to v in the BFS tree (i.e., in partic-
ular d ≤ D). Consider a simply forwarded estimate
t̂ that has been received by v at time t. Backtracking
the sequence of messages leading to this value and
applying Lemma 1, we see that r sent its respective
message at a time that is normally distributed around
t −

∑d−1
i=0 τvi with variance dJ 2. Thus, since node vi

increases each simply forwarded estimate at rate hvi ,
t̂−t is normally distributed with mean

∑d−1
i=0 (hvi−1)τvi

and variance at most
∑d−1
i=0 ((1 + ρvi)J )2 ≤ 4dJ 2. By

Theorem 4, thus the slope ŝ of the regression line v
computes is normally distributed with mean 1/hv and
variance O(dJ 2/(hvk

3B2)) ⊆ O(DJ 2/(k3B2)). Here
we used that pulses are locally separated, implying that∑N
i=1(xi − x̄)2 ∈ Ω(hvk

3B2) (in terms of the notation
from the theorem). Recall that hv ≥ 1− ρv ≥ 1− ρ > 0
and we made sure that ĥv ∈ [1−ρ, 1 +ρ]. Thus, we can
infer that the error |hv/ĥv − 1| = |hvs− 1| is bounded
both by 1/(1 − ρ) ∈ O(1) times the deviation of the
slope from its mean and 2ρ. Hence, the claim follows
by Lemma 2.

Based on the preceding observations, we can now
prove a bound on the skew between a node and the root.

Theorem 10. Suppose pulses are locally separated.
Denote by (v0 := r, v1, . . . , vd := v) the shortest path
from the root to v ∈ V along which estimates of r’s
clock values are forwarded. Set Tv :=

∑d
i=1 τvi , i.e.,

the expected time an estimate “travels” along the path.
Suppose t1 < t2 are two consecutive times when v
receives a message and suppose that at time t1 at least

3k/2, k ∈ 2N, pulses are complete. Then, for any
δ, ε ∈ R+ and ∆h as in Lemma 9, it holds that

P
[
∀t ∈ [t1, t2) : |Lv(t)− t| ≤ εJ

√
D
k + ∆hTv

]
∈ 1− kD

2 e−Ω(δ2 log δ) − e−Ω(ε2 log ε).

Proof: Since at least 3k/2 pulses are complete,
according to Lemma 9 during the last k/2 pulses we had
at any time t and for any node vi, i ∈ {0, . . . , d−1}, that
|hvi/ĥvi(t)− 1| ≤ ∆h with probability 1− e−Ω(δ2 log δ).
Denote by E the event that the last k/2 estimates
with compensated forwarding that v received have been
increased at all nodes on the way at a rate differing
by no more than ∆h from 1. Since ĥvi only changes
when a message is received, we can apply the union
bound to see that E occurs with probability at least
1− kDe−Ω(δ2 log δ)/2.

Assume now that E happened and also that 1 −
kDe−Ω(δ2 log δ)/2 > 0 (as otherwise the bound is triv-
ially satisfied). Consider the errors of the above k/2
estimates. Each estimate has been “on the way” for
expected time Tv , i.e., the absolute of the mean of
its error is bounded by ∆hTv . The remaining fraction
of the error is due to message jitter. Note that if the
estimates ĥvi are very bad, this might amplify the effect
of message jitter. However, since 1 − ρ ≤ ĥvi ≤ 1 + ρ,
we can account for this effect by multiplying J with a
constant. Thus, we can still assume that at each hop, a
normally distributed random variable with zero mean and
variance O(J 2) is added to the respective estimate of r’s
current clock value, yielding a random experiment which
stochastically dominates the true setting (with respect to
clock skews). In summary, by Lemma 1 w.l.o.g. each
estimate that v obtains suffers an independently and nor-
mally distributed error with mean µ ∈ [−∆hTv,∆hTv]
and variance O(dJ 2) ⊆ O(DJ 2).

By Theorem 4, the slope of the regression line used
to compute Lv suffers a normally distributed error of
zero mean and standard deviation O(J

√
D/(k3/2B)).

Denote by t̄ the mean of the times when v received the
k/2 messages it computes the regression from. As for all
times t̄ < t ∈ [t1, t2) we have that t− t̄ ≤ (k/2 + 1)B,
we can bound3

|Lv(t)− t| ≤ |Lv(t̄)− t̄|+
∣∣∣∣(hv(t)ĥv

− 1

)
(t̄− t)

∣∣∣∣ ,
where the second term is normally distributed with zero
mean and standard deviation O(J

√
D/k).

3Note that the use of the expression Lv(t̄) here is an abuse of
notation, as we refer to the y-value the regression line that v computes
at time t assigns to x-value Hv(t̄).
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Again by Theorem 4, the deviation of the line at the
time t̄ is normally distributed with mean µ and standard
deviation O(J

√
D/k). Thus, applying Lemma 2 and

the union bound yields that, conditional to E , the event
E ′ that ∀t ∈ [t1, t2) : |Lv(t) − t| ≤ εJ

√
D/k + ∆hTv

occurs with probability 1− e−Ω(ε2+log ε). We conclude

P [E ′] ≥ P [E ] · P [E ′|E ]

∈
(

1− kD

2
e−Ω(δ2+log δ)

)(
1− e−Ω(ε2+log ε)

)
⊆ 1− kD

2
e−Ω(δ2+log δ) − e−Ω(ε2+log ε),

as claimed.
The term Tv occurring in the bound provided by the

theorem motivates the following definition.

Definition 11 (Pulse Time). Denote for v ∈ V by
(v0 := r, v1, . . . , vd := v) the shortest path from r
to v along which PulseSync sends messages and set
Tv :=

∑d−1
i=0 τvi . The pulse time is T := maxv∈V {Tv}.

Theorem 10 implies that the proposed technique is
indeed optimal provided a comparatively weak relation
between B and P is satisfied.

Corollary 12. Suppose pulses are locally separated and
that B ≥

√
T 2 log(kD)/(k2 log log(kD)). Then the

expected clock skew of any node v ∈ V in distance d
from the root at any time t when at least 3k/2 pulses are
complete is bounded by E[|Lv(t)− t|] ∈ O(J

√
d/k).

Proof: W.l.o.g., we assume that d = D (otherwise
just consider the subgraph induced by all nodes within
distance d from r). For all i ∈ N, we define that
∆h(i) := iJ

k3/2B

√
log(kD)D

log log(kD) . By assumption, we have

∆h(i)Tv ≤ iJT
k3/2B

√
log(kD)D

log log(kD) ≤ iJ
√

D
k , giving by

Theorem 10 for δ = i
√

log(kD)/ log log(kD) and
ε = i that P

[
|Lv(t)− t| > 2iJ

√
D/k

]
∈ e−Ω(i2 log i).

It follows that

E[|Lv(t)− t|]

≤
∞∑
i=0

P

[
|Lv(t)− t| > 2iJ

√
D

k

]
2J
√
D

k

∈

(
1 +

∞∑
i=1

e−Ω(i2 log i)

)
2J
√
D

k
⊆ O

(
J
√
D

k

)
,

as claimed.
Note that Corollary 12 requires a lower bound on

B, while in practice we are interested in choosing B
large to minimize energy consumption. Of course, a
beacon interval that is too large is undesired because
one wants the system to adapt quickly to dynamics.

However, the pulse time is a trivial lower bound on this
response time, i.e., it does not make sense to choose
Bk ∈ o(T ). Thus, we remain with a small gap of
O
(√

log(kD)/ log log(kD)
)

to countervail the fact that
the drift compensations the nodes on a path of length D
employ are dependent, making best use of the limited
number of recent clock estimates that are available.

In practice, it is important to bound clock skews at all
times and all nodes, as algorithms may fail if presumed
bounds are violated even once. Naturally, a probabilistic
bound cannot hold with certainty; indeed, in our model
arbitrary large skews must occur if we just wait for
sufficiently long. However, for time intervals that are
bounded by a polynomial in n times B we can state a
strong bound that holds with high probability.

Corollary 13. Let for i ∈ N0 ti denote the time when
the ith pulse is complete. Provided that the prerequisites
of Theorem 10 are satisfied, the total number of pulses
p is polynomial in n, and B ≥ T /k, we have that

max
t∈[t3k/2, tp]

{G(t)} ∈ O

(
J

√
D log n

k log logn

)
with probability 1−1/nc for an arbitrary constant c > 0.

Proof: Observe that 3k/2 ≤ p or nothing is to
show because tp < t3k/2. As also D < n, we
have that kD is polynomially bounded in n. Thus,
values δ, ε ∈ O

(√
log n/ log log n

)
exist such that

1− kD/2 · e−Ω(δ2 log δ)− e−Ω(ε2 log ε) ≥ 1− 1/(pnc+1).
We apply Theorem 10 to each node v ∈ V and each
pulse i ∈ [3k/2, p]. Due to the bound B ≥ T /k ≥ Tv/k
and the definition of ∆h, we get for all times t from the
respective pulse that

|Lv(t)− t| ∈ O

(
J

√
D log n

k log log n
+ ∆hTv

)

⊆ O

(
J

√
D log n

k log log n

)

with probability at least 1 − 1/(pnc+1). The statement
of the corollary then follows by the union bound applied
to all nodes and all pulses i ∈ [3k/2, p].

Note that when considering all nodes, the lower bound
on B relaxes to T /k, i.e., we can achieve the stated
bound despite the fastest possible adaption to dynamics.
Moreover, comparing the previous bounds to the results
from simulation and implementation of the algorithm
(Figures 1, 3, and 6), we find the predictions on the
synchronization quality of the algorithm met well.
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Fig. 3. Maximal synchronization error among the first 15 hops from
r during the first hour of the test runs. The 0 on the x-axis is slightly
shifted to better show the behaviour of PulseSync on initialization.

IX. EVALUATION

In this section, we evaluate our implementation [3] of
the PulseSync protocol in a wireless testbed. In order to
demonstrate the behaviour of PulseSync in face of large
network diameters, nodes are connected such that they
form a line topology. We stress that Corollaries 12 and
13 show that the distance from the root is the parameter
that is essential with respect to skews. We evaluate the
synchronization accuracy using PulseSync and compare
our results with the Flooding Time Synchronization
Protocol (FTSP) [4], the currently most common clock
synchronization protocol for wireless sensor networks.

A. Testbed Setup

We use an indoor testbed of 31 Opal nodes, which are
placed in close proximity, thus forming a single broad-
cast domain. We enforce a line topology in software,
resulting in a network diameter of 30 hops. To evaluate
the synchronization accuracy of the two different clock
synchronization protocols (PulseSync and FTSP), we use
the radio packets of the reference node as an external
event common to all other nodes. Since the propagation
delay of such a probe packet is negligible for such short
distances, we can assume that the packet is received
simultaneously by all nodes. On reception of such a time
probe, each node records the timestamp of the packet
reception and converts it to a logical clock value (slightly
decreasing the accuracy due to potentially differing pro-
cessing times). The interval between time probe events
is the same as the beacon interval (10 seconds).

B. Measurement Results

For both PulseSync and FTSP, we report measurement
results for a four hour run. Roughly 44,600 data points
were collected during each experiment. Since nodes were
placed in close proximity to each other, we observed
almost no packet loss during the experiment runs. We
observe that both protocols transmit roughly the same
number of beacons (FTSP: 42,289, PulseSync: 42,040).
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Fig. 4. Time-average of maximal synchronization error from the root
for FTSP and PulseSync. Bars indicate standard deviation over time.

Nodes running the standard implementation of FTSP
will clear the content of their regression table if the
synchronization error between the received beacon and
the estimated global time of the node exceeds a certain
threshold repeatedly. For example, the implementation
of FTSP in TinyOS 2.1.1 uses a threshold of 500
clock ticks. After the regression table has been cleared,
such a node will stop sending its own synchronization
beacons until it has re-established synchronization to its
reference node. Although this fallback can mitigate the
effects of single outliers, it will effectively disconnect
the network in our case, and do so permanently once the
synchronization quality of FTSP deteriorates beyond the
threshold due to a large hop count. Since this behaviour
prohibits to examine the behaviour of FTSP’s underlying
synchronization mechanism for larger diameters, we
slightly modified FTSP to prevent it from clearing its
regression table during our experiments.

Initialization Phase. The experiments demonstrate that
FTSP requires a significant amount of time to bootstrap
the synchronization tree. We observe that it takes FTSP
roughly 15 minutes until all nodes within the first 15
hops are synchronized to the reference node, while
PulseSync establishes synchronization within a few sec-
onds since time information is propagated within a single
beacon interval through the network (see Figure 3). We
denote t = 0 as the time when the root node has
broadcasted its first synchronization beacon, neglecting
small differences in the exact start time of different
sensor nodes. The issue of slow initialization because of
slow flooding is aggravated by FTSP due to the fact that
nodes need to collect several clock estimates before they
can start to broadcast (accurate) estimates of the root’s
clock by reading the values of their regression lines.

Synchronization Accuracy. To evaluate the synchro-
nization accuracy of both protocols, for every received
time probe we calculated the maximum synchronization
error between the reference node and each other node.
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Fig. 6. Time-average of synchronization error for PulseSync with and
without drift correction in case of slow forwarding.

In order to avoid the effect of transient behavior, we
ignored all probes during the first 1000 seconds of the
experiment. PulseSync has a worst-case synchronization
error of 19 µs (2.06 µs on average) on our 31-node
testbed. Although PulseSync and FTSP have the same
message complexity (one message per node and syn-
chronization period), PulseSync achieves a significantly
improved synchronization accuracy on the same network
topology (see Figures 4 and 5). Our experiments confirm
our finding that the synchronization error to the reference
node increases rapidly when using FTSP, while it grows
slowly when employing PulseSync. On the same network
topology, the performance of FTSP in terms of the
synchronization error is comparable when we consider
only nodes with a small hop distance from the root, but
the gap widens soaringly with increasing hop count.

Slow Forwarding of Clock Estimates. With different
hardware, environment, network topology, or application
constraints, it might not be possible to perform flooding
as fast as in our setup. In such scenarios, the independent
drift estimation proposed in Section VI may lead to
considerable improvements. To confirm this experimen-
tally, we repeated the previous experiment twice with
the modification that nodes wait 300 milliseconds before
forwarding the received clock estimates (see Figure 6).
In the first run, we used simple forwarding (like in the
run shown in Figure 3), in the second compensated for-
warding. Neglecting the initialization phase, simple and

compensated forwarding resulted in maximal (average)
global skews of 33 (10.60) and 20 (1.94) ticks, respec-
tively. Compensated forwarding thus achieves essentially
the same performance as immediate simple forwarding.

Note that, as it computes a second regression line,
compensated forwarding uses twice the number of data
points for computing the logical clock. Using the same
total number of data points would increase the standard
deviation of skews by factor

√
2 and thus yield slightly

worse results. Still, compensated forwarding is clearly
beneficial if immediate forwarding is not possible.

X. CONCLUSIONS

We analyzed the clock skew that can be obtained in
networks without external clock reference. We estab-
lished tight asymptotic bounds on the trade-offs between
accuracy, latency, and efficiency via analysis of an ab-
stract model and demonstrated by experimentation that
it captures the salient properties of real-world networks.

The experiments demonstrate that PulseSync, our pro-
tocol tailored to wireless sensor networks, offers much
better accuracy and latency than FTSP. This is achieved
without additional overhead in terms of communication,
computation, or required hardware, making PulseSync
a promising candidate to replace FTSP as standard in
clock synchronization for such networks. The derived
theory is however more general, and allows for slower
dissemination of information in lack of a fast broadcast
mechanism. In this setting, the linear term in the bound
derived in Theorem 10 might dominate the synchro-
nization accuracy also for networks of realistic size.
Similarly, one can employ PulseSync also if the tree
induced by the flow of information changes quickly
between pulses, at the expense of potentially reducing
the quality of the drift compensation. Here, the algorithm
offers a convenient, implicit adaption to changing topol-
ogy that is hard to realize in an energy-efficient manner
with previous algorithms. We believe that the presented
techniques are of practical merit also in these scenarios.
Future Work. It would be of interest to study PulseSync
on a wider range of topologies, especially in conjunction
with dynamics. Some results have been reported in [25],
but examining dynamic multi-hop networks remains a
challenge in terms of implementation as well as mea-
surements. Moreover, there are questions related to the
robustness of the protocol. For instance, the root node
constitutes a single point of failure. It would be desirable
that synchronization is not lost due to a crashing node
(unless the network gets disconnected) or to make the
protocol fully self-stabilizing. Ultimately, the goal is
a fully-fledged implementation of PulseSync offering
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good trade-offs between scalability, energy-efficiency,
accuracy, and robustness for a wide range of settings.
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