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1. Introduction

Many of today’s computing and communication systems are distributed—systems
that are composed of autonomous computational entities that communicate with
each other, usually by passing messages. Distributed systems encompass a variety of
applications. The most obvious distributed system is the Internet itself, and various
of its applications such as the domain name system, peer-to-peer file sharing, or
cloud computing. On the other hand distributed systems also exist on a smaller
scale, such as multi-core processors or field-programmable gate arrays. Indeed, if
we expand our horizon beyond technical systems, also the brain or society† are in
some sense distributed systems, with neurons and human beings taking the roles
of the autonomous entities, respectively. Despite their obvious differences, all these
distributed systems have in common that many entities may concurrently be active
in the system. These entities have certain degrees of freedom: they may have their
own hardware, their own data or code, and sometimes their own independent task.
Nevertheless, they share common resources and information and, in order to solve
a problem that concerns all or a subset of the entities, coordination is necessary.

A sensor network is an ensemble of nodes, where each node by itself is a tiny
computer that may gather input data from its sensors and is capable to communi-
cate with other nodes by radio. As radio signal strength deteriorates with distance
quickly, it is generally infeasible to have all nodes talk to each other (or to a base
station) directly. Instead, nodes may have to use other nodes as intermediate relays
in order to communicate. This situation can be modelled by a graph, where the
node set is given by the sensor nodes (plus possibly the base station); an edge be-
tween two nodes indicates that they are capable to directly exchange messages by

† The relation between distributed systems and orthodox monolithic systems is sometimes
compared to the relation between sociology and psychology.
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radio communication. As such, a sensor network is an out-of-the-book distributed
system (Peleg, 2000).

Distributed algorithms are at the theoretical foundations of distributed systems
– we study how the nodes of a distributed system should orchestrate their com-
munication and computation in order to solve a given task efficiently. Moreover,
we are interested in impossibility results and lower bounds as they demonstrate
what is not possible with a distributed algorithm. The area as a whole is known as
distributed computing.

In a large distributed system, no node can have a global view of the entire system
at any time. Instead, every node has a local view of the system only, and has to
base its decisions on this local information. Many tasks can be solved completely
locally,† for instance, a node can figure out the lowest measured temperature in its
neighbourhood by simply communicating with its neighbours. Many other tasks are
inherently global, for instance, identifying the minimum temperature in the whole
sensor network. To solve such global problems, some information must traverse
across the entire network graph. Among other things, researchers in distributed
computing want to know what type of tasks are local, and what type of tasks are
global. As we will see, many interesting network coordination tasks that are relevant
in sensor networks are neither local nor global, but somehow in between.

There are a number of reasons why distributed algorithms are highly appealing
for the design of sensor network protocols. First of all, we want to avoid that memory
constrained sensor nodes have to store lots of information about far-away nodes.
Thus, in fact it is an advantage if nodes compute the local part of a problem’s
solution only. More importantly, restricting the distance from which information
is collected implies that (i) algorithms are fast, as communication is typically the
most time consuming part, and (ii) changes in input or topology can be dealt with
locally, i.e., merely a part of the nodes need to recompute their output. In other
words, in a large system, faults or reconfigurations interfere with a small fraction
of the system only. This brings us to another impressive capability of distributed
systems: If well-crafted, they can function correctly from a global perspective even
if some of the nodes are crashing, show erroneous behaviour, or are even maliciously
trying to make the system as a whole fail. Distributed algorithms are crucial in order
to exploit this potential, as any part of an algorithm that runs on a single node
will fail if the respective node crashes. Even worse, if the node does not simply
crash, it may corrupt the entire network with wrong information. Last but not
least, as solutions are derived from as little knowledge on the overall state of the
network as possible, many distributed algorithms turn out to be simple and elegant.
While elegance is not necessarily a design issue for sensor networks, simplicity is,
in particular considering the limited computational power, memory, and energy of
sensor nodes.

Overall, we believe that distributed algorithms can offer a lot to designers of
sensor networks. However, even though sensor networks seem to be out-of-the-book
distributed systems in theory, in practice quite a few difficulties are between an
abstract distributed algorithm and its implementation on a sensor node. In this
article, we will highlight some of the main differences between a real-world sen-

† We recommend a survey by Suomela (2011) on strictly local problems, i.e., problems which
can be solved by looking at the graph topology and inputs up to a constant number of hops.
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sor network and an idealised distributed system. We will spotlight pitfalls, success
stories, and open problems researchers encountered—or still do encounter—while
trying to close these gaps between theory and practice. We will start our tour with a
brief introduction to abstract distributed algorithms. Subsequently, we will gradu-
ally proceed to more realistic communication models. Along the way, we will briefly
present some basic techniques that we believe to illuminate the way of thinking of
distributed computing as well as the beauty of the resulting solutions.

At this point, we emphasise that this article does not make any attempt to
survey the state-of-the-art in distributed computing. Also, we will bias our choice
of the discussed topics towards the ones we are familiar with, i.e., we do not attempt
to give a representative cross section of distributed computing.

2. Distributed Algorithms

For many decades the study of distributed network algorithms was treated like
a pure research topic. Maybe too pure for the real world of messy distributed
systems. As such the area fell asleep in the 1990’s. The advent of sensor (and its
close relatives such as ad hoc or mesh) networks in the current millennium reignited
interest in the area again, as all of a sudden there were applications matching the
local communication model well. To get a better understanding for this, let us first
have a closer look at a standard model used in distributed algorithms.

As mentioned before, a distributed system is modelled as a graph G = (V,E),
whose set of nodes V (with n := |V |) are the computing devices and whose set
of edges E define which nodes may communicate with each other directly. One
typically focuses on the locality of a problem, that is, on the maximal (hop) distance
from which nodes must receive information as function of the number of nodes n.
Theory in its most pure form thus commonly studies the local, synchronous message
passing model. More concretely, computation proceeds in rounds, where in each
round, all nodes concurrently exchange messages. In other words, any synchronous
distributed algorithm looks like this:

Algorithm 1: General Skeleton of a Distributed Algorithm

Each node v performs the following actions concurrently with all other nodes:
repeat

send (possibly different) messages to neighbours
receive neighbours’ messages
perform some local computations to prepare for the next round

until termination;

When studying distributed algorithms, we care mostly about running time;
the running time of a synchronous distributed algorithm is measured by the num-
ber of synchronous communication rounds, i.e., how often the communication-
computation loop is executed until the nodes terminate.

MIS, a Classic Problem in Distributed Computing

For the sake of concreteness, let us study an example, the so-called maximal inde-
pendent set (MIS) problem. As mentioned before, in a distributed system all nodes
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Figure 1. Partitioning of a graph’s node set into independent sets. The sets of grey and
black nodes are maximal independent sets.

are capable of acting simultaneously. However, even if tasks are local in the sense
that it does not matter what distant nodes are doing, frequently one needs to avoid
that two neighbours take action at the same time. For instance, if two neighbouring
nodes try to transmit at the same time, it is likely that both messages cannot be
received due to wireless interference. On the other hand, we want to achieve a large
amount of concurrency. In particular, for each node at least some neighbour should
be able to perform operations. These requirements can be formalised as follows.

Definition 1 (Maximal Independent Set). Given a graph G = (V,E), an indepen-
dent set is a subset S ⊆ V of the nodes such that no two adjacent nodes are in S,
i.e., for any edge {v, w} ∈ E, we have that v /∈ S or w /∈ S. A maximal independent
set (MIS) S is an independent set satisfying that S∪{v} is not independent for any
v ∈ V \ S. See Figure 1 for an example.

The MIS is a basic symmetry breaking problem that is trivial for a centralised
algorithm. Starting with S := ∅, one just goes over the nodes one by one and adds
any node without neighbour in S to S. However, if nodes act concurrently, they
can join S in the same round in order to be much faster. The only thing we need
to ensure is that no two adjacent nodes enter S in the same round. Assuming that
nodes have unique identifiers, the trivial sequential MIS solution translates to a
simple distributed algorithm. For brevity, denote in the following by Nv := {w ∈
V | {v, w} ∈ E} the neighbourhood of v ∈ V .

When executing Algorithm 2, any still active node that has a locally maximal
identifier will join the independent set in the next (even) round. Because there
can never be two neighbours that have a locally maximal identifier, this can never
cause a conflict. All neighbours of such nodes terminate in the subsequent round,
making sure that we will also have no conflicts later on. Note that it is safe for these
nodes to terminate, as they now have at least one neighbour in the independent set,
i.e., they cannot be part of any independent set containing the nodes that already
joined. The running time of this algorithm is given by the longest descending chain
of identifiers. This is at most D + 1, where D denotes the diameter of the graph,
i.e., the maximal length of a shortest path between any pair of nodes.†

† Without loss of generality, we always assume G to be connected.
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Algorithm 2: Naive MIS

input : each node v ∈ V has a unique identifier id(v)
output: each node v knows whether it is in the MIS
Each node v performs the following actions concurrently with all other nodes:
send id(v) to neighbours
receive neighbours’ identifiers
Memorise neighbours with higher priority as A := {w ∈ Nv | id(w) > id(v)}
repeat

if A = ∅ then
send ‘join’ to neighbours Nv
join MIS and terminate

if receive ‘join’ message then
send ‘not join’ to neighbours Nv
do not join MIS and terminate

receive ‘not join’ messages
A = A \ {w ∈ Nv | received ‘not join’ from w}

until termination;

Unfortunately, D might be large—a most simple network is the line (also known
as linked list, or chain) network, which already has diameter n − 1! This is not
exciting, as in a bad case it is no better than a sequential solution—it seems that
a simple locally definable problem such as finding an MIS should have a solution
without a global causality chain.

Searching for a Fast Distributed MIS Algorithm

Defying this intuition, until today no algorithms are known that are always fast.
Even if one does not care about the size of messages, the fastest known solution has
running time 2O(

√
logn) (Panconesi & Srinivasan, 1996). ‘Interesting’ graphs tend

to have a diameter that is much smaller. While some algorithms are efficient if the
graph satisfies certain properties, ideally we would like to have a solution that works
nicely for any network. For distributed algorithms, in many cases this becomes
difficult because for any fixed course of action, there is a particular example where
it is bad. And because nodes initially are aware of a small part of the graph only,
it may take a lot of time until they learn about this. Oftentimes, this obstacle can,
at least partly, be overcome by means of randomisation. Randomised distributed
algorithms follow the same rules as deterministic ones, with the single exception
that nodes may base their decisions also on ‘coin tosses’. Again, let us illustrate
this concept by a plausible example.

Algorithm 3 is a variant of a long-known family of algorithms (Luby, 1986; Alon
et al., 1986; Israeli & Itai, 1986; Métivier et al., 2009). Essentially, it is identical
to Algorithm 2, with the decisive difference that in every iteration, the ‘identifiers’
are picked anew at random. If the random numbers have a logarithmic size, the
probability that two numbers are equal is negligible. It can be shown by a fairly
simple argument that in each iteration, the expected number of edges adjacent to
terminating nodes is a constant fraction of the total number of remaining edges.
Since this holds for any graph, in particular the subgraphs induced by the active
nodes in each iteration, this implies an expected running time of O(log n). One can
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Algorithm 3: Randomised MIS

output: each node v ∈ V knows whether is in the MIS
Each node v performs the following actions concurrently with all other nodes:
repeat

let r(v) be a randomly chosen number
send r(v) to neighbours
receive random numbers from all (non-terminated) neighbours Nv
if r(v) > r(w) for all w ∈ Nv then

send ‘join’ to Nv
join MIS and terminate

if receive ‘join’ message then
send ‘not join’ to Nv
do not join MIS and terminate

until termination;

show that in fact the algorithm will terminate in O(c log n) rounds also with high
probability (w.h.p.), that is, with probability 1− 1/nc. This is a powerful result, as
even for a moderate constant c it is absurdly unlikely that the algorithm does not
terminate within O(c log n) rounds.†

MIS and Colouring

Apart from the vague motivation given above, why should we be interested in an
MIS algorithm in the first place? One possible answer to this question is that it is
useful in computing different, perhaps more attractive structures. For instance, an
MIS is always a dominating set (i.e., in each node’s neighbourhood there is at least
some node from the set). Typically one is interested in small dominating sets (as
one could trivially take all nodes), but there are interesting graphs where an MIS
is not much larger than a smallest, a so-called minimum dominating set (MDS).
Another striking example is colouring.

Definition 2 (Colouring). Given a graph G = (V,E), a k-colouring of G is a
function c : V → {1, . . . , k} such that for each colour i ∈ {1, . . . , k}, the set c−1(i)
is independent. In other words, any two neighbouring nodes v and w do not have
the same colour, that is, c(v) 6= c(w). Figure 1 gives an example of a 3-colouring.

Naturally, a goal is to minimise the number of colours: A k-colouring permits
that each node acts once in k rounds without neighbours interfering. This is of high
interest in sensor networks, as it makes possible to set up a schedule where all nodes
may transmit once in a while without causing conflicts. Regrettably, it is however
extremely difficult to determine the minimum number of colours required to colour
a graph: it is NP-hard to obtain even an estimate that is more precise than a factor
n1/7−ε, for any constant ε > 0 (Bellare et al., 1998).

For this reason, it is common to settle for finding a colouring with ∆ + 1 or
O(∆) colours, where δ(v) is the degree (the number of neighbours) of node v, and
∆ is the maximum degree in the graph. Like computing an MIS, computing a
(∆ + 1)-colouring is trivial if approached sequentially, working node by node.

† For example, if n = 30 and c = 10 it is three times more likely to hit the lottery jackpot
twice in a row than to see the algorithm not terminating within the stated number of rounds.
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There is a close relation between colouring and MIS. From a colouring with k
colours, one can derive an MIS in k rounds by incrementally adding nodes of the
same colour to the independent set concurrently.

In turn, we can emulate an MIS algorithm on a virtual graph where each node v
with degree δ(v) emulates a cluster of δ(v) + 1 virtual nodes called v0, v1, . . . , vδ(v).
All nodes within each cluster are connected by virtual edges. In addition, vi is
connected to wi if v and w are neighbours in the original graph. By definition of
the MIS problem, each cluster v will have exactly one virtual node vi in the MIS,
and the index i of that node determines the colour, i.e., c(v) := i.

Despite utilising elaborate and complex techniques, the currently best known
deterministic colouring algorithm (Barenboim & Elkin, 2010) remains unsatisfacto-
rily slow. In contrast, plugging in Algorithm 3 into the above transformation yields
a simple randomised algorithm with running time O(log n) w.h.p. However, as a
node v needs to emulate δ(v) + 1 many nodes in the virtual graph, which each need
to pick and compare random bit strings of size Ω(log n) in every iteration, messages
would have to contain Ω(∆ log n) bits in the underlying graph in order to emulate
the MIS algorithm at full speed. Luckily, we can fix this by simply letting each
node choose a free (i.e., not yet occupied by a neighbour) colour from the range
{1, . . . , 2δ(v)} at random, in each round. Since the neighbours may have or claim
only one colour each, there are always at least δ(v) free colours. Therefore, every
active node can successfully claim a colour differing from all its neighbours’ with
probability at least 1/2. If successful, it can fix this colour as its output, inform
its neighbours, and terminate. We again get an algorithm that terminates in time
O(log n) w.h.p.

Distributed Computing Models

Of course, distributed computing theory has to offer more evolved algorithms. In
general, when devising distributed algorithms, one tries to achieve (or balance be-
tween) multiple objectives. A main objective is always to guarantee a small running
time. Apart from this, we usually want messages to be not too large. A size restric-
tion of O(log n) bits per message is the golden standard. Smaller messages often
imply that algorithms become restricted, as one cannot encode a node identifier any
more in a single message.† In addition, computations should be ‘reasonable’. This
in particular excludes just collecting the entire topology and inputs at a single (or
each) node and solving the whole problem, or dealing with NP-hard (sub)problems.
Luckily, small messages imply that nodes do not obtain much information, quite
often resulting in computations remaining simple without special consideration. In
addition, often the number of messages sent by each node should be small, and mem-
ory consumption should be small. Finally, the nodes should need as little knowledge
on the network as possible. Ideally, nodes do not know the total number of nodes
n, the maximum degree ∆, the diameter D, or the largest identifier in the network.

As can be seen from this (non-exhaustive) list, distributed computing studies
quite a few of the properties that are relevant to sensor networks. However, there is
an aspect of distributed computing theory that is of equal, if not higher, significance

† Nevertheless, one can accomplish surprising things. For instance, with a clever trick Algo-
rithm 3 can be implemented in a way such that messages contain merely a constant number of
bits!
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to practitioners. Apart from studying what is possible, distributed computing also
deals with understanding what is impossible.

Lower Bounds

For instance, is there a (randomised) MIS algorithm that is substantially better
than Algorithm 3? The answer is ‘no’. For the MIS problem, and for many related
problems, a lower bound of Ω(

√
log n) (or alternatively Ω(log ∆)) has been estab-

lished (Kuhn et al., 2010). In other words there is no (randomised) distributed
algorithm that can compute an MIS in less than Ω(

√
log n) time, that is, in order

to figure out whether to join an MIS, each node must collect at least the informa-
tion in its Ω(

√
log n)-hop neighbourhood. This is certainly surprising, as the MIS

problem can be defined strictly locally, and one would not expect such a ‘butterfly
effect’.

However, again the picture is incomplete. Even if there is no MIS algorithm that
can be faster than Ω(

√
log n) rounds in general graphs, this does not necessarily

imply that the same is true for wireless networks. The MIS lower bound construction
relies on a peculiar family of bipartite graphs, and one might argue that clearly
wireless networks do not exhibit arbitrary connectivity.

3. Wireless Connectivity

As we discussed in the previous section, the MIS lower bound does not apply to the
connectivity graphs one may encounter in a real wireless network. In this section,
we study what kind of graph families are reasonable, and whether they allow for
faster distributed algorithms, breaking the lower bound for general graphs.

As we know, the strength of a radio transmission decreases with distance. Thus,
it is a key characteristic of wireless (sensor) networks that, unless the network is
small, it is unlikely that every node can communicate directly with every other node.
On the other hand, it is much more likely that two nearby nodes can communicate
to each other directly than it is for two far-away nodes. That is, the connectivity
between nodes is fundamentally governed by some kind of geometry.

In the early days of algorithmic wireless network research, this geometry was
modelled by unit disc graphs (UDG), e.g. Marathe et al. (1995); Breu & Kirkpatrick
(1998). Let V be a set of nodes, located in the two-dimensional Euclidean plane. In
the UDG model we assume that two nodes are adjacent if and only if their Euclidean
distance is at most one. If two nodes are farther away, they need to communicate
through intermediate relay nodes. The UDG model is too idealistic; in reality, radio
communication is never perfectly omnidirectional, and even small obstacles such as
plants could change radio connectivity.

A natural generalisation of the UDG is the quasi unit disc graph (QUDG),
(Barriére et al., 2003; Kuhn et al., 2008). Again, in a QUDG, the nodes V are located
in the plane. All pairs of nodes with Euclidean distance at most ρ for some given
ρ ∈ (0, 1] are adjacent. Pairs with a distance larger than one are never in each other’s
transmission range. Finally, pairs with a distance between ρ and one may or may
not be neighbouring. Indeed, for this ‘grey’ area in (ρ, 1] there are several possible
model options. For instance, one could imagine an adversary choosing for each
node pair whether they are in each other’s transmission range, or one could apply
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a connectivity probability distribution depending on the distance. Measurement
studies (Ganesan et al., 2002) suggest that in an unobstructed environment, ρ can
be modelled as a reasonable constant. In this case, the overhead to make a protocol
work in the QUDG model is often bearable.

In contrast, if our sensor network is inside a building, obstructions usually drive
the parameter ρ towards zero, as there might be nodes that are physically close
but blocked by a wall. And as soon as ρ is small enough, it allows for arbitrary
connectivity graphs. However, real-world connectivity graphs are not arbitrary. Al-
though nodes which are close but on different sides of a wall may not be able to
communicate, a node is typically highly connected to the nodes which are in the
same room, and thus many neighbours of a node are adjacent. In other words, even
if there are many obstacles, the total number of neighbours of a node which are
not adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced connectivity models such as the
bounded-growth graph (BGG) model (Kuhn et al., 2005). The BGG model can be
defined abstractly, without referring to Euclidean geometry. Again we connect our
set of nodes V by edges E. As defined before, a set of nodes S ⊂ V is called inde-
pendent if no two nodes in S are neighbours, i.e., there is no edge in E connecting
two nodes in S. Now we define the ball Br(v) with radius r around a node v ∈ V
as all nodes that can be reached from v by just following at most r edges in E.
And we ask the set of edges E to be such that the size of any independent set S
in ball Br(v) is polynomially bounded in r, i.e. |S(Br(v))| ∈ O(r2) or O(r3). Even
though the BGG definition is fairly general, many algorithms that run on a BGG
are asymptotically as efficient as algorithms for (Q)UDGs. As such the BGG has
become a model of choice when we are interested in connectivity only (Schmid &
Wattenhofer, 2006).

Wireless Connectivity Simplifies the MIS Problem

So how much can we improve the running time of MIS or colouring algorithms if
we restrict ourselves to (Q)UDGs or BGGs? As it turns out, dramatically! There
are algorithms that are super-exponentially better than the lower bound for general
graphs. In particular, there is a deterministic algorithm (Schneider & Wattenhofer,
2008) that can compute an MIS in O(log∗ n) rounds.† Using this MIS algorithm as a
base, we can also compute many other interesting structures such as asymptotically
optimum colourings or (connected) dominating sets in O(log∗ n) time.

Unfortunately, the algorithm achieving this surprising result is rather intricate.
However, we can present a basic building block (Cole & Vishkin, 1986) if we restrict
ourselves to 3-colouring a ring-topology network. In the following, we assume that
our nodes are arranged in an oriented circle, i.e. each node knows its clockwise
neighbour and counter-clockwise neighbour. The nodes need to pick a colour from
{1, 2, 3} not conflicting with their neighbours. Starting from the initial identifiers
(which are a valid colouring), in each step they reduce the size of the bit string
encoding their current colour exponentially. To this end, v compares its colour c(v)

† The function log∗ n describes the number of times one needs to apply the logarithm to n
until the result is at most one. This ‘inverse tower function’ grows extremely slowly; it is at most
five for any n up to 265,536, a value compared to which the estimated number of atoms in the
universe looks tiny.
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Algorithm 4: Ring Colouring

input : each node v ∈ V has a unique identifier id(v)
output: each node v knows its colour c(v) ∈ {1, 2, 3}
Each node v performs the following actions concurrently with all other nodes:
c(v) := id(v)
for log∗ n+O(1) rounds do

send c(v) to counter-clockwise neighbour u
receive c(w) from clockwise neighbour w
i := index of least significant differing bit of c(v) and c(w)
set the new colour to c(v) := 2 · i+ c(v)[i]

repeat
send c(v) to the two neighbours Nv = {u,w}
receive c(u), c(w) from neighbours Nv
if c(v) > max{c(u), c(w)} then

c(v) := min{1, 2, 3} \ {c(u), c(w)}
terminate and output c(v)

until termination;

counter-clockwise neighbour u: 1001011 → 1100

node v: 100101011 → 101

clockwise neighbour w: 10010101 → 100

second clockwise neighbour: 111 → ?

Figure 2. An iteration of Algorithm 4. The least significant bit is to the right.

to c(w), the colour of its clockwise neighbour w. Starting from the least significant
bit, v counts the number of bits until encountering the first difference. Its new colour
is given by this—binary encoded—number, plus the differing bit. Since w performs
the same operation, they either (i) encode a different index or (ii) append differing
bits to their strings. Thus, the resulting colours are not the same, as is the case for
v and its other neighbour by the same reasoning (see Figure 2. Since in each step an
index in the binary encoded colour c(v) is binary encoded and extended by one bit,
after log∗ n+O(1) iterations the number of remaining colours is constant. At this
point, it is sufficient if each node with a locally maximal colour larger than three
replaces it in each round by a free colour from the range {1, 2, 3}. See Algorithm 4
for pseudo code.

It is interesting to note that both Algorithm 4 and its descendant (Schneider
& Wattenhofer, 2008) are asymptotically optimal.† It was shown that computing
a 3-colouring or an MIS on a ring takes at least Ω(log∗ n) time (Luby, 1986; Naor,
1991). Note that a ring is also a (Q)UDG and a BGG. Moreover, it has also been
shown that finding an asymptotically optimum (connected) dominating set in a
UDG requires Ω(log∗ n) rounds (Lenzen & Wattenhofer, 2008).

So, with these problems solved in an adequate family of connectivity graphs, are

† In contrast, despite all efforts the (randomised as well as deterministic) asymptotic time com-
plexities for (∆ + 1)-colouring in general graphs still elude us. For colouring, the strongest known
lower bound is just the one for rings, a mere Ω(log∗ n) rounds! Closing this super-exponential gap
is among the most prominent open problems in distributed computing.
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we equipped with all the tools we need to deal with real networks? Unfortunately,
there is one more problem! So far we assumed that nodes can always transmit
concurrently. In wireless networks, this is usually not possible, as concurrent trans-
missions will interfere with each other. Instead, we need to enhance our distributed
algorithms by a media access control (MAC) mechanism in order to handle this
interference. This is the topic of the next section!

4. Wireless Interference

Usually, sensor networks communicate by radio. An immediately evident result is
that nodes are not able to send a different message to each neighbour at the same
time. On the other hand, directed antennas are uncommon, i.e., in principle it
is feasible that all neighbours receive a sent message. In other words, we prefer
distributed algorithms where nodes transmit the same uniform message to all their
neighbours.

A more subtle consequence of the use of radio communication is that the trans-
mission medium is shared: Transmissions are exposed to interference. Concretely,
a node u may not be able to correctly receive a message of an adjacent node v
because there is a concurrent transmission going on nearby. While for higher layer
protocols it may be accurate enough to model interference by having random trans-
mission failures, interference must be a first-class citizen for understanding the basic
communication infrastructure.

In some sense, an interference model explains how concurrent transmissions
block each other. A signal might for example interfere with itself due to multi-path
propagation (e.g., an electromagnetic wave of a direct path cancelling with the wave
on a longer path reflecting at an object). Fully understanding these self-interference
effects is beyond the scope of this article, and maybe beyond the scope of research
in distributed algorithms in general, for some years to come.

Interference because of two or more concurrent transmissions is captured by
two classes of models, protocol and physical interference models (Gupta & Kumar,
2000; Schmid & Wattenhofer, 2006). In the protocol model, interference is defined
using an interference graph G′ = (V,E′) on the same node set as the connectivity
graph G = (V,E). A receiver node v can receive a transmission from node u if and
only if {u, v} ∈ E (connectivity) but there is no concurrent transmission by a node
w with {w, v} ∈ E′ (interference). There have been many proposals how the edge
set E′ should be defined. Generally E′ includes all the edges of E, and more. For
instance, if G is a UDG, G′ may be a UDG as well, however with a larger unit
radius. Or E′ may include all edges between node pairs that have at most distance
k in G, i.e., {u, v} ∈ E′ if u ∈ Bk(v). Or G′ may be an arbitrary (Q)UDG or BGG.

Physical Interference

All these protocol model definitions have in common that interference ends abruptly,
as if there was an invisible wall, and that interference does not sum up, i.e., if
there are several concurrent transmissions just outside the interference range, they
will not affect a receiver. Physical interference models strive for capturing these
effects. The relation between the nodes V is given by a distance matrix, either
derived from actual distances in a Euclidean space, or by a metric space, or by an
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arbitrary abstract gain matrix (without direct physical representation). In other
words, between any two nodes {u, v} we have a distance d(u, v). A transmission of
node u with transmission power P will give a signal at receiver v with power R =
P ·d(u, v)−α, where α is the so-called path-loss parameter, often a constant between
2 and 6. Node v can successfully decode the transmission of u if R is at least a factor
β larger than the interference, defined as the sum of the signal strength produced
by all concurrent transmissions. In addition there might also be background noise.
All this gives the so-called Signal-to-Interference-plus-Noise-Ratio (SINR) model.
Recently, studying physical interference in an algorithmic context has become a hot
research topic, e.g., Moscibroda & Wattenhofer (2006); Goussevskaia et al. (2009);
Fanghänel et al. (2009); Kowalski & Rokicki (2010); Kesselheim & Vöcking (2010);
Kesselheim (2011); Halldórsson & Mitra (2011); Kantor et al. (2011). For first
surveys, we refer to Lotker & Peleg (2010); Goussevskaia et al. (2010); Fanghänel
& Vöcking (2011).

However, most distributed algorithms work in a protocol model. Apart from ex-
ceptions, media access is usually done probabilistically. A simple idea is to let nodes
transmit randomly, with a probability inversely proportional to the ‘competition’.
In particular, if each node v transmits with probability p := 1/δ2(v), where δ2(v)
is the highest degree in the two-hop neighbourhood of the interference graph G′ of
node v, we are sure that at least a constant fraction of the transmissions is success-
ful (Abramson, 1970). A major problem is now how to figure out the competition
δ2(v), as we have a chicken-and-egg problem: In order to communicate successfully
we need to know an approximation of δ2(v). There has been a flurry of work how to
approach the right density, by starting with some probability and eventually con-
verging to the right one, depending on different models, e.g. whether nodes can or
cannot tell if multiple nodes try to transmit concurrently (Willard, 1986; Gasieniec
et al., 2001; Chrobak et al., 2004; Kuhn et al., 2004; Jurdzinski & Stachowiak, 2005;
Czumaj & Rytter, 2006; Cornejo & Kuhn, 2010; Afek et al., 2011). A good bench-
mark for multi-hop networks is the so-called broadcast problem, where one source
node needs to send a message to all the nodes in the network, as it combines the
media access question cleverly with an important application (Chlamtac & Kutten,
1985; Bar-Yehuda et al., 1987; Alon et al., 1991; Kushilevitz & Mansour, 1993). For
a recent media access theory survey, we refer to Kowalski (2011).

5. Clock Synchronisation

In the previous section we discussed the issue of avoiding collisions between the
sensor nodes when using synchronous time slots. As each sensor node is equipped
with an internal clock, it should be easy to divide time into slots, and make each
node send (or listen, or sleep, respectively) in the appropriate slots according to
the media access control (MAC) layer protocol used.†

However, as it turns out, this comes at a price. Synchronising the clocks in a
network is not trivial, in particular in sensor networks where nodes often try to save

† Indeed, such a time division multiple access (TDMA) protocol may not be needed. In the
example of the Aloha protocol it was shown that one can run slotted protocols also in systems
where nodes do not have a common notion of time, at the price of a factor 2. This technique can
be generalised to other TDMA MAC protocols. In theory, a factor of 2 does not sound prohibitive,
in practice however, it matters!
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energy by sleeping.‡ As nodes’ internal clocks are not perfect, they will run at speeds
that are time-dependent. For instance, variations in temperature or supply voltage
will affect this clock drift. For standard clocks, the drift is in the order of parts
per million, i.e., within a second, it will accumulate to a couple of microseconds.
Wireless TDMA protocols account for this by introducing guard times. Whenever
a node knows that it is about to receive a message from a neighbour, it powers up
its radio a little bit earlier to make sure that it does not miss the message even
though clocks are not perfectly synchronised. Also, if nodes are badly synchronised,
message of different slots might collide.

Clock Synchronization in Theory. . .

The analysis of guard times is a clock synchronisation problem. This kind of
questions have been studied by the distributed computing community extensively.
For instance, it is well-known that in a network of diameter D, the worst-case skew
between two nodes is Ω(D) (Biaz & Welch, 2001). This bound holds even in absence
of clock drift, as it is not possible to measure the time it takes to transmit the current
clock value to another node precisely. The respective error might accumulate with
distance, summing up to Ω(D) between two nodes in distance D.

However, as wireless interference is to some degree a geometric phenomenon,
guard times need to account for the clock skew to nearby nodes only. Thus, it is
sufficient if close-by nodes are well-synchronised. Or, rephrasing this observation,
the system can run as if it was synchronous if we can keep the clock skew between
neighbours, the local skew, small. Fan & Lynch (2004) formulated this so-called
gradient clock synchronisation problem and proved the surprising result that the
local skew must be at least Ω(logD/ log logD) in the worst case, no matter what
algorithm is used. Thus, even though nodes may be perfectly aware of their neigh-
bours’ clocks being off, they may not be able to compensate for it consistently!
Recently, it has been established that smallest possible local skew is Θ(log1/ρD),
where ρ bounds the relative clock drift (Lenzen et al., 2010). Recalling that typ-
ically ρ < 10−5, this implies that in any practical sensor network, the local skew
can be bounded by a constant.

. . . and in Practice

Sadly, again there is a pitfall. The optimal algorithm assumes that neighbours
exchange clock values every O(ρJ ) time units, where J is the uncertainty in mes-
sage transmission time. By means of MAC layer time stamping, J can be kept as
small as 10−6 s. However, powering up the radio and transmitting a message can
take up to about 0.1 s, i.e., nodes would have to exchange messages all the time!

On the upside, also lower bounds do not always have the final word. In prac-
tice, one can achieve much better synchronisation than the bound in Lenzen et al.
(2010) states! The issue here is that the lower bound holds in the worst case,
which is unlikely to occur in practice. Instead of clock drift and message delays
being arranged in the most adverse manner, typically the speed of clocks changes

‡ Dozer (Burri et al., 2007), for instance, is a sensor network protocol stack that enables long-
term functionality of an unattended sensor network by powering down nodes’ radios whenever
possible.
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at a comparatively slow pace and the message transmission times follow a benign
probability distribution. Assuming that clock rates change only slightly within kB
time (for k ∈ N and B being the average time between a node sending/receiving
a message), this can be exploited in order to achieve a maximal clock skew of
O(J

√
D log n/(k log log n)) w.h.p. (Lenzen et al., 2009).† This bound is asymptot-

ically tight for the more optimistic model, and the claimed upper bound could be
verified in a real-world network.

6. Conclusion

The study of the complexity of distributed algorithms leads to fascinating and
deep research questions. In the context of wireless sensor networks, these research
question remain theoretically interesting, but they obtain an additional practical
dimension. In this work, we have focused on characterising the power of distributed
algorithms vis-a-vis some fundamental network coordination tasks that are relevant
in wireless sensor networks. We have shown that this power very much depends on
the underlying network model.

This work was partially supported by the Swiss National Science Foundation (SNSF).
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this manuscript. We are grateful to Johannes Schneider and Jukka Suomela for helpful
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