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Abstract

An emerging characteristic of modern computer systems is that
it is becoming ever more frequent that the amount of communication
involved in a solution to a given problem is the determining cost factor.
In other words, the convenient abstraction of a random access memory
machine performing sequential operations does not adequately reflect
reality anymore. Rather, a multitude of spatially separated agents
cooperates in solving a problem, where at any time each individual
agent has a limited view of the entire system’s state. As a result,
coordinating these agents’ efforts in a way making best possible use
of the system’s resources becomes a fascinating and challenging task.
This dissertation treats of several such coordination problems arising
in distributed systems.

In the clock synchronization problem, devices carry clocks whose
times should agree to the best possible degree. As these clocks are not
perfect, the devices need to perpetually resynchronize by exchanging
messages repeatedly. We consider two different varieties of this prob-
lem. First, we examine the problem in sensor networks, where for the
purpose of energy conservation it is mandatory to reduce communi-
cation to a minimum. We give an algorithm that achieves an asymp-
totically optimal maximal clock difference throughout the network us-
ing a minimal number of transmissions. Subsequently, we explore a
worst-case model allowing for arbitrary network dynamics, i.e., net-
work links may fail and (re)appear at arbitrary times. For this model,
we devise an algorithm achieving an asymptotically optimal gradient
property. That is, if two devices in a larger network have access to
precise estimates of each other’s clock values, their clock difference is
much smaller than the maximal one. Naturally, this property can only
hold for devices that had such estimates for a sufficiently long period
of time. We prove that the time span necessary for our algorithm to
fully establish the gradient property when better estimates become
available is also asymptotically optimal.

Many load balancing tasks can be abstracted as distributing n
balls as evenly as possible into n bins. In a distributed setting, we
assume the balls and bins to act as independent entities that seek to
coordinate at a minimal communication complexity. We show that
under this constraint, a natural class of algorithms requires a small,
but non-constant number of communication rounds to achieve a con-
stant maximum bin load. We complement the respective bounds by
demonstrating that if any of the preconditions of the lower bound is
dropped, a constant-time solution is possible.

Finally, we consider two basic combinatorial structures, maximal
independent sets and dominating sets. A maximal independent set is a
subset of the agents containing no pair of agents that can communicate
directly, while there is no agent that can be added to the set without
destroying this property. A dominating set is a subset of the agents
that—as a whole—can contact all agents by direct communication.
For several families of graphs, we shed new light on the distributed
complexity of computing dominating sets of approximatively minimal
size or maximal independent sets, respectively.





Zusammenfassung

Moderne Computersysteme zeichnen sich in zunehmendem Maße
dadurch aus, dass das Kommunikationsvolumen den bestimmenden
Kostenfaktor bei der Lösung eines gegebenen Problems darstellt. In
der Folge wird die klassische Abstraktion einer random access machine,
die sequentielle Operationen ausführt, der Realität heutigen Rechnens
nicht mehr gerecht. Vielmehr wird die Lösung durch eine Vielzahl in-
teragierender Systemkomponenten bestimmt, die für sich genommen
zu keiner Zeit Zugriff auf den Gesamtzustand des Systems haben. Vor
diesem Hintergrund erweist es sich als ebenso fordernde wie fessel-
nde Aufgabe, die einzelnen Teile des Systems derart zu koordinieren,
dass eine optimale Nutzung der verfügbaren Resourcen erreicht wird.
In dieser Dissertation behandeln wir verschiedene Koordinationsprob-
leme, die in verteilten Systemen auftreten.

Uhrensynchronisation ist eine Aufgabe, die sich in verteilten Sys-
temen daraus ergibt, dass die lokalen Uhren einzelner Komponen-
ten nicht exakt gleich schnell laufen. Wir behandeln zwei Spielarten
dieses Themas. Zunächst untersuchen wir Sensornetzwerke, in denen
begrenzte Energiereserven es erfordern, den Funkverkehr auf ein Min-
imum zu beschränken. Wir beschreiben einen Algorithmus, der unter
diesen Bedingungen die maximale Uhrendifferenz im System asymp-
totisch minimiert. Anschliessend diskutieren wir ein worst-case Mod-
ell, in dem das Netzwerk sich beliebig ändert, das heißt Verbindun-
gen zu beliebigen Zeiten ausfallen und aufgebaut werden können. Wir
präsentieren einen Algorithmus mit optimaler Gradienteneigenschaft.
Dies bedeutet, dass wann immer zwei Teilnehmer in einem grösseren
Netzwerk für genügend lange Zeit gegenseitig auf zuverlässige Schätz-
werte ihrer Uhrenwerte zugreifen können, die Differenz ihrer Uhren-
werte deutlich kleiner als die maximale im System ist. Unser Algo-
rithmus minimiert asymptotisch die Zeitspanne, die eine Verbindung
existieren muss, bis sie der Gradienteneigenschaft genügt.

In vielen Fällen können Lastverteilungsaufgaben durch ein abstrak-
tes Modell beschrieben werden, in dem n Bälle n Urnen zugeord-
net werden. In einem verteilten System nimmt man dabei an, dass
sowohl Bälle als auch Urnen eigenständig operieren. Ziel ist, bei min-
imaler Kommunikation die maximale Anzahl Bälle in einer Urne kon-
stant zu beschränken. Wir werden zeigen, dass für eine natürliche
Klasse von Algorithmen die dafür nötige Anzahl von Kommunikation-
srunden zwar langsam wachsend, jedoch nicht unabhängig von n ist.
Wir ergänzen dieses Ergebnis durch den Nachweis, dass Fallenlassen
einer beliebigen Voraussetzung der entsprechenden unteren Schranke
eine Lösung des Problems in konstant vielen Kommunikationsrunden
ermöglicht.

Schliesslich untersuchen wir zwei grundlegende kombinatorische
Strukturen. Eine maximale stabile Menge ist eine nicht vergrösserbare
Teilmenge der Komponenten, so dass kein Paar aus dieser Menge di-
rekt kommunizieren kann. Ein dominierende Menge ist eine Teilmenge
der Komponenten, die zusammengenommen das gesamte System di-
rekt kontaktieren kann. Wir zeigen für verschiedene Graphfamilien
Komplexitätsschranken für die Berechnung von maximalen stabilen
Mengen beziehungsweise kleinen dominierenden Mengen.
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Chapter 1

Introduction

“Can’t you use shorter sentences?” – My girlfriend after reading
some random lines from this thesis.

In large parts, the invention of electronic computing has shaped—and
still is shaping—our modern society. Traditionally, distributed computing
contributed to this process in areas like fault-tolerant computing, sensor net-
works, and the Internet. Incessantly, it has been of growing importance for
day-to-day technology.

Nowadays, this is still true. For one thing, computational power has be-
come incredibly cheap. Today, even the most simple “mobile phone” is in
fact a portable computer, faster than processors employed in supercomput-
ers about three decades ago [20]. Arguably, advances in software developing
and testing, programming languages, and last but not least basic algorithms
had an even greater impact on the capabilities of current standard devices.
Considering that these devices get more and more interconnected, be it via
the Internet or direct wireless communication, all ingredients of a powerful
distributed system are present. This opens the door to a multitude of appli-
cations, ranging e.g. over social networking, exchanging and evaluating data,
environmental monitoring, and controlling other devices.

It is less noticeable, but maybe even more dramatic, that we are hitting
physical barriers preventing to amass ever more sequential computing power
in a single processor. It becomes increasingly difficult to miniaturize chip
components further, making it harder and harder to maintain the illusion of
a monolithic system operating in synchronous steps. This motivates hard-
ware vendors, eager to maintain Moore’s law, to switch to an exponentially
growing number of cores. It is important to understand that this constitutes
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a fundamental change. In a sequential system, the necessary effort to solve
a given task can be concisely expressed in terms of the number of required
computational steps. Even in a distributed system where all nodes (i.e., par-
ticipants) have the same capabilities, one cannot simply divide this measure
by the number of these nodes to understand the distributed complexity of
a problem. Some tasks are inherently sequential and simply cannot be par-
allelized. In case parallelism is indeed possible, communication becomes an
essential part of the process. This communication serves to exchange inter-
mediate results, but also to establish coordination among the nodes in the
network.

Coordination can be achieved in various ways. Obviously, one distin-
guished node could manage the system by commanding the others. How-
ever, this trivial approach has considerable drawbacks. On the one hand, it
requires to collect and process all relevant information in a single spot. This
might without need reduce the amount of concurrency achieved, as merely
one node does the respective computations. Sometimes, it is actually out-
right impossible, because no single device has sufficient capabilities. On the
other hand, a centralized authority is a single point of failure, throwing away
the possibility to perform a given task despite a minority of the individual
components failing.

One possible alternative is that each node collects information from other
nodes which are “close” in the sense that they can be contacted quickly, and
acts according to a scheme avoiding conflicting actions. Depending on the
task to solve, such local algorithms can be surprisingly efficient. For many of
these algorithms, it is imperative to first break symmetry in order to avoid
conflicting or redundant actions, which otherwise would thwart progress or
waste resources. Moreover, typically nodes need to synchronize their actions.
This can be done explicitly by message exchange, or implicitly by means of
timing information.

In this thesis, we will investigate a number of such basic distributed co-
ordination tasks. We will present and analyze primitives for clock synchro-
nization (Part I), randomized load balancing (Part II), and graph problems
on restricted families of graphs (Part III). Our main goal is to extend the
knowledge on the fundamental limits to the degree of concurrency and effi-
ciency at which these problems can be solved. We aim at a mathematically
rigid assessment of the distributed complexity of our algorithms as well as
the amount of resources that must be used by any algorithm for the respec-
tive task. This demands abstract models, which however still must capture
the crucial properties of the considered system. We hope to have succeeded
in the tightrope walk between oversimplification and getting lost in details,
obtaining clear theoretical statements that are meaningful in practice.



Chapter 2

Preliminaries

“Distributed computing? Shouldn’t be that different from ordi-
nary computing, right?” – Synopsis of my knowledge on dis-
tributed computing at the time when I began my graduate studies.

In this chapter, we summarize basic notation and some well-known results we
will rely on. We will not prove the given statements; the goal of this chapter is
to provide a reference in order to avoid lack of clarity in subsequent chapters.
Consequently, the reader is encouraged to quickly review the notation, skip
the lemmas and theorems, and come back to this chapter if required later
on.

2.1 Basic Model and Notation

By N we denote the set of natural numbers and by N0 := N∪{0} the natural
numbers together with 0. Similarly, R denotes the Reals, R+ := {x ∈ R |x >
0} the strictly positive Reals, and R+

0 := {x ∈ R |x ≥ 0} the non-negative
Reals. We will use Landau notation with respect to the asymptotics towards
+∞, i.e., according to the following definitions.

Definition 2.1 (Landau Symbols). Given f, g : A→ R+
0 , where A ⊆ R with

supA =∞, we define
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f ∈ O(g) ⇔ ∃C1, C2 ∈ R+
0 ∀x ∈ A : f(x) ≤ C1g(x) + C2

f ∈ o(g) ⇔ lim
C∈R+

0
C→∞

sup
x∈A
x≥C

{
f(x)

g(x)

}
= 0

f ∈ Ω(g) ⇔ ∃C1, C2 ∈ R+
0 ∀x ∈ A : C1f(x) + C2 ≥ g(x)

f ∈ ω(g) ⇔ lim
C∈R+

0
C→∞

sup
x∈A
x≥C

{
g(x)

f(x)

}
= 0

f ∈ Θ(g) ⇔ f ∈ O(g) ∩ Ω(g).

Definition 2.2 (Logarithms and Polylogarithmic Bounds). For x ∈ R+, by
log x and lnx we denote the logarithms to base 2 and e, respectively, where e =
limx→∞(1 + 1/x)x is Euler’s number. We define log(i) x (for feasible values
of x) to be the i ∈ N times iterated logarithm, whereas logr x := (log x)r for
any r ∈ R+. We say that the function f(x) ∈ polylog x if f(x) ∈ O(logC x)
for a constant C ∈ R+.

Definition 2.3 (Tetration and log∗). For k ∈ N and b ∈ R+, the kth tetra-
tion of b is given by

kb := bb
..
.b
}
k times.

For x ∈ R+, we define log∗ x recursively by

log∗ x :=

{
1 + log∗ log x if x > 1

0 otherwise.

In particular, log∗
(
k2
)

= k for all k ∈ N.

Throughout this thesis, we will describe distributed systems according to
the standard message passing model. The network will be modelled by a
simple graph G = (V,E), where V is the set of nodes and {v, w} ∈ E means
that v and w share a bidirectional communication link. We will employ the
following basic notation.

Definition 2.4 (Paths, Distances, and Diameter). Given a graph G =
(V,E), a path of length k ∈ N is a sequence of nodes (v0, . . . , vk) ∈ V such
that {vi, vi−1} ∈ E for all i ∈ {1, . . . , k}. The distance d(v, w) of two nodes
v, w ∈ V is the length of a shortest path between v and w. The diameter D
of G is the maximum distance between any two nodes in the graph.

Definition 2.5 (Neighborhoods). Given the graph G = (V,E), we define

• the (exclusive) neighborhood Nv := {w ∈ V | {v, w} ∈ E} of node
v ∈ V ,
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• the degree δv := |Nv| of v ∈ V ,

• the maximum degree ∆ := maxv∈V {δv},

• for k ∈ N the (inclusive) k-neighborhood N (k)
v := {w ∈ V | d(v, w) ≤

k} of v ∈ V ,

• and the (inclusive) neighborhood N+
A :=

⋃
v∈AN

(1)
v of set A ⊆ V .

To facilitate intuition, we will denote the inclusive 1-neighborhood of node
v ∈ V by N+

v := N (1)
v .

In bounded-delay networks (which are considered in Part I of this thesis),
nodes react to events, which are triggered by receiving messages or reaching a
(previously defined) value on a local clock. When an event is triggered, a node
may perform local computations, send messages that will be received within
bounded time, and define future local times at which events will be triggered
locally. These actions take no time; in case two events are triggered at a node
at the same time, they are ordered arbitrarily and processed sequentially. We
will use events triggered by the local clock implicitly, as we employ a high-
level description of our algorithms. We point out, however, that one can
translate all algorithms into this framework. The state of each node is thus a
function of the real time t ∈ R+

0 . If at time t the state of a variable (function,
etc.) x changes instantaneously, we define x(t) to be the value after this
change has been applied.

In contrast, in Parts II and III of our exposition we employ a synchronous
model, where computation advances in rounds. In each round, nodes send
messages, receive messages sent by their neighbors, and perform local com-
putations. The state of a node thus becomes a function of the current round
r ∈ N.

Despite aiming for simple algorithms, we do not impose any constraints
on nodes’ memory and the local computations they may perform. Note, how-
ever, that one should avoid techniques like e.g. collecting the whole topology
of neighborhood up to a certain distance and subsequently solve NP-hard
problems locally.

2.2 Standard Definitions and Tools

Probabilistic Tools

All random variables in this thesis will be real-valued, hence we will not
repeat this in our statements. We denote the expectation and variance of
random variable X by E[X] and Var[X], respectively.
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Theorem 2.6 (Markov’s Bound). For any random variable X and any C ∈
R+, it holds that

P [|X| ≥ C] ≤ E[X]

C
.

When deriving probabilistic bounds, we will strive for results that are not
certain, but almost guaranteed to hold.

Definition 2.7 (With High Probability). A stochastic event E(c), where c ∈
R+ is arbitrary, is said to occur with high probability (w.h.p.), if P [E(c)] ≥
1 − 1/nc. Throughout this thesis, we will use c with this meaning only and
will therefore not define it again. When it comes to Landau notation, c is
treated as a constant, e.g. the values C1 and C2 from the definition of O(·)
may depend on c.

The advantage of this definition lies in its transitivity, as for instance
the statements “Each node completes phase i of the algorithm in O(logn)
rounds w.h.p.”, where i ∈ {1, . . . ,O(logn)}, imply the statement “All phases
complete in O(log2 n) rounds w.h.p.” Formally, the following lemma holds.

Lemma 2.8. Assume that events Ei(c), i ∈ {1, . . . , N}, occur w.h.p., where
N ≤ nC for some constant C ∈ R+. Then event E(c) :=

∧N
i=1 Ei(c̃) occurs

w.h.p., where c̃ := c+ C.

Proof. The Ei occur w.h.p., so for any value c ∈ R+ we may choose c̃ :=
c+C ∈ R+ and have P [Ei(c̃)] ≥ 1−1/nc̃ ≥ 1−1/(Nnc) for all i ∈ {1, . . . , N}.
By the union bound this implies P [E(c)] ≥ 1−

∑N
i=1 P [Ei] ≥ 1− 1/nc.

We will not invoke this lemma explicitly in our proofs. The purpose
of this statement rather is to demonstrate that any number of asymptotic
statements holding w.h.p. that is polynomial in n is also jointly true w.h.p.,
regardless of dependencies. With this in mind, we will make frequent implicit
use of this lemma.

Definition 2.9 (Uniformity and Independence). A discrete random variable
is called uniform, if all its possible outcomes are equally likely. Two random
variables X1 and X2 are independent, if P [X1 = x1] = P [X1 = x1|X2 = x2]
for any two x1, x2 ∈ R (and vice versa). A set {X1, . . . , XN} of random
variables is independent if, for all i ∈ {1, . . . , N}, Xi is independent from
(X1, . . . , Xi−1, Xi+1, . . . , XN ), i.e., the tuple listing the outcomes of all Xj 6=
Xi. The set {X1, . . . , XN} is uniformly and independently random (u.i.r.)
if it is independent and consists of uniform random variables. Two sets of
random variables X = {X1, . . . , XN} and Y = {Y1, . . . , YM} are independent
of each other if all Xi ∈ X are independent from (Y1, . . . , YM ) and all Yj ∈ Y
are independent from (X1, . . . , XN ).
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Frequently w.h.p. results are deduced from Chernoff bounds, which pro-
vide exponential probability bounds regarding sums of Bernoulli variables
(which are either one or zero). Common formulations assume independence
of these variables, but the following more general condition is sufficient.

Definition 2.10 (Negative Association). The set of random variables Xi,
i ∈ {1, . . . , N}, is negatively associated if and only if for all disjoint subsets
I, J ⊆ {1, . . . , N} and all functions f : R|I| → R and g : R|J| → R that are
either increasing in all components or decreasing in all components we have

E[f((Xi)i∈I) · g((Xj)j∈J)] ≤ E[f((Xi)i∈I)] · E[g((Xj)j∈J)].

Note that independence trivially implies negative association, but not
vice versa.

Theorem 2.11 (Chernoff’s Bound: Upper Tail). Given negatively associated
Bernoulli variables X1, . . . , XN , define X :=

∑N
i=1 Xi. Then for any δ ∈ R+,

we have that

P [X > (1 + δ)E[X]] <

(
eδ

(1 + δ)1+δ

)E[X]

.

Theorem 2.12 (Chernoff’s Bound: Lower Tail). Given negatively associated
Bernoulli variables X1, . . . , XN , define X :=

∑N
i=1 Xi. Then for any δ ∈

(0, 1], it holds that

P [X < (1− δ)E[X]] <

(
e−δ

(1− δ)1−δ

)E[X]

.

Corollary 2.13. For negatively associated Bernoulli variables X1, . . . , XN ,
define X :=

∑N
i=1 Xi. Then

(i) X ∈ E[X] +O
(

logn+
√

E[X] logn
)

w.h.p.

(ii) E[X] ∈ O(1)⇒ X ∈ O
(

logn
log logn

)
w.h.p.

(iii) E[X] ∈ O
(

1√
logn

)
⇒ X ∈ O

(√
logn

log logn

)
w.h.p.

(iv) P [X = 0] ≤ e−E[X]/2

(v) E[X] ≥ 8c logn⇒ X ∈ Θ(E[X]) w.h.p.

(vi) E[X] ∈ ω(logn)⇒ X ∈ (1± o(1))E[X] w.h.p.

We need a means to show that random variables are negatively associated.
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Lemma 2.14.

(i) If X1, . . . , XN are Bernoulli variables satisfying
∑N
i=1 Xi = 1, then

{X1, . . . , XN} is negatively associated.

(ii) Assume that X and Y are negatively associated sets of random vari-
ables, and that X and Y are mutually independent. Then X ∪ Y is
negatively associated.

(iii) Suppose {X1, . . . , XN} is negatively associated. Given I1, . . . , Ik ⊆
{1, . . . , N}, k ∈ N, and functions hj : R|Ij | → R, j ∈ {1, . . . , k}, that
are either all increasing or all decreasing, define Yj := hj((Xi)i∈Ij ).
Then {Y1, . . . , Yk} is negatively associated.

This lemma and Corollary 2.13 imply strong bounds on the outcome of
the well-known balls-into-bins experiment.

Lemma 2.15. Consider the random experiment of throwing M balls u.i.r.
into N bins. Denote by Y k =

{
Y ki
}
i∈{1,...,N} the set of Bernoulli variables

being 1 if and only if at least (at most) k ∈ N0 balls end up in bin i ∈
{1, . . . , N}. Then, for any k, Y k is negatively associated.

The following special case will prove to be helpful.

Corollary 2.16. Throw M ≤ N lnN/(2 ln lnn) balls u.i.r. into N bins.
Then (1± o(1))Ne−M/N bins remain empty w.h.p.

Another inequality that yields exponentially falling probability bounds is
typically referred to as Azuma’s inequality.

Theorem 2.17 (Azuma’s Inequality). Assume that X is a random variable
that is a function of independent random variables X1, . . . , XN . Assume
that changing the value of a single Xi for some i ∈ {1, . . . , N} changes the
outcome of X by at most δi ∈ R+. Then for any t ∈ R+

0 we have

P [|X − E[X]| > t] ≤ 2e
− t2

2
∑N
i=1

δ2
i .

Normally Distributed Random Variables

Definition 2.18 (Normal Distribution). The random variable X is normally
distributed if its density function is the bell curve

f(x) =
1√

2πVar[X]
e
− (x−E[X])2

2 Var[X] .

Sums of normally distributed variables are again normally distributed.
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Lemma 2.19. Given normally distributed random variables X1, . . . , XN ,
their sum X :=

∑N
i=1 Xi is normally distributed with expectation E[X] =∑N

i=1 E[Xi] and variance Var[X] =
∑N
i=1 Var[Xi].

For our purposes, normally distributed random variables exhibit a very
convenient behaviour.

Lemma 2.20. For any given normally distributed random variable X, we
have that

P
[
|X − E[X]| >

√
Var[X]

]
∈ Ω(1),

i.e., the probability to deviate by more than one standard deviation is con-
stant, whereas

P
[
|X − E[X]| ≤ δ

√
Var[X]

]
∈ 1− e−Ω(δ2 log δ)

for any δ ∈ R+.

Simple Linear Regression

Definition 2.21 (Simple Linear Regression). Given data points (xi, yi), i ∈
{1, . . . , N}, such that not all xi are the same, their linear regression is the
line

f̂(x) = ŝx+ t̂,

where ŝ, t̂ ∈ R are minimizing the expression

N∑
i=1

(
f̂(xi)− yi

)2

.

Denoting by · the average of the respective values ·i, i ∈ {1, . . . , N}, we have

ŝ =
xy − x̄ȳ
x2 − x2

t̂ = y − ŝ x.

Using linear regression on a set of measurements of a linear relation that
is inflicted with errors, one can significantly reduce the overall deviation of
the estimated line from the true one.

Theorem 2.22. Assume that we are given a set of measurements (xi, ŷi) of
data points (xi, yi), i ∈ {1, . . . , N}, obeying the relation f(xi) = yi, where
f(x) = sx+ t. Furthermore, assume that

ŷi = yi +Xi,

where the Xi are identically and independently normally distributed random
variables with expectation µ and variance σ2. Denote by f̂(x) = ŝx + t̂ the
linear regression of the data set {(xi, ŷi)}i∈{1,...,N}. Then we have that
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(i) ŝ is normally distributed with E[ŝ] = s and Var[ŝ] = σ2/
∑N
i=1(xi− x̄)2,

(ii) f̂(x̄)− f(x̄) is normally distributed with mean µ and variance σ2/N .

Miscellaneous

In Chapter 5 we will exploit the fact that the maximum of functions which
increase at a bounded rate does not grow faster than the maximum of the
respective bounds.

Theorem 2.23. Suppose f1, . . . , fk : T → R are functions that are dif-
ferentiable at all but countably many points, where T ⊆ R. Then f :=
max{f1, . . . , fk} : T → R is differentiable at all but countably many points,
and it holds for all t ∈ T for which all involved derivatives exist that

d

dt
f(t) = max

i∈{1,...,k}
fi(t)=f(t)

{
d

dt
fi(t)

}
.

In Chapter 13 we will need the following basic statements about planar
graphs.

Lemma 2.24. A minor of a planar graph is planar. A planar graph of n ≥ 3
nodes has at most 3n− 6 edges.

A basic combinatorial structure that will be briefly mentioned in Part III
is a node coloring.

Definition 2.25 (Node Coloring). A node coloring with k ∈ N colors is a
mapping C : V → {1, . . . , k} such that no two neighbors have the same color,
i.e., {v, w} ∈ E ⇒ C(v) 6= C(w).



Part I

Clock Synchronization





Chapter 3

An Introduction to Clock

Synchronization

“I believed the topic was dead.” – Christian Scheideler’s opening
to a question concerning a talk about clock synchronization.

In distributed systems, many tasks rely on—or are simplified by—a common
notion of time throughout the system. Globally coherent local times allow for
implicit synchronization of the actions of distant devices [12] or chronological
ordering of events occurring at distinct nodes. If time is not abstract, but to
be understood in the physical sense as provided by e.g. a watch or a system
clock, this clears the path for numerous further applications. For instance,
the precision up to which an acoustic event can be located by a group of
adjacent sensor nodes crucially depends on the exact times when the sensors
detect its sound waves.

This distinction between “abstract” and “physical” time is decisive. The
goal of synchronizing a distributed system to the degree that nodes have ac-
cess to a common round counter is addressed by so-called synchronizers [3]
and ordering events within the system has been—by and large—understood
already in the early days of distributed computing [57]. Having a physi-
cally meaningful clock is more demanding in that it requires not only consis-
tent clock values throughout the distributed system, but also clearly defined
progress speeds of clocks. This is for instance important when a trajectory
is to be (re)constructed out of sensor readings: If clock speeds are arbitrary,
the velocity of the observed target cannot be determined accurately. Putting
it simply, a second should last about a second, not between zero and ten
seconds. If one does not care about the progress speed of clocks, clock skew,
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i.e., difference between clock values, can easily be kept small, as one can slow
down clocks until stragglers catch up whenever necessary.

But what makes it difficult to prevent that clock skews arise if clocks
must make progress? To begin with, there is a wide range of scenarios in
which it is infeasible that all participants of the system directly access a suf-
ficiently precise source of timing information. Sensor nodes, for instance, can
be equipped with GPS receivers, but this might be prohibitively expensive
in terms of energy consumption or the network could be indoors. Giving
another example, signal propagation speed on computer chips depends on
many uncontrollable factors like (local) temperature, variations in quality of
components, or fluctuations in supply voltage. Thus, a canonical approach is
to equip the participants of the system with their own clocks, which however
will exhibit different and varying clock drifts for very much the same reasons.
Depending on the desired quality of synchronization, it may take more or less
time until the clock skew that builds up over time becomes critical. In any
case, eventually the devices must communicate in order to adjust their clocks.
At this point another obstacle comes into play: the time it takes to transmit
a message and process it at the target node can neither be predicted nor be
measured precisely. Even if this would be the case, this obstacle could not be
overcome completely. Within the time it takes to communicate a value, the
clock value of the sender increases by an amount that cannot be determined
by the receiver exactly. Thus, nodes suffer from uncertainty about neighbors’
clock values, and even more so about clock values of remote nodes.

In this thesis, we examine two different models of clock synchronization.
The first one is tailored to represent the main characteristics of wireless sensor
networks with regard to the clock synchronization problem. In this context,
we assume the system to behave comparatively benign. Clock drifts do not
change quickly with respect to the time frame relevant for the respective
algorithm and are thus kept constant for analysis purposes. The fluctua-
tions in message transmission times are random and independent between
transmissions. Although abstracting away from the peculiarities of wireless
communication, our theoretical insights are supported by test results from
an implementation of PulseSync, the algorithm we propose in Section 4.4.

As frequently is the case with clock synchronization, our results reveal
that the precise model matters a lot. Denoting by D the diameter of the
communication network, we prove a tight probabilistic bound of Θ(

√
D) on

the global skew of PulseSync, i.e., the maximum clock skew between any pair
of nodes in the system. In contrast, traditional worst-case analysis yields a
lower bound of Ω(D) on the global skew [16].

In Chapter 5 we examine a worst-case model, where clock drifts and un-
certainties may vary arbitrarily within possibly unknown bounds. Moreover,
we consider dynamic graphs, where the edges of the graph appear and disap-
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pear in a worst-case manner. Thus, any upper bound in this model is highly
robust, being resilient to anything but maliciously behaving (“Byzantine”)
nodes. Note that in a system with Byzantine faults, it is mandatory to make
sure that an erroneously behaving node cannot pollute the state of others.
Obviously, this is impossible if a Byzantine node controls all communication
between two parts of a graph. This observation shows that in a Byzantine
environment the problem is tied to the topology much stronger and requires
more complicated algorithms. For these reasons, Byzantine faults are beyond
the scope of our work. To the best of our knowledge, so far the literature
has been concerned with Byzantine fault-tolerant clock synchronization al-
gorithms under the assumption of full connectivity only [99]. Even then, the
problem of achieving both Byzantine fault tolerance and self-stabilization [26]
(see Definition 5.27 and Corollary 5.28) is intricate [11, 27, 28, 35].

It is not difficult to show that the best possible worst-case guarantee on
the global skew is linear in the (possibly dynamic) diameter [16, 52, 99].
More surprisingly, even if the graph is static, it is impossible to ensure that
the local skew, the maximum skew between neighbors, satisfies a bound that
is independent of the network diameter [33, 60, 79]. This is of significant
interest, as in fact many applications do not necessitate good global syn-
chronization, but merely rely on guarantees on the local skew. For instance,
for the aforementioned purpose of acoustic localization we need that nodes
that are close to a specific event have closely related clock values. Naturally,
these physically clustered nodes will be communicating with each other via
a small number of hops. Similarly, time division multiple access protocols,
where a common channel is accessed by the sharing devices according to a
mutually exclusive assignment of time slots, depend on the respective devices
having tightly synchronized clocks. Alongside the primary designation of the
channel, it can be used to directly exchange timing information between the
devices using it. Hence, an efficient utilization of the channel can be achieved
provided that the local skew is kept small.

We will show that in any graph, an optimal bound on the local skew on
the edges that have been continuously present for a sufficiently long period
of time can be maintained by a simple algorithm. This bound is logarithmic
in D with a large base of the logarithm, implying that even if the global skew
is large, applications depending on the local skew can exhibit a good worst-
case scaling behaviour. Moreover, for the proposed algorithm the stabilization
time, i.e., the time until the strong local skew bounds apply to a newly formed
edge, is linear in the bound on the global skew, which is also asymptotically
optimal. Remarkably, the stable local skew achieved in the subgraph induced
by the edges that have been operational without interruption for this time
period is almost identical to the local skew that can be guaranteed in a static
graph where nodes and edges never fail.





Chapter 4

Clock Synchronization in Wireless

Networks

“All the time you said trees are bad. Now, all of a sudden, you
want me to change the entire implementation to a tree protocol?”
– Philipp Sommer’s response to my first sketch of PulseSync.

In the last two decades, a lot of research has been dedicated to wireless net-
works. Since such networks do not require a fixed wiring, they are easy to de-
ploy and can be formed on-the-fly when there is need for cooperation between
otherwise unrelated mobile devices. On the downside, wireless communica-
tion suffers from interference, complicating information exchange between
the participants of the system. The fact that energy is typically a scarce
resource in wireless networks aggravates this issue further, as one wants to
minimize radio usage. In this chapter, we examine the clock synchronization
problem in this particular setting. The presented material is based on work
co-authored by Philipp Sommer [63].

4.1 Model

In a wireless network, communication takes place by radio. In theory, in order
to send a message, a node powers up its radio, transmits the message, and
powers the radio down. In practice, of course, there are a number of issues.
Does the receiver listen on the respective channel? Is there interference
with other transmissions? Is an acknowledgement to be sent? If so, was it
successfully received, etc. We will not delve into these matters, although
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Table 4.1: Energy consumption of radios used in common sensor nodes. Ac-
tive radios drain by roughly 5 orders of magnitude more power than sleeping
devices. The vendors’ terms for the mode denoted by “sleep” differ.

sensor node transmit [mA] power [dBm] listen [mA] sleep [µA]

Mica2 16.5 0 9.6 0.2

Tmote Sky 17.4 0 18.8 0.02

Crossb. IRIS 14.5 1 15.5 0.02

TinyNode 33 5 14 0.2

one has to keep the peculiarities of wireless communication in mind when
devising clock synchronization protocols for such systems.

Having said this, we choose a simplistic description of the network as a
static graph G = (V,E), where V is the set of nodes and E is the set of
bidirectional, reliable communication links. If node v ∈ V sends a message,
all neighbors w ∈ Nv listening on the channel can receive this message. We
focus on the following aspects of wireless systems:

• Communication is expensive. The energy consumption of a node whose
radio is powered on is orders of magnitude larger than that of a sleeping
node (cf. Table 4.1).1 In fact, in many cases radio usage determines
the life-time of a sensor node. Therefore, we want to minimize the
amount of communication dedicated to the synchronization routine.
Consequently, we require that nodes send and receive (on average) one
message per beacon interval B only.

• Communication is inexact. As mentioned before, it is not possible to
learn the exact clock values of communication partners. In the wire-
less setting, this is mainly due to two causes. Firstly, transmission
times vary. This effect can be significantly reduced by MAC layer
time-stamping [77], yet a fraction of the transmission time cannot be
determined exactly. Secondly, the resolution of the sensor nodes’ clocks
is limited. Thus, rounding errors are introduced that make it impossi-
ble to determine the time of arrival of a message precisely (this can also
be improved [97]). As these fluctuations are typically not related be-
tween different messages, we model them as independently distributed

1Mica 2, Texas Instruments CC1000, focus.ti.com/lit/ds/symlink/cc1000.pdf
Tmote Sky, Texas Instruments CC2420, focus.ti.com/lit/ds/symlink/cc2420.pdf
Crossbow IRIS, Atmel AT86RF230,

atmel.com/dyn/resources/prod documents/doc5131.pdf
TinyNode, Semtech XE1205, semtech.com/images/datasheet/xe1205.pdf
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random variables. For the sake of our analysis, we assume their distri-
butions to be identical and refer to the respective standard deviation
as jitter J . Our results hold for most “reasonable” distributions. For
simplicity, we will however assume normally distributed variables with
zero mean in this thesis, a hypothesis which is supported by empirical
study [30].

• Sending times are constrained. We discussed that in wireless networks
one cannot simply send a message whenever it is convenient. In order
to account for this, we define the time it takes in each beacon inter-
val between a node receiving and sending a message to be predefined
and immutable by the algorithm. For the reason that every node will
receive and transmit only once during every interval, we need only a
single value τv ∈ R+ for each node v ∈ V , denoting the time difference
between receiving and sending the respective messages. This time span
also accounts for the fact that it takes some time to receive, send, and
process messages. Note that this is a simplification in that this time
span is variable for several reasons. However, the respective fluctua-
tions are small enough to have negligible effects, as in a real system the
fact that radios are powered down most of the time necessitates that
nodes can predict when the next message arrives in order to activate
the receiver and listen on the appropriate channel.

• Message size is constrained. The number of bits in radio messages
should be small for various reasons. This is addressed by our algo-
rithm in that the “payload” of a message consists of a small (constant)
number of values. We do not formalize this in our model; in particular,
we assume unbounded clocks. In practice, a limited number of bits is
used to represent clock values and a wrap-around is implemented.

• Dynamics. Which nodes can communicate directly may depend on
various environmental conditions, in particular interference from inside
or outside the network. Thus, in contrast to the previous definition of
G, the communication graph is typically not static. Moreover, the
speed of the nodes’ clocks will vary, primarily due to changes in the
nodes’ temperatures (see Figure 4.1; we remark that nodes equipped
with temperature sensors can significantly reduce this influence [97]).
We do not capture these aspects in our model, which assumes a static
configuration of the system, both with regard to communication and
clock rates. This aspect is addressed by the design of the proposed
algorithm, which strives for dependency of computed clock values on
a short period of time. Thus, the algorithm will adapt fast to changes
in topology or clock speeds.
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Figure 4.1: Hardware clock frequency of a Mica2 sensor node for different
ambient temperatures. A difference of five degrees alters the clock speed by
up to one microsecond per second.

Let us now formalize the clock synchronization problem in this commu-
nication model. Each node v ∈ V has a local hardware clock Hv : R+

0 → R+
0 .

It is an affine linear function

Hv(t) = ov + hv · t,

where ov ∈ R+
0 is the offset and hv is the rate of v’s clock. Node v has access

to Hv(t) only, i.e., it can read its local clock value, but does neither know
ov nor hv. The rate hv determines by how much a local measurement of a
difference between two points in time deviates from the correct value. We
require that the relative drift of Hv is bounded, i.e.,

ρv := |hv − 1| ≤ ρ < 1.

Here ρ is independent of the number of nodes n, meaning that each clock
progresses at most by a constant factor slower or faster than real time. Typ-
ical hardware clocks in sensor nodes exhibit drifts of at most 50 ppm, i.e.,
ρ ≤ 5 · 10−5.



4.1. MODEL 21

Observe that given an infinite number of messages, two neighboring nodes
could estimate each other’s clock values arbitrarily well. Sending clock up-
dates repeatedly and exploiting independence of message jitters, a node v ∈ V
can approximate the function Hw, w ∈ Nv, arbitrarily precisely in terms of
Hv with probability arbitrarily close to 1. For theory, it is thus mainly inter-
esting to study local clocks with fixed drift in combination with algorithms
whose output at time t depends on a bounded number of messages only. In
light of our previous statements, the same follows canonically from our goals
to (i) minimize the number of messages nodes send in a given time period
and (ii) enable the algorithm to deal with dynamics by making it oblivious
to information that might be outdated. If we relied on clock values from a
large period of time (where the meaning of “large” depends on the speed of
changes in environmental conditions), the assumption of clock drifts being
constant (up to negligible errors) would become invalid.

A clock synchronization algorithm is now asked to derive at each node
v ∈ V a logical clock Lv := R+

0 → R+
0 based on local computations, its

hardware clock readings, and the messages exchanged. The algorithm strives
to minimize the global skew

G(t) := max
v,w∈V

{|Lv(t)− Lw(t)|}

at any time t, using few messages and only recent information.

Observe that so far a trivial solution would be to simply set Lv(t) := 0
for all times t and all nodes v ∈ V . As mentioned in the introduction, this
is not desired as we want Lv to behave like a “real” clock. In particular,
we expect clock speeds to be close to one and clock values to be closely
related to real time. To avoid a cluttered notation, in this chapter we will
adopt the following convention. There is a distinguished root node r ∈ V
that has a perfect clock, i.e., Hr(t) = t = Lr(t) at all times t, and nodes
try to synchronize their logical clocks with Lr. This is known as external
synchronization in the literature, as opposed to the closely related concept
of internal synchronization that we will consider in Chapter 5. Observe that

max
v∈V
{|Lv(t)− Lr(t)|} ≤ G(t) ≤ 2 max

v∈V
{|Lv(t)− Lr(t)|},

i.e., minimizing the global skew is essentially equivalent to synchronizing
clocks with respect to the real time t = Lr(t) in this setting. We do not
impose explicit restrictions on the progress speeds of the logical clocks in
this chapter. However, we note that one can ensure smoothly progressing
clocks by interpolation techniques, without weakening the synchronization
guarantees.
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Figure 4.2: Synchronization error versus distance from the root node for
FTSP (left) and PulseSync (right). See [63] for details on the testbed setup.

4.2 Overview

In the following, we study the probabilistic bounds that can be derived on
the quality of global synchronization in the presented model. We begin by
deriving a lower bound stating that on a path of length d where on average
kd, k ∈ N, messages are transmitted in kB time, the expected skew must be
Ω(J

√
d/k). Essentially, this is a consequence of the fact that the variance

of the transmission delays adds up linearly along the path to J 2d, whereas
averaging over k repeated transmissions reduces the variance by factor k.
The resulting standard deviation thus must be in Ω(J

√
d/k). In our com-

munication model, from this bound it can be derived that for any algorithm,
the expected global skew must be Ω(J

√
D/k).

Opposed to that, we present PulseSync, an algorithm matching the stated
lower bound. Basically, PulseSync floods estimates of the node r through a
breadth-first-search (BFS) tree rooted at r. All nodes strive to synchronize
their clocks relative to r. In order to reduce the effect of the jitter, nodes keep
track of the last k received values and compute a regression line mapping the
own hardware clock to the estimated clock values of the root node.

This approach is not new and has been implemented in the well known
Flooding Time Synchronization Protocol (FTSP) [77]. However, the synchro-
nization quality of FTSP becomes poor with growing network diameter due
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Hw(t)
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3J/2
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Figure 4.3: FTSP logical clock computation scheme for the special case of
k = 2 data points. Here the first data point m1 is perfectly accurate, while
m2 suffers an error of J because the respective message traveled slowly, i.e.,
the receiving node underestimated the time it took to transmit the message.
Hence, the regression line has a value that is too small precisely by J at
the receiving time tr. FTSP nodes send clock updates in time slots that
are chosen independently at random, once every B time. Thus, at a time
ts, which is at least tr + B/2 with probability 1/2, the node will send a
message with clock estimate read from the regression line. This estimate will
be J + (ts − tr)J /B smaller than the true value, because the error of J
on the value received at time tr also implies that the slope of the regression
line is J /B too small. In summary, the error on the second received value is
amplified by factor at least 3/2 with probability at least 1/2. Since sending
slots are chosen independently, this happens independently with probability
at least 1/2 at each hop, leading to an exponential amplification of errors.

to two reasons. Firstly, FTSP sends messages according to a random sched-
ule, where nodes transmit one beacon every B (local) time. Therefore, the
expected time it takes until information propagates to a leaf in distance D
from the root is DB/2. In contrast, PulseSync aligns sending times in a pat-
tern matching the BFS tree along which clock updates propagate, implying
that—in practical networks—new clock values will reach all nodes within a
single beacon interval B (a “pulse”). Apart from reducing the global skew,
this technique enables that logical clocks depend on a preceding time period
of length Θ(kB) only, as opposed to Ω(DkB) for FTSP.2

2This is a result of forwarded clock values being read out of the regression constructed
from the last k received values. The dependency on very old values is weak, however,
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Figure 4.4: Simulation of FTSP for line topologies with different diameters
using varying sizes k ∈ {2, 8, 32} of the regression table. Errors clearly grow
exponentially in the diameter, for all three values of k. Mean synchronization
errors are averaged over five runs, error bars indicate values of runs with
maximum and minimum outcome. See [63] for details.

Secondly, despite being designed as a multihop synchronisation protocol,
FTSP exhibits exponentially growing global skew with respect to the net-
work diameter (see Figure 4.2), rendering the protocol unsuitable for large-
diameter deployments (which indeed occur in practice, cf. [46]). This unde-
sired behavior is a result of the way the algorithm makes use of regression
lines. The estimates nodes send to their children in the tree are read from the
same regression line used to compute logical clocks. Thus, they are extrapo-
lated from the previously received, erroneous estimates. This can lead to an
amplification of errors exponential in the hop distance. For k = 2 this can
easily be understood (see Figure 4.3). For larger k, the situation gets more
complicated, but for any constant k “bad luck” will frequently overcome the

Ω(D + k) of the most recent values contribute significantly to the outcome of the com-
putation.
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radius = 1

Figure 4.5: A simple unit disk graph (see Definition 9.7). Nodes are arranged
into clusters of size four. The clusters form a line. Each node is connected
to all nodes within its own and neighboring clusters.

dampening effect (see [96]) of the regression if n is large. Moreover, simu-
lation indicates that even for large values of k the problem quickly becomes
devastating when the network diameter grows (see Figure 4.4). This problem
can be avoided if one uses independent estimates of the nodes’ clock rates
to compensate drift during the time period in which nodes locally increase
received clock estimates until they can be forwarded to their children. Since
PulseSync forwards clock values as quickly as possible, in our test setting it
was already sufficient to rely on the unmodified hardware clock readings to
resolve this issue. Nonetheless, we will prove that if nodes use independent
clock estimates to compute approximations of their hardware clock rates, the
bound on the global skew becomes entirely independent of hardware clock
drift.

It has been argued that in some graphs one may exploit that the root
is connected to each node by multiple paths. Consider for instance the unit
disk graph in Figure 4.5. If the “clusters” transmit sequentially from left to
right, each node could obtain multiple estimates of equal quality within a
single pulse. This will decrease the variance of estimates by the number of
nodes in each cluster. In general, one can express the possible gains of this
strategy for any node v ∈ V in terms of the resistance between the root r
and v if each link in the network is replaced by a unit resistor [39]. However,
since message size should remain small, this approach necessitates that nodes
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receive multiple messages in each beacon interval. This contradicts our goal
of keeping energy consumption low. If on the other hand we accept a larger
battery drain, we can achieve better synchronization by simply reducing B
and increasing k accordingly (see Corollaries 4.8 and 4.9).

4.3 Lower Bound

In order to derive our lower bound on the global skew, we first examine how
well a neighbor of the root can synchronize its clock with respect to Lr.

Lemma 4.1. Assume that r sends at most k ∈ N messages within a time
interval T := (t− kB, t] ⊂ R+

0 . Suppose v ∈ Nr computes an estimate ôv(t)
of ov(t) := Hv(t) − t without—directly or indirectly—relying on any events
preceding T . Then the probability that ôv(t) has an error of J /

√
k is at least

constant, i.e.,

P

[
|ôv(t)− ov(t)| ≥ J√

k

]
∈ Ω(1).

Proof. We claim that w.l.o.g. (i) no other nodes relay information about r’s
clock values to v, (ii) r sends all messages at time t and (iii) each message
contains only the clock value at the time of sending.

To see this, observe first that even if another node knew the state of
r exactly, it could not do better than r itself as its messages are subject
to the same variance in delay as r’s. Next, including several values into a
single message does not help in estimating ov(t), as the crucial point is that
the time of delivery of the message in comparison to the expected time of
its delivery is unknown to both sender and receiver. Thus, all estimates
that v derives on r’s clock values are inflicted with exactly the same error
due to jitter. Moreover, sending a different value than the one at the time
of sending only meant that v had to guess, based on its local clock and the
messages from r, the value of Hv(t′) at the time t′ when r read the respective
clock value. This however could only reduce the quality of the estimate. As
we deliberately lifted any restrictions r had on sending times, there is no
advantage in sending the message at a different time than t. Finally, since
we excluded the use of any information on times earlier than t − kB in the
preconditions of the lemma, r has no valuable information to share except
its hardware clock reading at time t.

In summary, r can at best send k messages containing t at time t, such
that v will learn that r sent k messages at time t that have been registered at
local times Hv(t + Xi), where Xi, i ∈ {1, . . . , k}, are independent normally
distributed random variables with zero mean and variance J 2. Since Xi is
unknown to v, it cannot determine Hv(t)−t. The best it can do is to read the
k values Hv(t+Xi) and take each value Hv(t+Xi)− t as an estimate. This
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can be interpreted as k measurements of ov(t) suffering from independent
normally distributed errors hvXi ∈ Θ(Xi) (as |hv − 1| = ρv ≤ ρ and ρ < 1 is
a constant). Hence, ôv(t) is (at best) the mean of v’s clock readings minus t.
According to Lemma 2.19, this value is normally distributed with mean ov(t)
and variance Θ(J 2/k), which by Lemma 2.20 gives the claimed bound.

At first glance, it seems tempting to circumvent this bound by just in-
creasing the time interval information is taken from. Indeed this improves
synchronization quality as long as the model assumption that clock rates and
topology do not change remains (approximately) valid. As soon as conditions
change quickly, the system will however require more time to adapt to the
new situation, thus temporarily incurring larger clock skews.

The given bound on the synchronization quality between neighbors gen-
eralizes to multihop communication easily.

Corollary 4.2. Given a shortest path (v0 := r, v1, . . . , vd), assume that kd
messages, for some k ∈ N, are sent and received by the nodes on the path
within a time interval T := (t − kB, t] ⊂ R+

0 . Suppose vd computes an
estimate ôvd(t) of its hardware clock offset ovd(t) at time t that does not rely
on any events before T . Then the probability that ôvd(t) has an error of
J
√
d/k is constant, i.e.,

P

[
|ôvd(t)− ovd(t)| ≥ J

√
d√
k

]
∈ Ω(1).

Proof. Assume w.l.o.g. that hvi = 1 for all i ∈ {1, . . . , d}. Denote by
oi := ovi(t) − ovi−1(t), i ∈ {1, . . . , d} the offset between the clocks of vi
and vi−1. Consider the following scheme. First v1 determines an estimate
ô1(t) of ov1(t) = o1, then v2 an estimate ô2 of the offset o2 towards v1, and so
on. Thus, by incorporating the results into the messages, vi, i ∈ {1, . . . , d},
can estimate ovi(t) by ôvi(t) =

∑i
j=1 ôj(t). Since clocks do not drift and

there are no “shortcuts” as (v0, . . . , vd) is a shortest path, this scheme is at
least as good as an optimal one (obeying the model constraints). Let ki,
i ∈ {1, . . . , d}, denote the number of messages node vi receives from its pre-
decessor. As seen in the proof of Lemma 4.1, ôi is normally distributed with
mean oi and variance J 2/ki. By Lemma 2.19, it follows that ôvd is normally
distributed with mean ovd and variance

∑d
i=1 J

2/ki. Because
∑d
i=1 ki = kd,

this variance is minimized by the choice ki = k for all i ∈ {1, . . . , d}. We get
that

Var[ôvd(t)] ≥ J 2d/k,

which by Lemma 2.20 yields the desired statement.

Next, we infer our lower bound on the global skew.
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Theorem 4.3. Suppose that k ∈ N and each node sends and receives on
average at most one message in B time. If a clock synchronization algorithm
determines Lv(t) at all nodes v ∈ V and times t ∈ R+

0 depending on events
that happened after time t−kB only, then at uniformly random times t from
a sufficiently large time interval we have that

E[|Lv(t)− t|] ∈ Ω

(
J
√
d√
k

)
,

where d is the distance of v from the root.

Proof. Let (v0 := r, v1, . . . , vd := v) denote a shortest path from r to v.
Because all nodes receive on average at most one message in B time, for
symmetry reasons we may w.l.o.g. assume that all estimates v obtains on its
offset depend on messages along this path only. Let E be the event that at
a time t sampled uniformly at random from a sufficiently large time period
it holds that the nodes vi, i ∈ {0, . . . , d − 1}, sent and received in total at
most 2kd messages during the interval (t − kB, t]. Because nodes send and
receive on average at most one message in B time, linearity of expectation
and Markov’s bound imply that the probability of E must be at least 1/2. By
Corollary 4.2, we have that any estimate v may compute of Hv(t)− t has an
error of J

√
d/
√

2k with at least constant probability, proving the claim.

Seen from a different angle, this result states how quickly the system may
adapt to dynamics. It demonstrates a trade-off between the contradicting
goals of minimizing message frequency, global skew, and the time period
logical clock values depend on. Given a certain stability of clock rates and
having fixed a desired bound on the global skew, for instance, one can derive
a lower bound on the number of messages nodes must at least send in a given
time period to meet these conditions. Similarly, the theorem yields a lower
bound on the time span it takes until a node (re)joining the network may
achieve optimal synchronization for a given message frequency, granted that
the other nodes make no additional effort to support this end.

4.4 PulseSync

The central idea of the algorithm is to distribute information on clock values
as fast as possible, while minimizing the number of messages required to do so.
In particular, we would like to avoid that it takes Ω(BD) time until distant
nodes learn about clock values broadcast by the root node r. Obviously, a
node cannot forward any information it has not received yet, enforcing that
information flow is directed. An intermediate node on a line topology has
to wait for at least one message from a neighbor. On the other hand, after
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reception of a message it ought to forward the derived estimate as quickly as
possible in order to spread the new knowledge throughout the network. Thus,
we naturally end up with flooding a pulse through the network. In order to
keep the number of hops small, the flooding takes place on a breadth-first
search tree.

To keep clock skews small at all times, each node v ∈ V does not only
minimize its offset towards the root whenever receiving a message, but also
employs a drift compensation, i.e., tries to estimate hv and increase its logical
clock at the speed of Hv divided by this estimate. Considering that we
modeled Hv as an affine linear function and the fluctuations of message delays
as independently normally distributed random variables, linear regression is
a canonical choice as a means to compute Lv(t) out of Hv(t) and the last k
clock updates received.

We need to specify how nodes that are not children of the root obtain
accurate estimates of r’s clock. Recall that nodes are not able to send a
message at arbitrary times. Thus, it is necessary to account for the time
span τv that passes between the time when node v ∈ V receives a clock
estimate from a parent and the time when it can send a (derived) estimate
to its children. The most simple approach here is that if v obtains an estimate
t̂ of the root’s clock value Lr(t) = t from a message received at time t, it
sends at time t+ τv the value

t̂+ (Hv(t+ τv)−Hv(t))

to its children. Thus, the quality of the estimate will deteriorate by at most

|(Hv(t+ τv)−Hv(t))− ((t+ τv)− t)| = |hv − 1|τv ≤ ρτv.

We will refer to this as simple forwarding. Intuitively, granted that τv is
small enough, i.e., maxv∈V {ρvτv} � J /

√
D (here

√
D comes into play as

jitters are likely to cancel out partially), the additional error introduced by
simple forwarding is dominated by message jitter and thus negligible.

In our test setting, this technique already turned out to be sufficient for
achieving good results. However, this might not be true in general, due
to different hardware, larger networks, harsh environments, etc. Hence we
devise a slightly more sophisticated scheme we call stabilized forwarding. As
discussed before, it is fatal to replace the term Hv(t+ τv)−Hv(t) by Lv(t+
τv) − Lv(t), i.e., approximate the progress of real time by means of the
regression line that is computed partially based on the estimate t̂ obtained
at time t. Instead, we use an independent estimate ĥv of hv to compensate
the drift. To this end, given k ∈ 2N, node v ∈ V computes the regression line
defining Lv according to the k/2 most recent messages only. The remaining
k/2 messages nodes may take information from are used to provide clock
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estimates with simple forwarding. From these values a second regression
line is determined, whose slope s should be close to 1/hv. As we know that
hv ∈ [1 − ρ, 1 + ρ], nodes set ĥv to 1 − ρ if the outcome is too small and to
1 + ρ if it is too big. All in all,

ĥv :=


1− ρ if 1/s ≤ 1− ρ
1 + ρ if 1/s ≥ 1 + ρ

1/s otherwise.

Apart from sending t̂ + Hv(t + τv) − Hv(t) at time t + τv after receiving a
message at time t, node v now also includes the value

t̂+
Hv(t+ τv)−Hv(t)

ĥv

into the message. This (usually) more precise estimate is then used to derive
the regression line defining Lv from the k/2 most recent messages. Obviously,
one cannot use stabilized forwarding until nodes received sufficiently many
clock estimates; for simplicity, we disregard this in the pseudocode of the
algorithm. We remark that a similar approach has been proposed for high
latency networks where the drift during message transfer is a major source
of error [101].

The pseudocode of the algorithm for non-root nodes is given in Algo-
rithm 4.2, whereas the root follows Algorithm 4.1. In the abstract setting,
a message needs to contain the two estimates of the root’s clock value only.
For clarity, we utilize sequence numbers i ∈ N, initialized to one, in the pseu-
docode of the algorithm. In practice, a message may contain additional useful
information, such as an identifier, the identifier of the (current) root, or the
(current) depth of a node in the tree. For the root node, the logical clock is
simply identical to the hardware clock. Any other node computes Lv(t) as
the linear regression of the k/2 most recently stored pairs of hardware clock
values and the corresponding estimates with stabilized forwarding, evaluated
at Hv(t). As stated before, the value ĥv(t) is computed out of the k/2 esti-
mates with simple forwarding from the preceding pulses, as the inverse slope
of the linear regression of these values.

Algorithm 4.1: Whenever Hr(t) mod B = 0 at the root node r.

wait until time t+ τr when allowed to send1

send 〈t+ τr, t+ τr, i〉 // recall that Hr(t+ τr) = t+ τr2

i := i+ 13
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Algorithm 4.2: Node v 6= r receives its parent’s message 〈t̂, t̃, i〉 with
sequence number i at local time Hv(t).

delete 〈·, ·, ·, i− k + 1〉1

store 〈Hv(t), t̂, t̃, i〉2

wait until time t+ τv when allowed to send3

send 〈t̂+Hv(t+ τv)−Hv(t), t̃+ (Hv(t+ τv)−Hv(t))/ĥv, i〉4

i := i+ 15

4.5 Analysis

In this section, we will prove a strong probabilistic upper bound on the global
skew of PulseSync. To this end, we will first derive a bound on the accuracy
of the estimates nodes compute of their hardware clock rates. Then we will
proceed to bounding the clock skews themselves.

Definition 4.4 (Pulses). Pulse i ∈ N is complete when all messages with
sequence number i have been sent. We say that pulses are locally separated
if for all i ∈ N each node sends its message with sequence number i at least
αB time before receiving the one with sequence number i+ 1, where α ∈ R+

is a constant.

After the initialization phase is over, i.e., as soon as all nodes could fill
their regression tables, nodes are likely to have good estimates on their clock
rates. Interestingly, the quality of the estimates is independent of the hard-
ware clock drifts, as the respective systematic errors are the same for all
estimates of the root’s clock and thus cancel out when computing the slope
of the regression line.

Lemma 4.5. For v ∈ V and arbitrary δ ∈ R+ define

∆h := min

{
2ρ,

δJ
√
D

k3/2B

}
.

Suppose that pulses are locally separated. Then, at any time t when at least
k ∈ 2N pulses are complete, it holds that

P

[∣∣∣∣∣ hv

ĥv(t)
− 1

∣∣∣∣∣ ≤ ∆h

]
∈ 1− e−Ω(δ2 log δ).

Proof. Assume that (v0 := r, v1, . . . , vd := v) is the path from r to v in the
BFS tree (i.e., in particular d ≤ D). Consider a simply forwarded estimate t̂
that has been received by v at time t. Backtracking the sequence of messages
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leading to this value and applying Lemma 2.19, we see that r sent its respec-
tive message at a time that is normally distributed around t−

∑d−1
i=0 τvi with

variance dJ 2. Thus, since node vi increases each simply forwarded estimate
at rate hvi , t̂ − t is normally distributed with mean

∑d−1
i=0 (hvi − 1)τvi and

variance at most
d−1∑
i=0

((1 + ρvi)J )2 ≤ 4dJ 2.

By Theorem 2.22, thus the slope ŝ of the regression line v computes is nor-
mally distributed with mean 1/hv and variance

O
(

dJ 2

hvk3B2

)
⊆ O

(
DJ 2

k3B2

)
.

Here we used that pulses are locally separated, implying that
∑N
i=1(xi −

x̄)2 ∈ Ω(hvk
3B2) (in terms of the notation from the theorem). Recall that

hv ≥ 1 − ρv ≥ 1 − ρ > 0 and we made sure that ĥv ∈ [1 − ρ, 1 + ρ]. Thus,
we can infer that the error |hv/ĥv − 1| = |hvs − 1| is bounded both by
1/(1 − ρ) ∈ O(1) times the deviation of the slope from its mean and 2ρ.
Hence, the claim follows by Lemma 2.20.

Based on the preceding observations, we can now prove a bound on the
skew between a node and the root.

Theorem 4.6. Suppose pulses are locally separated. Denote by (v0 :=
r, v1, . . . , vd := v) the shortest path from the root to v ∈ V along which
estimates of r’s clock values are forwarded. Set Tv :=

∑d
i=1 τvi , i.e., the

expected time an estimate “travels” along the path. Suppose t1 < t2 are two
consecutive times when v receives a message and suppose that at time t1 at
least 3k/2, k ∈ 2N, pulses are complete. Then for any δ, ε ∈ R+ and ∆h as
in Lemma 4.5 it holds that

P

[
∀t ∈ [t1, t2) : |Lv(t)− t| ≤ εJ

√
D
k

+ ∆hTv
]

∈ 1− kD
2
e−Ω(δ2 log δ) − e−Ω(ε2 log ε).

Proof. Since at least 3k/2 pulses are complete, according to Lemma 4.5
during the last k/2 pulses we had at any time t and for any node vi, i ∈
{0, . . . , d − 1} that |hvi/ĥvi(t) − 1| ≤ ∆h with probability 1 − e−Ω(δ2 log δ).
Denote by E the event that the last k/2 estimates with stabilized forwarding
that v received have been increased at all nodes on the way at a rate differ-
ing by no more than ∆h from 1. Since ĥvi only changes when a message is
received, we can apply the union bound to see that E occurs with probability

at least 1− kDe−Ω(δ2 log δ)/2.
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Assume now that E happened and also that 1− kDe−Ω(δ2 log δ)/2 > 0 (as
otherwise the bound is trivially satisfied). Consider the errors of the above
k/2 estimates. Each estimate has been “on the way” for expected time Tv,
i.e., the absolute of the mean of its error is bounded by ∆hTv. The remaining
fraction of the error is due to message jitter. Note that if the estimates ĥvi are
very bad, this might amplify the effect of message jitter. However, since the
ĥvi are uniformly bounded by 1− ρ and 1 + ρ, we can account for this effect
by multiplying J with a constant. Thus, we can still assume that at each
hop, a normally distributed random variable with zero mean and variance
O(J 2) is added to the respective estimate of r’s current clock value, yielding
a random experiment which stochastically dominates the true setting (with
respect to clock skews). In summary, by Lemma 2.19 w.l.o.g. each estimate
that v obtains suffers an independently and normally distributed error with
mean µ ∈ [−∆hTv,∆hTv] and variance O(dJ 2) ⊆ O(DJ 2).

By Theorem 2.22, the slope of the regression line utilized to compute
Lv suffers a normally distributed error of zero mean and standard deviation
O(J

√
D/(k3/2B)). Denote by t̄ the mean of the times when v received the

k/2 messages it computes the regression from. As for all times t̄ < t ∈ [t1, t2)
we have that t− t̄ ≤ (k/2 + 1)B, we can bound3

|Lv(t)− t| ≤ |Lv(t̄)− t̄|+
∣∣∣∣(hv(t)

ĥv
− 1

)
(t̄− t)

∣∣∣∣ ,
where the second term is normally distributed with zero mean and standard
deviation O(J

√
D/k).

Again by Theorem 2.22, the deviation of the line at the time t̄ itself is
normally distributed with mean µ and a standard deviation of O(J

√
D/k).

Thus, applying Lemma 2.20 and the union bound yields that, conditional to
E , the event E ′ that

∀t ∈ [t1, t2) : |Lv(t)− t| ≤ εJ
√
D

k
+ ∆hTv

occurs with probability at least 1− e−Ω(ε2 log ε). We conclude that

P [E ′] ≥ P [E ] · P [E ′|E ]

∈
(

1− kD

2
e−Ω(δ2 log δ)

)(
1− e−Ω(ε2 log ε)

)
⊆ 1− kD

2
e−Ω(δ2 log δ) − e−Ω(ε2 log ε)

as claimed.
3Note that the use of the expression Lv(t̄) here is an abuse of notation, as we refer to

the y-value the regression line that v computes at time t assigns to x-value Hv(t̄).
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The term Tv occurring in the bound provided by the theorem motivates
the following definition.

Definition 4.7 (Pulse Time). Denote for v ∈ V by (v0 := r, v1, . . . , vd := v)
the shortest path from r to v along which PulseSync sends messages and set
Tv :=

∑d−1
i=0 τvi . The pulse time then is defined as

T := max
v∈V
{Tv} .

Theorem 4.6 implies that the proposed technique is indeed optimal pro-
vided a comparatively weak relation between B and P is satisfied.

Corollary 4.8. Suppose pulses are locally separated and that

B ≥ T
k

√
log(kD)

log log(kD)
.

Then the expected clock skew of any node v ∈ V in distance d from the root
at any time t when at least 3k/2 pulses are complete is bounded by

E[|Lv(t)− t|] ∈ O

(
J
√
d

k

)
.

Proof. W.l.o.g., we assume that d = D (otherwise just consider the subgraph
induced by all nodes within distance d from r). For i ∈ N, set

∆h(i) :=
iJ

k3/2B

√
log(kD)D

log log(kD)
.

By assumption, we have that

∆h(i)Tv ≤
iJT
k3/2B

√
log(kD)D

log log(kD)
≤ iJ

√
D

k
,

giving by Theorem 4.6 for δ = i
√

log(kD)/ log log(kD) and ε = i that

P

[
|Lv(t)− t| > 2iJ

√
D

k

]
∈ e−Ω(i2 log i).

It follows that

E[|Lv(t)− t|] ≤
∞∑
i=0

P

[
|Lv(t)− t| > 2iJ

√
D

k

]
2J
√
D

k

∈

(
1 +

∞∑
i=1

e−Ω(i2 log i)

)
2J
√
D

k

⊆ O

(
J
√
D

k

)
.
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Note that Corollary 4.8 requires a lower bound on B, while in practice
we are interested in choosing B large to minimize energy consumption. Of
course, a beacon interval that is too large is undesired because one wants the
system to adapt quickly to dynamics. However, the pulse time is a trivial
lower bound on this response time, i.e., it does not make sense to choose

Bk ∈ o(T ). Thus, we remain with a small gap of O
(√

log(kD)/ log log(kD)
)

to countervail the fact that the drift compensations the nodes on a path of
length D employ are dependent, making best use of the limited number of
recent clock estimates that are available.

In practice, it is important to bound clock skews at all times and all
nodes, as algorithms may fail if presumed bounds are violated even once.
Naturally, a probabilistic bound cannot hold with certainty; indeed, in our
model arbitrary large skews must occur if we just wait for sufficiently long.
However, for time intervals that are bounded by a polynomial in n times B
we can state a strong bound that holds w.h.p.

Corollary 4.9. For i ∈ N, let ti denote the time when the ith pulse is
complete. Provided that the prerequisites of Theorem 4.6 are satisfied, the
total number of pulses p is polynomial in n, and B ≥ T /k, we have that

max
t∈[t3k/2, tp]

{G(t)} ∈ O

(
J

√
D logn

k log logn

)

w.h.p.

Proof. Observe that 3k/2 ≤ p or nothing is to show as tp < t3k/2. As
also D < n, we have that kD is polynomially bounded in n. Thus, values

δ, ε ∈ O
(√

logn/ log logn
)

exist such that

1− kD

2
e−Ω(δ2 log δ) − e−Ω(ε2 log ε) ≥ 1− 1

pnc+1
.

We apply Theorem 4.6 to each node v ∈ V and each pulse i ∈ [3k/2, p]. Due
to the bound B ≥ T /k ≥ Tv/k and the definition of ∆h, we get for all times
t from the respective pulse that

|Lv(t)− t| ∈ O

(
J

√
D logn

k log log n
+ ∆hTv

)
⊆ O

(
J

√
D logn

k log logn

)

with probability at least 1− 1/(pnc+1). The statement of the corollary then
follows by the union bound applied to all nodes and all pulses i ∈ [3k/2, p].
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Figure 4.6: Simulations of PulseSync on line topologies. Results agree well
with predictions. In particular, it can be observed that the global skew grows
roughly as the square-root of the network diameter. For details the reader is
referred to [63].

Note that when considering all nodes, the lower bound on B relaxes to
T /k, i.e., we can achieve the stated bound despite the fastest possible adap-
tion to dynamics. Moreover, comparing the previous bounds to the results
from simulation and implementation of the algorithm (Figures 4.6 and 4.7),
we find the predictions on the synchronization quality of the algorithm well
met.

4.6 Concluding Remarks

In this chapter, we proposed a clock synchronization algorithm that exhibits
asymptotically optimal synchronization quality in the given model. Testbed
results from a prototypical implementation indicate that our abstract model
is appropriate for capturing crucial aspects of sensor networks. Considering
that we derive skew bounds that are independent of hardware clock drifts
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Figure 4.7: Global skew of an execution of PulseSync with B = 30 s and k = 8
on a line topology comprising 20 Mica2 sensor nodes. For times t > 100 s,
we observed a maximum skew of 38 µs. See [63] for details.

provided that jitter is not too large, our results may also be of interest for
high-latency networks, e.g. acoustic underwater networks.

However, our presentation has not been exhaustive in the sense that
one can effortlessly derive a protocol suitable for practice, as several issues
still need to be resolved. The test runs of the algorithm were executed
on a simple line topology in a controlled environment. In order to finish
pulses quickly on arbitrary topologies, an efficient broadcast routine is in
demand. This problem has been studied extensively and is by now well-
understood [7, 17, 18, 21, 87], hence we refrain from a discussion here. We
confine ourselves to mentioning that it is sufficient to solve the broadcast
problem on a sparse backbone of the network, since the remaining nodes
may simply listen to pulses and derive their clocks without ever transmitting
by themselves. Computing such a backbone, i.e., a connected dominating
set, can also be solved efficiently [98].

Finally, in order to exploit the full potential of the algorithm, a good im-
plementation must deal with message loss, changes in topology, and varying
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hardware clock rates. Ideally, one would choose kB adaptively, reducing it in
face of high volatility of clock rates and/or connectivity and increasing k (to
gain synchronization quality) or B (to save energy) again when the system
becomes more stable.



Chapter 5

Gradient Clock Synchronization

“I got used to switching off once they started talking about this.”
– Yvonne-Anne Pignolet on my lively discussions with Thomas
Locher regarding clock synchronization.

In the previous chapter, we considered clock synchronization in the context
of a concrete system. Exploiting the properties of wireless networks, we
obtained a bound of O(

√
D logn/ log logn) on the global skew that holds

w.h.p. This result is however fragile with respect to changes in the model. We
made strong assumptions, in particular independently normally distributed
deviations in message transmission times, constant clock drifts, and fixed
topology. Moreover, PulseSync does not attempt to minimize the local skew.
In fact, in a circle the two leafs of a BFS tree are likely to be the pair of
nodes experiencing the largest clock skews, yet they are neighbors.

We drop the former assumptions in favor of a worst-case model with
regard to communication, clock drifts, and topology changes. We will devise
an algorithm featuring an optimal gradient property as introduced in [33],
i.e., the worst-case skew between any two nodes that have been connected by
a path of length d for sufficiently long is an asymptotically minimal function
of d. At the same time, the algorithm is capable of extending the gradient
property to newly appearing edges as quickly as possible.

This chapter is based on joint work with Fabian Kuhn, Thomas Locher,
and Rotem Oshman [50]. In large parts, it builds on a preceding line of pub-
lications together with Thomas Locher [58, 59, 60]. The proposed gradient
clock synchronization algorithm and its analysis have been extended from the
model considered in these articles to the one introduced by Kuhn et al. [52],
which differs mainly in that the graph changes dynamically. A proof of the
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gradient property of the algorithm in the general model is given in [51]; we
strive for a simplified, more accessible presentation of the core concepts in
this thesis. For a detailed introduction to the static setting and its analysis
we refer the interested reader to [71].

5.1 Model

We point out that in the sequel we will adopt a model as simple as possible
to still capture the main aspects of the problem. As a consequence, some of
the assumptions in the model may seem artificial at first glance. For the sake
of a straightforward presentation, we postpone the respective discussion to
Section 5.6.

Similarly to Chapter 4, each device v ∈ V is equipped with a differentiable
hardware clock Hv : R+

0 → R+
0 , where Hv(0) := 0. The drift of Hv is

bounded, i.e.,

hv(t) :=
d

dt
Hv(t) ∈ [1− ρ, 1 + ρ],

where 0 < ρ� 1 is the maximum clock drift, or simply drift. As before, v does
neither know the real time t nor the rate at which Hv (currently) increases,
but may read Hv(t). At all times t, node v must compute a (differentiable)
logical clock Lv(t), where Lv(0) := 0. We require that the logical clock
Lv : R+

0 → R+
0 also progresses at a controlled speed, i.e., there is a µ ∈ O(1)

such that

lv(t) :=
d

dt
Lv(t) ∈ [1− ρ, (1 + µ)(1 + ρ)]. (5.1)

Node v is called fast at time t if lv(t) = (1 + µ)hv(t) and slow at time t if
lv(t) = hv(t).

The margin µ is introduced to permit v to increase its logical clock by
a factor of 1 + µ faster than its hardware clock in order to catch up with
other nodes. Since nodes do not know hv(t), the condition on lv imposes
that lv(t) ∈ [hv(t), (1 + µ)hv(t)] at all times. Thus it must hold that

µ >
2ρ

1− ρ ,

as otherwise it might happen that

(1 + µ)hv(t) ≤
(

1 +
2ρ

1− ρ

)
(1− ρ) = 1 + ρ = hw(t),

for some v, w ∈ V , rendering it impossible for v to catch up with w.
We have not specified yet what information v ∈ V may access in order to

compute Lv(t). Apart from its hardware clock readings, each node v ∈ V has
a dynamic set of neighbors Nv : R+

0 →
(
V
2

)
. This relationship is symmetric,
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i.e., it induces a simple dynamic graph G(t) = (V,E(t)), t ∈ R+
0 . We say that

edge e exists during the time interval [t1, t2] if e ∈ E(t) for all t ∈ [t1, t2]. The
statement that {v, w} ∈ E(t) at time t is equivalent to v having an estimate
L̂wv (t) of w’s logical clock value Lw(t) at time t and vice versa. This estimate
is inaccurate; it may be off by the uncertainty U ∈ R+, i.e.,

∀t ∈ R+
0 : |L̂wv (t)− Lw(t)| ≤ U.

The value of U depends on several factors, such as fluctuations in message
transmission times, the manner in which estimates are obtained, clock drifts,
the frequency at which nodes communicate in order to update their estimates,
etc.

A fundamental lower bound [16] shows that in a static network, the global
skew grows linearly with the network diameter. In dynamic networks there is
no immediate equivalent to a diameter. Informally, the diameter corresponds
to the number of hops it takes (at most) for information to spread from one
end of the network to the other. To formalize this idea we adopt the following
definitions.

Definition 5.1 (Flooding). A flooding that originates at node v is a process
initiated when node v sends a flooding message to all its neighbors. We
normalize the maximal message delay, i.e., each individual message is in
transit for at most one time unit. Each node that receives the message for
the first time forwards it immediately to all its neighbors. We say that the
flooding is complete when all nodes have received a flooding message.

Definition 5.2 (Diameter and Flooding Jitter). We say that the dynamic
graph G has a diameter of D if a flooding originating at any node and any
time always completes in at most D time units. It has a flooding jitter of
JD ∈ [0, D] if each node can determine up to JD the time span between a
flooding being initiated and the node receiving the first flooding message.

Note that in general JD might be very different from DU . On the one
hand, nodes might e.g. use reference broadcasts [30, 55] to obtain local, accu-
rate estimates U , while flooding suffers from large jitters J at each hop, im-
plying that JD ≥ DJ � DU .1 On the other hand, nodes might derive local
estimates from infrequent direct communication every τ time. Observe that
U ≥ 2ρτ because logical clocks must run at least at the hardware clock speed,
i.e., in absence of new information estimated and true clock values may drift
apart at rate 2ρ. Thus, if τ � 1 + J /ρ, we have DU ≥ 2ρτD � (ρ+ J )D.
As it is possible to ensure that JD ∈ O((ρ + J )D), in this case we have
JD � DU .

1The first inequality follows from the fact that in the worst case either all jitters
may increase the time the flooding takes or all may decrease it. This is formalized by
well-known shifting arguments (cf. [74]).
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To measure the quality of an algorithm, we consider two kinds of re-
quirements: a global skew constraint which gives a bound on the difference
between any two logical clock values in the system, and a dynamic gradient
skew constraint which becomes stronger if nodes have been connected by a
short path for sufficiently long time. In particular, for nodes that remain
neighbors for a long time, the dynamic gradient skew constraint requires a
much smaller skew than the global skew constraint.

In the probabilistic model of the previous chapter, we considered the max-
imum clock skew G(t) at a given time t, since skews could become arbitrarily
large. In the worst-case setting it makes sense to use the following more
stringent definition.

Definition 5.3 (Global Skew). A clock synchronization algorithm A has a
global skew of G(D,JD, ρ), if for any execution of A with drift ρ and flooding
jitter JD on any dynamic graph of diameter D it holds that

∀v, w ∈ V, t ∈ R+
0 : |Lv(t)− Lw(t)| ≤ G.

For notational convenience, we omit the arguments D, JD, and ρ of G in the
following.

Informally, no matter what the graph or the execution, skews should at
all times be bounded by a function of the parameters D, JD, and ρ only.

An ideal dynamic gradient skew constraint would state that any two nodes
that are close in G(t) have closely synchronized logical clocks. Apparently,
this is not possible immediately after a “shortcut” has been formed, as it
needs time to reduce skews between previously distant nodes. Rather, any
path between two nodes v, w ∈ V that has been part of the graph for suf-
ficiently long imposes a constraint on |Lv − Lw| that is tighter the shorter
the path is. To state precisely what “sufficiently long” means, we need the
following definition.

Definition 5.4 (Stable Subgraphs). For T ∈ R+, the T -stable subgraph of
G is defined as

GT (t) :=

(
V,

{
e ∈

(
V

2

)∣∣∣∣∣ ∀t′ ∈ [t− T, t] : e ∈ E(t′)

})
.

For two nodes v, w ∈ V we denote by dT (v, w) the distance of v and w in
GT .

We could now formulate the dynamic gradient skew as a function bound-
ing the skew on each path in terms of its length and the time span it existed
without interruption. However, after a certain amount of time T passed,
skew bounds have converged to a value depending on the length of the path
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only. It turns out that skews on such a path may remain large for Ω(T ) time.
For that reason, we simply express the dynamic skew constraint in terms of
the distance between two nodes in the T -stable subgraph of G.

Definition 5.5 (Stable Gradient Skew and Stabilization Time). We say that
Algorithm A exhibits a stable gradient skew of S(G, ρ, U) : R+ → R+ with
stabilization time T , if for any execution of A with global skew G, drift ρ,
and uncertainty U it holds that

∀v, w ∈ V, t ∈ R+
0 : |Lv(t)− Lw(t)| ≤ S (dT (v, w)) .

We will omit the arguments G, ρ, and U of S from the notation.

Of particular interest is the stable local skew S(1) of an algorithm, as any
two nodes that have been neighbors for T time are guaranteed to have logical
clock values that are merely S(1) off, which for the algorithm we are going
to propose is typically small compared to G.

5.2 Overview

We will start by describing a simple technique to obtain a global skew of

G := (1− ρ)(JD + 1) + 2ρ

(
D + 2 +

Λ

1 + ρ

)
for arbitrary Λ > 0. From results presented in [60], we will infer that this
bound is essentially optimal if algorithms are required to guarantee the best
possible envelope condition

∀v ∈ V, t ∈ R+
0 : |Lv(t)− t| ≤ ρt,

i.e., logical clocks do not differ further from the real time t than the hardware
clocks do in the worst case. Note that even if this condition is dropped, one
cannot reduce the global skew by more than roughly a factor of two [16].
Observe that for maintaining a small global skew it is sufficient that nodes
with the largest logical clock value in the system do not run faster than nodes
with the smallest clock value whenever skews become “critical”. Thus, it is
not surprising that the respective rules never conflict with our goal to ensure
a strong gradient property.

Subsequently, we expound our gradient clock synchronization algorithm
Aµ. Given G, ρ, and U , for any constant µ ≥ 4ρ/(1 − ρ) it guarantees a
stable gradient skew of

Sµ(d) ∈ Θ

(
Ud logµ/ρ

(
G
Ud

))
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with stabilization time Tµ ∈ Θ(G/µ). In fact, any µ larger than the minimum
of 2ρ/(1− ρ) will do. However, the base of the logarithm in the skew bound
tends to 1 as µ approaches 2ρ/(1− ρ) and the stabilization time deteriorates
like the function f(x) = 1/x for x→ 0.

Thus, for µ ∈ Θ(ρ), we have a large stabilization time of Θ(G/ρ) and
a constant base, but in turn the logical clocks mimic the behavior of the
hardware clocks with a slightly worse drift of µ + (1 + µ)ρ ∈ Θ(ρ). On the
other hand, choosing µ ∈ Θ(1) leads to a stabilization time of Θ(G) and a
large base of the logarithm. Considering that typically D is smaller than 1/ρ
(and certainly, say, ρ−5), the latter choice in practice implies a local skew
that is at most a constant multiple of U . Moreover, if the longest path in GTµ
has a length of O(D), i.e., the diameter of G is not small because of many
short, but unreliable paths, we obtain a stronger bound on the maximum
clock skew. Slightly abusing notation,2 we show that G ∈ O(UD) and thus

Sµ(d) ∈ O
(
Ud logµ/ρ

(
D

d

))
.

In other words, the rules employed to keep the local skew small by themselves
impose a linear bound on the global skew. In a highly dynamic setting,
however, the flooding technique presented in Section 5.3 is more reliable, as
it does not build on the existence of (short) stable paths.

The above gradient property is asymptotically optimal as already in static
graphs one can enforce comparable skews [60]. Indeed, Aµ is (1 + o(1))-
competitive3 in this regard. It is important to mention that a second lower
bound, also given in [60], proves that µ ∈ ω(1) is of no avail when trying
to obtain a stronger gradient property. Intuitively, this arises from the fact
that increasing clock speeds by more than a constant factor “amplifies” clock
drifts, allowing an adversary to introduce skew into the system faster. Since
the speed at which information spreads remains the same, this effect negates
the advantage of being able to reduce clock skews more quickly.

Given these tight constraints on the stable skew, the stabilization time of
Aµ is asymptotically optimal as well [50], a statement that follows from
a lower bound by Kuhn et al. [52]. Again, due to the limited speed of
information propagation, µ ∈ ω(1) is not sufficient to achieve a stabilization
time of o(G). In general, in order to allow for a faster integration of new
edges, one must also accept a weaker gradient property (cf. [52]). If edge
failures are short-lived, however, there is hope to reintegrate the respective
edges sooner. A second algorithm presented in [50] achieves the same stable
skew, but uses a different technique than Aµ to stabilize new edges. This

2We demanded that G is a function of D, JD, and ρ only. The second bound instead
takes the maximal diameter of GTµ , U , and ρ as arguments.

3Here we refer to asymptotics with respect to fixed U and (ρ,Sµ(1))→ (0,∞).
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algorithm gradually increases the relevance of skew observed on a given edge
for the computation of the current logical clock rate. As a temporary failure
of an edge does not mean that the stronger synchronization guarantees due
to that edge are lost instantaneously, one could slowly decrease the relevance
of the edge until it reappears and then start to increase it again.

5.3 Bounding the Global Skew

Ensuring an (almost) optimal worst-case global skew is surprisingly simple.
Essentially, one cannot do better than the uncertainty of information on clock
values between the most far apart nodes. Even if one node of such a pair
tries to keep its clock exactly in the center of the interval in which the other
must be according to its best guess, still a global skew of Ω(JD+ρD) cannot
be avoided. However, if a node runs fast without knowing that somebody is
ahead, this might be a bad choice, as we might unnecessarily lose accuracy
offered by the hardware clocks.

Definition 5.6 (Time Envelope). An algorithm satisfies the envelope con-
dition provided that

∀v ∈ V, t ∈ R+
0 : |Lv(t)− t| ≤ ρt

for any execution on any graph.

Intuitively, this means that the system maintains the best possible worst-
case approximation to real time that the hardware clocks permit. For algo-
rithms satisfying this condition, the following stronger lower bound holds.

Corollary 5.7. For clock synchronization algorithms for which the envelope
condition holds, the global skew is at least

G ≥ (1− ρ)JD + 2ρD.

If Condition (5.1) is dropped, i.e., clock rates are unrestricted, we still have

G ≥ (1− ρ)JD + 2ρ

⌊
D

2

⌋
.

These bounds hold also if ρ, JD, and D are known to the algorithm and the
graph is static.

Proof Sketch. Suppose that U ≥ 1 + ρ, i.e., for two nodes in distance D,
the estimate obtained by a flooding is always the most accurate source of
information about each other’s clock values.

For this setting, in [60] it is shown that in a certain execution a skew
of (1 − ρ)JD can be built up and maintained indefinitely. As soon as this
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skew is attained, all nodes have hardware and logical clock rate 1− ρ. If we
change the hardware clock rate of the node vmax with the largest clock value
to 1 + ρ, we can make sure that it takes at least D time until the node vmin

with the smallest clock value learns about this and may increase its logical
clock rate in response. In this time, the skew grows by 2ρD.

If decreasing logical clock rates is permitted, we make all nodes’ clocks up
to distance bD/2c from vmax (with respect to the flooding4) run fast, such
that both vmax and vmin do not learn about this for bD/2c time. This yields
the second bound.

We will now show how to almost match this bound. Each node v ∈ V
maintains a local estimate L̂max

v of the maximum clock value in the system,
which satisfies the following definition.

Definition 5.8 (Max Estimates). Denote by L̂max
v (t) the max estimate of

node v ∈ V at time t, where L̂max
v (0) := 0. We require the following proper-

ties.

(i) d
dt
L̂max
v (t) = hv(t) (except when it is set to a larger value, see below).

(ii) For some value Λ ∈ R+, each node initiates a flooding distributing
L̂max
v (t) at any time t when L̂max

v (t) = L̂ ∈ ΛN0.

(iii) When receiving such a flooding message at time t that contains value
L̂ and was sent at time ts, v sets

L̂max
v (t) := max

{
L̂max
v (t), L̂+ (1 + ρ)(t− t̂s)

}
,

where t̂s ≤ t is such that t− t̂s ≥ t− (ts + JD), i.e., t− t̂s is at least
the time span for which v can be sure that the message was en route.
If L̂max

v (t) was set to a value larger than L̂ + Λ and v has not yet
participated in a flooding containing a value of at least the maximum
multiple of Λ exceeded by L̂max

v (t), v distributes L̂max
v (t) by a flooding.

If we want to satisfy the envelope condition, this simple method guaran-
tees an almost optimal estimator.

Lemma 5.9. Suppose an algorithm satisfies Definition 5.8 and define

L̂max(t) := max
v∈V

L̂max
v (t), max

v flooded at ts
flooding not

complete at t

{
L̂max
v (ts) + (1 + ρ)(t− ts)

} .

Then it holds that
4In general this is not clearly defined because we did not specify the flooding mecha-

nism and the graph changes dynamically. For the example of BFS flooding and a static
graph, however, it is.
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(i) ∀v ∈ V, t ∈ R+
0 : L̂max

v (t) ≥ (1− ρ)t

(ii) ∀t1 ≤ t2 ∈ R+
0 : L̂max(t2)− L̂max(t1) ≤ (1 + ρ)(t2 − t1)

(iii) ∀v ∈ V, t ∈ R+
0 :

L̂max
v (t) > L̂max(t)− (1− ρ)(JD + 1)− 2ρ

(
D + 2 + Λ

1+ρ

)
.

Proof. Property (i) immediately follows from Property (i) in Definition 5.8,
the minimum hardware clock speed, and the fact that the estimates are never
decreased. Since the L̂max

v change only finitely often in finite time, they are
differentiable at all but countably many points with d

dt
L̂max
v (t) = hv(t). By

Theorem 2.23, this implies that d
dt
L̂max(t) exists at all but countably many

points and is bounded by 1 + ρ. Hence, for any interval (t1, t2] during which
Lmax is continuous, we have

Lmax(t2) = Lmax(t1) +

∫ t2

t1

d

dt
Lmax(τ) dτ ≤ Lmax(t1) + (1 + ρ)(t2 − t1).

On the other hand, observe that when a value increases according to Prop-
erty (iii) from Definition 5.8, it becomes at most

L̂+ (1 + ρ)(t− t̂s) ≤ L̂max(ts) + (1 + ρ)(t− ts).

As L̂max may only drop at discontinuities, we conclude that Property (ii) is
satisfied.

Regarding Property (iii), observe that Properties (i) and (ii) show the
statement for times t < D + 1, i.e., we may w.l.o.g. assume that t ≥ D + 1.
Thus, any node v ∈ V has received at least one flooding message. Denote by
L̂ ∈ ΛN the largest multiple of Λ such that for the time tL̂ with L̂max(tL̂) = L̂
it holds that

tL̂ ≤ t− (D + 1).

Similarly, denote by tL̂+Λ the time when L̂max(tL̂+Λ) = L̂ + Λ. From Prop-
erty (ii), we get that

L̂max(t) ≤ L̂+ Λ + (1 + ρ)(t− tL̂+Λ).

By definition of L̂max and Properties (ii) and (iii) of the max estimates, there
must be some node w initiating a flooding containing L̂ at a time ts ≥ tL̂,

either because L̂max
w (tL̂) = L̂ or it receives a message from an ongoing flooding

causing it to set L̂max
w (ts) to a value of at least L̂+(1+ρ)(ts− tL̂). Note that

v receives a respective flooding message at a time tr ≤ t, as the definition of
the dynamic diameter and the normalization of message delays imply that

tr ≤ ts +D ≤ tL̂ +D + 1 ≤ t.
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As delays are at most one, the estimate v receives at time tr is at least
L̂+(1+ρ)(ts−tL̂−1). Thus, by Properties (i) and (iii) of the max estimates,
we have that

L̂max
v (t) ≥ L̂+ (1 + ρ)(max{tr − (tL̂ + JD), 0} − 1) + (1− ρ)(t− tr).

Observe that decreasing tr below tL̂ + JD will only increase L̂max
v (t) due

to the term (1 − ρ)(t − tr), without affecting the bound on L̂max(t). Thus,
w.l.o.g., tr ≥ tL̂ + JD and hence

L̂max
v (t) ≥ L̂+ (1 + ρ)(tr − (tL̂ + JD)− 1) + (1− ρ)(t− tr).

Moreover, we have that t < tL̂+Λ + D + 1 by the definitions of D, tr and
tL̂+Λ. Combining these bounds with the above inequalities yields

L̂max(t)− L̂max
v (t)

≤ Λ + (1 + ρ)(JD + 1− (tL̂+Λ − tL̂)) + 2ρ(t− tr)
< Λ + (1 + ρ)(JD + 1− (tL̂+Λ − tL̂)) + 2ρ(tL̂+Λ +D + 1− (tL̂ + JD))

= Λ− (1 + ρ)(tL̂+Λ − tL̂) + (1− ρ)(JD + 1) + 2ρ(D + 2 + tL̂+Λ − tL̂)

(ii)

≤ (1− ρ)(JD + 1) + 2ρ

(
D + 2 +

Λ

1 + ρ

)
.

Since v and t ≥ D + 1 were arbitrary, this shows Property (iii), concluding
the proof.

Property (iii) of the max estimates shown in this lemma gives rise to a
very simple strategy to get arbitrary close to the lower bound from Corol-
lary 5.7. If an algorithm makes sure that any node v ∈ V with Lv(t) =
L̂max
v (t) is slow, this guarantees that maxv∈V {Lv(t)} ≤ L̂max(t) at all times.

Thus, any node whose logical clock falls by (1 − ρ)(JD + 1) + 2ρ(D + 2 +
Λ/(1 + ρ)) behind maxv∈V {Lv(t)} will notice that Lv(t) < L̂max

v (t) and can
increase its clock speed to avoid larger skews. This is formalized as follows.

Definition 5.10 (Max Estimate Algorithms). Suppose an algorithm satisfies
Definition 5.8. It is a max estimate algorithm provided that, for all nodes
v ∈ V and times t ∈ R+

0 , it holds that

(i) Lv(t) = L̂max
v (t)⇒ lv(t) = hv(t)

(ii) Lv(t) < L̂max
v (t)⇒ lv(t) ≥ 1+ρ

1−ρhv(t).

Theorem 5.11. Any max estimate algorithm has a global skew of

G := (1− ρ)(JD + 1) + 2ρ

(
D + 2 +

Λ

1 + ρ

)
and satisfies the envelope condition.
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Proof. Due to Property (i) from Definition 5.10, the fact that max esti-
mates never decrease, and Property (i) from Definition 5.8, we have that
maxv∈V {Lv(t)} is bounded by L̂max(t). Due to Property (ii) from Lemma 5.9
(for t1 = 0 and t2 = t) and the fact that lv(t) ≥ hv(t) for all nodes v ∈ V
and times t, this shows that the algorithm satisfies the envelope condition.

Moreover, using the notation from Lemma 5.9, Theorem 2.23 yields that

g(t) := L̂max(t)−min
v∈V
{Lv(t)} = L̂max(t) + max

v∈V
{−Lv(t)}

is differentiable at all but countably many points with

d

dt
g(t) ≤ 1 + ρ− min

v∈V
L̂max(t)−Lv(t)=g(t)

{lv(t)}.

At any time when g(t) ≥ G, Property (iii) from Lemma 5.9 gives for
all v ∈ V for which L̂max(t) − Lv(t) = g(t) ≥ G that Lv(t) < Lmax

v (t).
Thus, Property (ii) from Definition 5.10 yields that for any such v we have
lv(t) ≥ (1 + ρ)hv(t)/(1 − ρ) ≥ 1 + ρ. It follows that at any time t when
g(t) ≥ G and the derivative exists, we have d

dt
g(t) ≤ 0. Note that g can only

be discontinuous due to L̂max, which due to Property (ii) from Lemma 5.9
cannot increase instantaneously. Thus, as g(0) = 0, we must have g(t) ≤ G
at all times. Recalling that Lv(t) ≤ L̂max(t) for all v ∈ V and t, we see
that indeed for all v, w ∈ V and t ∈ R+

0 it holds that |Lv(t)− Lw(t)| ≤ G as
claimed.

Together with Corollary 5.7, this theorem states that for the class of al-
gorithms satisfying the envelope condition the given technique is optimal. In
particular, the classical algorithm which—roughly speaking—simply outputs
Lv(t) := L̂max

v (t) as its logical clock value [99] achieves an optimal global
skew under the constraints that the envelope condition must hold and logical
clocks are never slowed down in comparison to hardware clocks. However,
this algorithm has two shortcomings: Neither does it exhibit a (non-trivial)
gradient property nor does it provide any upper bound on logical clock rates.

Theorem 5.11 demonstrates that the latter can be achieved by an al-
gorithm that is uniform with respect to all model parameters but ρ. We
can maintain exactly the same skew bounds by just slightly increasing clock
speeds. We remark that speeding up clocks by less than factor (1+ρ)/(1−ρ)
makes it impossible to compensate for the hardware clock drift, i.e., the range
[1− ρ, (1 + ρ)2/(1− ρ)] for logical clock rates is also best possible.

Moreover, due to the following reasons the technique does not conflict
with our approach to achieve an optimal gradient property:
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• If the AlgorithmAµ presented in the next section requires logical clocks
to be fast, this is due to a neighbor whose clock is certainly ahead.
Similarly, if it requires clocks to be slow, this is due to a neighbor whose
clock is certainly behind or because the nodes clock value attains the
current maximum.

• Property (iii) from Definition 5.8 can be changed in that any node
v ∈ V also increases L̂max

v if it learns that a neighbor has a larger clock
value. This does not change the properties of L̂max

v and L̂max that we
have shown, yet ensures that nodes will not increase their logical clocks
beyond L̂max

v because of the rules of Aµ.

• To prove Theorem 5.11, it is sufficient that nodes whose clocks attain
the minimum clock value in the network increase their logical clocks
faster than their hardware clock rate. Hence, the bound on the global
skew still holds if nodes are required to be slow because of some neigh-
bor that lags behind.

To simplify the presentation, in the following we assume that a global skew
of G as given by Theorem 5.11 is guaranteed. The reader who would like to
see a combined algorithm minimizing both global and local skew is referred
to [60, 71]; the dynamic setting does not pose new challenges in this regard.

5.4 An Algorithm with Optimal Gradient Property

In this section, we will present Algorithm Aµ, which is an abstract variant
of the algorithm from [51]. We will discuss how to adapt the algorithm and
its analysis to a more realistic model in Section 5.6.

Algorithm Aµ operates in lock-step rounds of duration Θ(G/µ), where

a global skew of G is ensured by some separate mechanism. By T
(r)
1 we

denote the time when round r ∈ N begins, i.e., T
(1)
1 = 0. Each node v ∈ V

maintains for each s ∈ N a dynamic subset of neighbors N s
v (t) ⊆ Nv(t),

initialized toNv(0). During each round, edges that have newly appeared until
the beginning of the round are gradually incorporated into the algorithm’s
decisions. To this end, each node sets N 1

v (T
(r)
1 ) := Nv(T

(r)
1 ) at the beginning

of each round r ≥ 2. Similarly, for s ≥ 2 and each r ∈ N, each node sets
N s
v (T

(r)
s ) := N s−1

v (T
(r)
s ) at the times

T (r)
s := T

(r)
1 +

s−1∑
s′=1

G
σs′−1(1− ρ)µ

, (5.2)

where

σ :=
(1− ρ)µ

2ρ
> 1. (5.3)
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On the contrary, whenever an edge {v, w} disappears, node w is removed
from all sets N s

v , s ∈ N (and vice versa). For the sake of a concise notation,
however, we define that w is still present in Nv(t) and N s

v (t), s ∈ N, respec-
tively (in contrast to the convention that if a variable changes at time t it
already attains the new value at time t).

We set the duration of a whole round to

Tµ
2

:=
G

(1− ρ)µ

(
1 +

∞∑
s′=1

σ−s
′+1

)
=

(2σ − 1)G
(σ − 1)(1− ρ)µ

, (5.4)

i.e., T
(r)
1 := (r − 1)Tµ/2. Note that while appealingly simple, this scheme

cannot be implemented in practice, as it requires that all nodes synchronously
modify their sets at specific real times; this will be discussed in Section 5.6.

From these sets and the estimated clock values of its neighbors, v deter-
mines its logical clock rate. More precisely, for a value κ > 2U , Aµ satisfies
the following conditions.

Definition 5.12 (Fast Condition). The fast condition on level s ∈ N states
that for all nodes v ∈ V and times t ∈ R+

0 we have

∃w ∈ N s
v (t) : Lw(t)− Lv(t) ≥ sκ

∀u ∈ N s
v (t) : Lv(t)− Lu(t) ≤ sκ

}
⇒ lv(t) = (1 + µ)hv(t).

Informally, the fast condition accomplishes the following. If for some
v ∈ V and s ∈ N node w ∈ V maximizes the expression Lv−Lw−ds(v, w)sκ
(where ds(v, w) denotes the distance of v and w in the graph induced by the
neighborhoodsN s

u , u ∈ V ), then w is fast, as otherwise for one of its neighbors
this function would attain an even larger value. Thus, nodes which fall too
far behind will catch up, granted that the nodes with large clock values are
slow. Ensuring the latter is the goal of the second condition, which enforces
that if for some v ∈ V and s ∈ N node w ∈ V maximizes the expression
Lw − Lv − ds(v, w)(s+ 1/2)κ, then w is slow.

Definition 5.13 (Slow Condition). The slow condition on level s ∈ N states
that for all nodes v ∈ V and times t ∈ R+

0 we have

∀w ∈ N s
v (t) : Lw(t)− Lv(t) ≤

(
s+ 1

2

)
κ+ δ

∃u ∈ N s
v (t) : Lv(t)− Lu(t) ≥

(
s+ 1

2

)
κ− δ

}
⇒ lv(t) = hv(t),

where δ ∈ R+ is arbitrarily small.

If neither of the conditions hold at node v ∈ V , its logical clock may run
at any rate from the range [hv, (1 + µ)hv], with the following exception.
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Definition 5.14 (Controlled Maximum Clock). If for any node v ∈ V it
holds that Lv(t) = maxw∈V {Lw(t)} at a time t ∈ R+

0 , then lv(t) = hv(t).

We point out that we introduce this condition mainly for convenience
reasons, as the fast and slow conditions alone are sufficient to guarantee a
strong gradient property. Nevertheless, in order to ensure a good global skew
it is desirable that Definition 5.14 or a similar constraint is satisfied by the
algorithm.

The requirement that κ > 2U originates from the fact that the fast and
slow conditions must not be contradictory. For this it is not enough that the
preconditions for a node being fast respectively slow are mutually exclusive.
As the nodes have only access to estimates of their neighbors’ clock values
that may differ by up to U from the actual values, in case κ/2 ≤ U there
are indistinguishable executions where either the fast or the slow condition
hold at a node. Thus, κ > 2U is necessary for an algorithm to realize these
rules in any circumstance. As the proof that κ > 2U is indeed sufficient to
implement all conditions concurrently is a technicality, we omit it here and
refer to [51].

Intuitively, the fast and the slow condition on level s ∈ N work together as
follows. If on some path an adversary tries to accumulate clock skew beyond
an average of (s + 1/2)κ per hop that is not already present somewhere in
the graph, this can only happen at rate 2ρ due to the slow condition. On the
other hand, this means that there must be much skew exceeding an average
of sκ, which is reduced at a rate of at least (1 + µ)(1 − ρ) − (1 + ρ) ∈ Ω(µ)
due to the fast condition. Hence, whatever the length of the longest possible
path of average skew (s + 1/2)κ is, the longest path with an average skew
that is by κ larger will be shorter by factor Θ(µ/ρ). The next section deals
with formalizing and proving this statement.

5.5 Analysis of Algorithm Aµ

Before we can start our analysis, we need to introduce some definitions. In
order to establish the gradient property on edges that appeared recently,
Algorithm Aµ sequentially activates the slow and fast conditions starting
from the lowest level. The following definition introduces the notions to
capture the subgraphs we need to consider at a given time for a given level.

Definition 5.15 (Level-s Edges and Paths). For s ∈ N, we say that edge
{v, w} ∈

(
V
2

)
is a level-s edge at time t ∈ R+

0 if w ∈ N s
v (t) (and vice versa).

We define Es(t) to be the set of level-s edges at time t. For any path p,
denote by Ep the set of its edges and by `p its length. We define for s ∈ N
and times t ∈ R+

0 the set of level-s paths at time t as

P s(t) := {path p |Ep ⊆ Es(t)}.
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Moreover, for each v ∈ V , the set of level-s paths starting at node v at time
t is

P sv (t) := {path p = (v, . . .) |Ep ⊆ Es(t)}.

Roughly speaking, within a certain range of skews the algorithm is proac-
tive and quickly reacts to clock skews. For each level s ∈ N, the crucial
magnitude is the skew on a path that exceeds an average of sκ, motivating
the following definition.

Definition 5.16 (Catch-Up Potential). For all paths p = (v, . . . , w), s ∈ N,
and times t ∈ R+

0 , we define

ξsp(t) := Lv(t)− Lw(t)− sκ`p.

Moreover, for each v ∈ V ,

Ξsv(t) := max
p∈Psv (t)

{ξsp(t)}.

On the other hand, Aµ makes sure to not always act rashly, as otherwise
the uncertainty in clock estimates could lead to all nodes being fast, inhibiting
their ability to reduce skews. This time, for each level s ∈ N0, the decisive
value is the skew on a path exceeding an average of (s+ 1/2)κ.

Definition 5.17 (Runaway Potential). For all paths p = (v, . . . , w), s ∈ N0,
and times t ∈ R+

0 , we define

ψsp(t) := Lv(t)− Lw(t)−
(
s+

1

2

)
κ`p.

Moreover,

Ψs(t) := max
p∈Ps(t)

{ψsp(t)}.

Essentially, we are going to show that the maximal length of a path with
an average skew of at least (s + 1/2)κ decreases exponentially in s, leading
to a logarithmic skew bound between neighbors. However, the algorithm
perpetually adds edges on the various levels, which may also affect the skew
bounds on long-standing paths. In order to reflect this in our analysis, we
need to argue more generally, necessitating the following definition.

Definition 5.18 (Gradient Sequences). A non-increasing sequence of posi-
tive Reals C = {Cs}s∈N0 is a gradient sequence if κC0 ≥ G.

Depending on the considered gradient sequence, we can now formulate
the condition under which the network is in a valid state.
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Definition 5.19 (Legality). Given a weighted, dynamic graph G and a gra-
dient sequence C, for each s ∈ N0 the system is s-legal with respect to C at
time t ∈ R+

0 , if and only if it holds that

Ψs(t) ≤ κCs.

The system is C-legal at time t if it is s-legal for all s ∈ N at time t with
respect to C.

The goal of our analysis is to prove that at all times the network re-
mains in a legal state with respect to a certain gradient sequence whose
values decrease—starting from the second level—exponentially. Some basic
observations can immediately be deduced from the given definitions.

Lemma 5.20. The following statements hold at all times t ∈ R+
0 .

(i) The system is 0-legal.

(ii) If for some s ∈ N0 the system is s-legal and Cs+1 = Cs, then the system
is also (s+ 1)-legal.

Proof. Statement (i) holds by definition as for any path p = (v, . . . , w) and
any time t we have

ψ0
p(t) ≤ |Lv(t)− Lw(t)| ≤ G ≤ κC0.

For statement (ii), recall that Algorithm Aµ ensures at all times t and nodes
v ∈ V that N s+1

v (t) ⊆ N s
v (t), i.e., Es+1(t) ⊆ Es(t). Hence, Ψs+1(t) ≤

Ψs(t), which due to the assumptions of s-legality and Cs = Cs+1 yields the
claim.

The first property will serve as an induction anchor. Legality on higher
levels then will follow from the bounds on the previous level. The second
statement basically shows that we can add new edges level-wise, as this means
that even if we “tamper” with the state on level s by inserting new edges, the
inductive chain proving the skew bounds on higher levels can be maintained.

We now prove the first key lemma of our analysis, which states that the
nodes maximizing Ξsv must be fast whenever Ξsv > 0. This permits to bound
the rate at which Ξsv changes in terms of lv at all times except T

(r)
s , r ∈ N.

At these times the algorithm inserts edges on level s, potentially reducing
distances in the graph induced by the level-s edges, maybe increasing Ξsv.

Lemma 5.21. Suppose for a node v ∈ V , some s ∈ N, and a time interval
(t0, t1] such that T

(r)
s 6∈ (t0, t1] ⊂ R+

0 for all r ∈ N it holds that Ξsv(t) > 0 for
all t ∈ (t0, t1). Then we have that

Ξsv(t1)− Ξsv(t0) ≤ Lv(t1)− Lv(t0)− (1 + µ)(1− ρ)(t1 − t0).
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Proof. For a time t ∈ (t0, t1], consider any path p = (v, . . . , w′, w) maximizing
Ξsv(t), i.e., ξsp(t) = Ξsv(t). It holds that

Lw′(t)− Lw(t) ≥ sκ,

as otherwise we must have ξs(v,...,w′)(t) > ξsp(t). Similarly, for all u ∈ N s
w(t)

it holds that

Lw(t)− Lu(t) ≥ sκ,

as otherwise we must have ξs(v,...,w,u)(t) > ξsp(t). Hence, according to the fast
condition, we have lw(t) = (1 + µ)hv(t) ≥ (1 + µ)(1− ρ). By Theorem 2.23,
Ξsv is thus differentiable at all but countably many points with derivative
bounded by lv(t)− (1 + µ)(1− ρ).

Because the algorithm adds edges on level s at the times T
(r)
s 6∈ (t0, t1],

paths can only be removed from P sv (t) during (t0, t1], i.e., Ξsv may only drop
at discontinuities. We conclude that

Ξsv(t1)− Ξsv(t0) ≤ Lv(t1)− Lv(t0)− (1 + µ)(1− ρ)(t1 − t0)

as claimed.

We will need a helper statement showing that under certain circumstances
the preconditions of the previous lemma are always met.

Lemma 5.22. Assume that for some node v ∈ V and s ∈ N, we have for all
r ∈ N that T

(r)
s 6∈ (t0, t1] ⊂ R+

0 . Suppose that

Lv(t1)− Lv(t0) ≤ (1 + ρ)(t1 − t0)

and that

Ξsv(t1) > 2ρ(t1 − t0).

Then

∀t ∈ [t0, t1] : Ξsv(t) > 0.

Proof. Let p = (v, . . . , w) ∈ P s(t1) maximize Ξsv(t1), i.e., Ξsv(t1) = ξsp(t1).
Since no edges are added on level s during (t0, t1], we have that p ∈ P s(t)
for all t ∈ [t0, t1]. Thus, we can bound

Ξsv(t) ≥ ξsp(t)

= ξsp(t1)− (Lv(t1)− Lv(t)) + Lw(t1)− Lw(t)

≥ ξsp(t1)− (Lv(t1)− Lv(t0)) + Lv(t)− Lv(t0) + (1− ρ)(t1 − t)
≥ Ξsv(t1)− 2ρ(t1 − t0)

> 0.
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Before we can move on to the main lemma, we need to derive a technical
result from the slow condition. Intuitively, we show that if a node’s clock
increased faster than at the maximum hardware clock rate during a given
time period, the slow condition entails that there must have been a neighbor
that was far ahead or all neighbors were close.

Lemma 5.23. Assume that for some node v ∈ V and s ∈ N, we have for all
r ∈ N that T

(r)
s 6∈ (t0, t1] ⊂ R+

0 . If

tmin := min{t ∈ [t0, t1] |Lv(t1)− Lv(t) ≤ (1 + ρ)(t1 − t)}

is greater than t0, then

∃w ∈ N s
v (tmin) : Lw(tmin)− Lv(tmin) >

(
s+

1

2

)
κ (5.5)

or

∀u ∈ N s
v (tmin) : Lv(tmin)− Lu(tmin) <

(
s+

1

2

)
κ. (5.6)

Proof. Assuming the contrary, the logical negation of (5.5) ∨ (5.6) is

∀w ∈ N s
v (tmin) : Lw(tmin)− Lv(tmin) ≤

(
s+

1

2

)
κ

∧ ∃u ∈ N s
v (tmin) : Lv(tmin)− Lu(tmin) ≥

(
s+

1

2

)
κ.

As T
(r)
s 6∈ (t0, t1] for all r, no neighbors are added to N s

v in the time interval
(t0, t1]. Because edges that are removed at time tmin are still in N s

v (tmin)
and N s

v is finite at all times, there must be a closed time interval of non-zero
length ending at time tmin during which N s

v does not change. Thus, as logical
clocks are continuous and tmin > t0, a time t′min ∈ (t0, tmin) exists such that
for all t ∈ [t′min, tmin] it holds that

∀w ∈ N s
v (tmin) = N s

v (t) : Lw(t)− Lv(t) ≤
(
s+

1

2

)
κ+ δ

∧ ∃u ∈ N s
v (tmin) = N s

v (t) : Lv(t)− Lu(t) ≥
(
s+

1

2

)
κ− δ.

Due to the slow condition, we get that lu(t) = hv(t) for all t ∈ [t′min, tmin]
and therefore

Lv(t1)−Lv(t′min) = Lv(t1)−Lv(tmin)+Lv(tmin)−Lv(t′min) ≤ (1+ρ)(t1−t′min),

contradicting the minimality of tmin.
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We are now ready to advance to the heart of the proof of the gradient
property of Aµ. Combining the fast condition and the slow condition on level
s in form of the Lemmas 5.21 and 5.23, we show that if no edges are added
on level s and the system is (s − 1)-legal for a certain amount of time, the
system becomes legal on level s with respect to Cs ∈ Ω(ρCs−1/µ), i.e., we
gain a factor of Θ(µ/ρ).

Since the proof of the lemma is quite intricate, we sketch the main con-
cepts first. The proof will comprise two parts. Assuming that the claim does
not hold for some path p, we backtrack the reason of its violation in time.
Starting from p, we will construct a sequence of paths that are to be held
“responsible” for the large skews in the system, removing nodes from p in
the first part of the proof, then extending the path in the second. Whenever
we switch from a path pi = (v, . . .) to a path pi+1, from Lemma 5.23 we get
a positive lower bound on ξspi+1

that is comparable to the one we had on
ξspi . In between, the respective node v ran at an amortized rate of at most
(1 + ρ), therefore Ξsv must have decreased at an (amortized) rate of at least
(1−ρ)µ− (1+ρ) according to Lemma 5.21. Since we went back in time suffi-
ciently far, this will finally lead to the conclusion that for some node w ∈ V ,
Ξsw ≤ Ψs−1 must have been overly large, contradicting the prerequisite that
the system is (s− 1)-legal during the considered time interval.

Lemma 5.24. Assume that for some s ∈ N the system is (s−1)-legal during

the time interval
[
t, t̄
]
⊂ R+

0 and that for all r ∈ N we have T
(r)
s 6∈

(
t, t̄
]
.

Recall that

σ =
(1− ρ)µ

2ρ
> 1

and define

∇s :=
κCs−1

(1− ρ)µ
. (5.7)

Then for all times t ∈
[
t+∇s, t̄

]
it holds that

Ψs(t) ≤ 2ρ∇s =
κCs−1

σ
.

Proof. Assume for contradiction that there is a time t0 ∈
[
t + ∇s, t̄

]
with

Ψs(t0) > κCs−1/σ, i.e., there is a node v0 ∈ V and a path p = (v0, . . . , vk) ∈
P sv0(t0) with

ψsp(t0) = Ψs(t0) > 2ρ∇s. (5.8)

Part I. Getting closer to vk. We inductively define a sequence of
decreasing times t0 ≥ t1 ≥ . . . ≥ tl+1, where tl+1 ≥ t0 − ∇s ≥ t. Given ti,
we set

ti+1 := min{t ∈ [t0 −∇s, ti] |Lvi(ti)− Lvi(t) ≤ (1 + ρ)(ti − t)}. (5.9)
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For i ≤ k and ti ≥ t0−∇s, time ti+1 is well-defined. We halt the construction
at index l if tl+1 = t0 −∇s or if

∃w ∈ N s
vl(tl+1) : Lw(tl+1)− Lvl(tl+1) >

(
s+

1

2

)
κ. (5.10)

We will see later that the construction can never reach node vk.

If the construction does not halt at index i, Lemma 5.23 states that

∀w ∈ N s
vi(ti+1) : Lvi(t)− Lw(t) <

(
s+

1

2

)
κ. (5.11)

We show by induction that for all i ∈ {0, . . . , l} it holds that

ξs(vi,...,vk)(ti+1) ≥ Ψs(t0)+
(k − i)κ

2
− (1+ρ)(t0− ti+1)+Lvk (t0)−Lvk (ti+1).

(5.12)

For the base case we compute

ξs(v0,...,vk)(t1) = ξsp(t0)− (Lv0(t0)− Lv0(t1)) + Lvk (t0)− Lvk (t1)

(5.9)

≥ ξsp(t0)− (1 + ρ)(t0 − t1) + Lvk (t0)− Lvk (t1)

= ψsp(t0) +
kκ

2
− (1 + ρ)(t0 − t1) + Lvk (t0)− Lvk (t1)

(5.8)
= Ψs(t0) +

kκ

2
− (1 + ρ)(t0 − t1) + Lvk (t0)− Lvk (t1).

As for the induction step, assume that the claim holds for i < l. From
Inequality (5.11) we know that

Lvi(ti+1)− Lvi+1(ti+1) <

(
s+

1

2

)
κ. (5.13)

Thus, we can write

ξs(vi+1,...,vk)(ti+1) = ξs(vi,...,vk)(ti+1)− Lvi(ti+1) + Lvi+1(ti+1) + sκ

(5.13)
> ξs(vi,...,vk)(ti+1)− κ

2
(5.12)

≥ Ψs(t0) +
(k − (i+ 1))κ

2
− (1 + ρ)(t0 − ti+1)

+Lvk (t0)− Lvk (ti+1). (5.14)
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We need to show that i + 1 6= k as claimed. Assuming the contrary,
Inequality (5.14) leads to the contradiction

0 = ξs(vk)(tk)
(5.14)
> Ψs(t0)− (1 + ρ)(t0 − tk) + Lvk (t0)− Lvk (tk)

≥ Ψs(t0)− 2ρ(t0 − tk)

(5.9)

≥ Ψs(t0)− 2ρ∇s

(5.8)
> 0.

Hence it follows that indeed i+ 1 < k.

Recall that ti+1 > t0 −∇s because i 6= l and i + 1 < k, i.e., time ti+2 is
defined. We obtain

ξs(vi+1,...,vk)(ti+2) ≥ ξs(vi+1,...,vk)(ti+1)− (Lvi+1(ti+1)− Lvi+1(ti+2))

+Lvk (ti+1)− Lvk (ti+2)

(5.9)

≥ ξs(vi+1,...,vk)(ti+1)− (1 + ρ)(ti+1 − ti+2)

+Lvk (ti+1)− Lvk (ti+2)

(5.14)

≥ Ψs(t0) +
(k − (i+ 1))κ

2
− (1 + ρ)(t0 − ti+2)

+Lvk (t0)− Lvk (ti+2),

i.e., the induction step succeeds.

Part II. Getting further away from vk. We define a finite chain of
nodes wl, . . . , wm and times tl+1 ≥ tl+2 ≥ . . . ≥ tm+1 = t0 − ∇s, where
wl := vl and tl+1 is the time at which the previous construction left off. The
construction is inductive and maintains that for all i ∈ {l, . . . ,m} it holds
that

Ξswi(ti+1) ≥ Ψs(t0) + ((1− ρ)µ− 2ρ)(t0 − ti+1) (5.15)

and also that

ti+1 = min{t ∈ [t0 −∇s, ti] |Lwi(ti)− Lwi(t) ≤ (1 + ρ)(ti − t)}, (5.16)

First, we anchor an induction at index l. Observe that Equality (5.16) is
satiesfied as it coincedes with Definition (5.9) for the indes i = l. Evaluat-
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ing (5.12) for this index, we obtain for any t ∈ [tl+1, t0] that

ξs(vl,...,vk)(t) = ξs(vl,...,vk)(tl+1) + Lvl(t)− Lvl(tl+1)

−(Lvk (t)− Lvk (tl+1))

(5.12)

≥ Ψs(t0)− (1 + ρ)(t0 − tl+1) + Lvl(t)− Lvl(tl+1)

+Lvk (t0)− Lvk (t) (5.17)

≥ Ψs(t0)− 2ρ(t0 − tl+1)

(5.9)

≥ Ψs(t0)− 2ρ∇s

(5.8)
> 0.

Note that p ∈ P sv0(t) for all t ∈ [t, t0], as no edges are added to Es during this

time interval due to the precondition that T
(r)
s 6∈

(
t, t̄
]

for all r ∈ N. Thus,
as E(vl,...,vk) ⊆ Ep, for all t ∈ [t, t0], we have Ξsvl(t) ≥ ξ

s
(vl,...,vk)(t) > 0 during

[tl+1, t0] ⊆
[
t, t̄
]
. Applying Lemma 5.21 and Inequality (5.17) for time t0, we

see that

Ξsvl(tl+1) ≥ Ξsvl(t0)− (Lvl(t0)− Lvl(tl+1)) (5.18)

+(1 + µ)(1− ρ)(t0 − tl+1)

≥ ξs(vl,...,vk)(t0)− (Lvl(t0)− Lvl(tl+1))

+(1 + µ)(1− ρ)(t0 − tl+1)

(5.17)

≥ Ψs(t0) + ((1− ρ)µ− 2ρ)(t0 − tl+1). (5.19)

Next, suppose the claim holds for index i ∈ {l, . . . ,m − 1}. Thus, as
i 6= m, ti+1 > t0 −∇s. If i = l, the previous construction must have halted
because Inequality (5.10) was satisfied for some node w ∈ N s

vl(tl+1). In this
case, we define wl+1 := w such that

Lwl+1(tl+1)− Lvl(tl+1) >

(
s+

1

2

)
κ.

On the other hand, if i > l, we claim that there also must exist a node
wi+1 ∈ N s

wi(ti+1) fulfilling

Lwi+1(ti+1)− Lwi(ti+1) >

(
s+

1

2

)
κ. (5.20)

Assuming for contradiction that this is not true, from the definition of ti+1

and Lemma 5.23 we get that

Lwi(ti+1)− Lwi−1(ti+1) <

(
s+

1

2

)
κ. (5.21)



5.5. ANALYSIS OF ALGORITHM Aµ 61

Note that because i > l, we already have established Inequality (5.20) for
index i− 1. We infer that

Lwi−1(ti)− Lwi−1(ti+1)
(5.20,5.21)

<

(
Lwi(ti)−

(
s+

1

2

)
κ

)
−
(
Lwi(ti+1)−

(
s+

1

2

)
κ

)
= Lwi(ti)− Lwi(ti+1)

(5.16)

≤ (1 + ρ)(ti − ti+1),

which yields

Lwi−1(ti−1)− Lwi−1(ti+1) = Lwi−1(ti−1)− Lwi−1(ti)

+Lwi−1(ti)− Lwi−1(ti+1)

(5.16)
< (1 + ρ)(ti−1 − ti+1).

This contradicts Equality (5.16), implying that indeed Statement (5.20) must
hold true for an appropriate choice of node wi+1.

Hence, whatever path maximizes Ξswi(ti+1), we can extend it by the edge
{wi+1, wi} in order to see that

Ξswi+1
(ti+1) ≥ Ξswi(ti+1) + Lwi+1(ti+1)− Lwi(ti+1)− sκ

(5.20)
> Ξswi(ti+1)

(5.15)

≥ Ψs(t0) + ((1− ρ)µ− 2ρ)(t0 − ti+1). (5.22)

We now can define

ti+2 := min{t ∈ [t0 −∇s, ti+1] |Lwi+1(ti+1)− Lwi+1(t) ≤ (1 + ρ)(ti+1 − t)}

in accordance with Equality (5.16). Since we have that

Ξswi+1
(ti+1)

(5.22)

≥ Ψs(t0)
(5.8,5.16)
> 2ρ(ti+1 − ti+2),

Lemma 5.22 shows that Ξswi+1
(t) > 0 for all t ∈ [ti+2, ti+1]. Thus, applying

Lemma 5.21 yields that

Ξswi+1
(ti+2) ≥ Ξswi+1

(ti+1)− (Lwi+1(ti+1)− Lwi+1(ti+2))

+(1 + µ)(1− ρ)(ti+1 − ti+2)

(5.16)

≥ Ξswi+1
(ti+1) + ((1− ρ)µ− 2ρ)(ti+1 − ti+2)

(5.15)

≥ Ψs(t0) + ((1− ρ)µ− 2ρ)(t0 − ti+2),
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i.e., the induction step succeeds. Note that the construction must halt after
a finite number of steps because clock rates are bounded, we consider a finite
time interval, and clock values increase by at least (s+ 1/2)κ > 0 whenever
we move from a node wi to a node wi+1. Thus, the induction is complete.

Inserting i = m and tm+1 = t0 −∇s into Inequality (5.15), we conclude
that

Ξswm(tm+1)
(5.15)

≥ Ψs(t0) + ((1− ρ)µ− 2ρ)∇s

(5.8)
> (1− ρ)µ∇s

(5.7)
= κCs−1.

Therefore, using that P swm(tm−1) ⊆ P s−1(tm−1), for any path p′ maximizing
Ξswm(tm+1) we get

Ψs−1(tm+1) ≥ ψs−1
p′ (tm+1)

≥ ξsp′(tm+1)

= Ξswm(tm+1)

> κCs−1.

As t0 − ∇s ∈
[
t, t̄
]
, this contradicts the precondition that the system is

(s− 1)-legal during this time interval, finishing the proof.

From this relation between legality on the levels s−1 and s we can derive
the main theorem of this section. Essentially, the lemma guarantees that the
system is legal with respect to a gradient sequence with Cs = Cs−1/σ except
for the level where we added edges most recently. The careful definition of the
insertion times T

(r)
s makes sure that the algorithm waits for sufficiently long

before proceeding to the next level, i.e., the given level will have stabilized
again prior to losing the factor σ decrease of Ψs+1 compared to Ψs on the
next level. Therefore, we need to “skip” one level in the respective gradient
sequence, which is does not affect the asymptotic bounds.

Theorem 5.25. At all times t ∈ R+
0 , the system is legal with respect to the

gradient sequence

C :=

(
G
κ
,
G
κ
,
G
σκ

,
G
σ2κ

,
G
σ3κ

, . . .

)
.

Proof. Define for s ∈ N the gradient sequence Cs by

∀s′ ∈ N0 : Css′ :=

{
G/(σs

′
κ) if s′ < s

G/(σs
′−1κ) otherwise.
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We claim that for all r, s ∈ N the system is legal with respect to Cs during

the time interval
[
T

(r)
s , T

(r)
s+1

)
. Note that because by definition we have for all

s ∈ N and s′ ∈ N0 that Css′ ≤ Cs′ , the statement of the theorem immediately
follows as soon as this claim is established.

Assume for contradiction that the claim is false. Suppose that, for some

r, s ∈ N, tmax ∈
[
T

(r)
s , T

(r)
s+1

)
is the infimum of all times when it is violated

and s̄ ∈ N is the minimal level for which legality is violated at this time
(recall that Statement (i) of Lemma 5.20 gives that the system is 0-legal at
all times), i.e.,

Ψs̄ (t̃max

)
> κCss̄ (5.23)

for some time t̃max > tmax that is arbitrarily close to tmax.
We make a case distinction. The first case is that s̄ = s. Since we have

Css = Css−1 and w.l.o.g. the system is (s − 1)-legal until time t̃max (as s̄ is
minimal and t̃max− tmax is arbitrarily small), this is an immediate contradic-
tion to Lemma 5.20, which states that the system is s-legal throughout the

time interval
[
T

(r)
s , t̃max

)
.

The second case is that s̄ 6= s and

tmax <
G

(1− ρ)µσmin{s̄−2,0} ,

implying that r = s = 1 and thus s̄ ≥ 2. However, as Aµ satisfies Defini-
tion 5.14 and no edges are added on level s̄ until that time, we have that

Ψs̄ (tmax) ≤ 2ρtmax <
2ρG

(1− ρ)µσs̄−2

(5.3)
=

G
σs̄−1

= κC1
s̄ .

This is a contradiction, as logical clocks are continuous and no edges are

added to Es̄ during (tmax, t̃max] ⊂
(
T

(r)
s , T

(r)
s+1

)
, implying that Ψs̄ does not

increase at discontinuities during (tmax, t̃max].
The third case is that we have s̄ > s and the second case does not apply.

We claim that the system is (s̄− 1)-legal with respect to Cs during the time
interval[
tmax −

κCss̄−1

(1− ρ)µ
, t̃max

]
⊆
[
tmax −

G
(1− ρ)µσs̄−2

, t̃max

]
⊂
[
T

(r−1)
s̄ , T

(r)
s̄

)
,

where T
(0)
s̄−1 is simply to be read as 0. This follows from the observations that

(i) tmax is sufficiently large for the left boundary to be at least 0 because
Case 2 does not apply, (ii) for r ≥ 2 we have that

tmax −
G

(1− ρ)µσs̄−2
≥ T (r)

1 − G
(1− ρ)µ

(5.2,5.4)

≥ T
(r−1)
s̄−1 ,
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(iii) the minimality of s̄ ensures that the system must be (s̄− 1)-legal until
some time that is strictly larger than tmax, and (iv) the time difference t̃max−
tmax can be chosen arbitrarily small. Therefore, we may apply Lemma 5.24
to the time t̃max on level s̄, yielding the contradiction

Ψs̄(t̃max) ≤ κCss̄−1

σ
= κCss̄ (5.24)

to Inequality (5.23).
The fourth and final case is that s̄ < s. We get that the system is (s̄−1)-

legal with respect to Cs during the interval[
tmax −

κCss̄−1

(1− ρ)µ
, t̃max

]
⊆
[
T

(r)
s̄+1 −

G
(1− ρ)µσs̄−1

, t̃max

]
(5.2)
⊂
[
T

(r)
s̄ , T

(r+1)
s̄

)
,

which by Lemma 5.24 again implies the contradictory Inequality (5.24).
Since all possibilities lead to a contradiction, our initial assumption that

tmax is finite must be wrong, concluding the proof.

This theorem can be rephrased in terms of the gradient property and
stabilization time of Aµ.

Corollary 5.26. Algorithm Aµ exhibits a stable gradient skew of

Sµ(d) := κd

(⌈
logσ

(
G
κd

)⌉
+

5

2

)
with stabilization time

Tµ =
2(2σ − 1)G

(σ − 1)(1− ρ)µ
.

Granted that µ ≥ (2 + ε)ρ/(1 − ρ) for any constant ε > 0, κ ∈ O(U), and
G ∈ O(DU), we have

Sµ ∈ O
(
Ud logµ/ρ

(
D

d

))
and

Tµ ∈ O
(
G
µ

)
.

Proof. Since one round ofAµ takes Tµ/2 time, any edge that has been present
for at least Tµ time existed during a complete round. Setting s(d) := d1 +
logσ(G/(κd))e, it is thus sufficient to show that at any time t ∈ R+

0 it holds
for any path p = (v, . . . , w) ∈ P s(d)(t) of length `p = d that

Lv(t)− Lw(t) ≤
(
s(d) +

3

2

)
κd.
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Observe that we defined s(d) such that Cs(d) ≤ d for the gradient sequence
C from Theorem 5.25. By the theorem and the definition of s(d)-legality we
have that

Lv(t)− Lw(t)−
(
s(d) +

1

2

)
κd = ψs(d)p (t)

≤ Ψs(d)(t)

≤ κCs(d)

≤ κd,

which can be rearranged to the desired inequality.

We will conclude this section with exemplarily demonstrating two more
interesting properties of Aµ. The first one is that the algorithm is self-
stabilizing (cf. [26]).

Definition 5.27 (Self-Stabilization). An algorithm is called self-stabilizing,
if it converges from an arbitrary initial state to a correct state with respect to
a certain specification, i.e., after finite time the system remains in a correct
state. It is called T -self-stabilizing, if this takes at most T time units.

A self-stabilizing algorithm is capable of recovering from arbitrary tran-
sient faults, since as soon as errors cease the system will restore a correct
configuration. In our context, a correct state means that the definitions of
Aµ having a stable gradient skew of Sµ with stabilization time Tµ are satis-
fied.

Corollary 5.28. Suppose Aµ is initialized at time 0 with arbitrary logical
clock values, however still the global skew of G is guaranteed at all times. Then
Aµ self-stabilizes within Tµ/2 time, i.e., at all times t ≥ T

(2)
1 the system is

legal with respect to the gradient sequence C given in Theorem 5.25.

Proof. We modify the proof of Theorem 5.25 in that for all s ∈ N and times

t ∈
[
T

(1)
s , T

(1)
s+1

)
, the system is legal with respect to the gradient sequence

C̃s given by

∀s′ ∈ N0 : C̃ss′ :=

{
G/(σs

′
κ) if s′ < s

G/(σs−1κ) otherwise,

i.e., we give no non-trivial guarantees for levels s′ ≥ s during the first round.
Therefore, for r = 1 the case that s̄ ≥ s is covered by Statement (ii) from
Lemma 5.20, i.e., all but the fourth case from the case differentiation in the
proof become trivial. This case can be treated analogously to the theorem,
as Css′ and C̃ss′ coincide for all s′ ≤ s. Finally, the case that r ≥ 2 is treated
analogously as well.
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We remark that the sets N s
v , v ∈ V , s ∈ N, are also part of the system’s

state. However, these sets are updated during each round of the algorithm
and thus also stabilize correctly. Moreover, note that the technique to main-
tain a small global skew presented in Section 5.3 is also self-stabilizing, how-
ever with unbounded stabilization time, as the initial clock skew might be
arbitrarily large. This drawback can be overcome by adding a mechanism
to detect a (significant) violation of the bound on the global skew, overall
resulting in an O(Tµ)-self-stabilizing algorithm (granted that clock estimates
are also O(Tµ)-self-stabilizing).

An interesting side effect of this property is that, regardless of G, a smaller
maximum skew during a time interval of length at least Tµ will temporarily
result in a smaller stable gradient skew. However, without further modifica-
tion, the stabilization time of the algorithm with respect to integrating new
edges remains Tµ, as the algorithm is not aware of the fact that edges could
be incorporated more quickly.

The second property of Aµ we would like to highlight is that, by slight
abuse of notation, the algorithm by itself ensures a global skew linear in U
and the “classical” diameter of GTµ .

Corollary 5.29. For all t ∈ R+
0 , denote by D(t) the diameter of GTµ(t) and

assume that D(t) ≤ Dmax for all t. If µ ≥ (1+ε)4ρ/(1−ρ) for some constant
ε > 0 and κ ∈ O(U), we have a global skew of

G∇ :=
3(1− ρ)µ

2((1− ρ)µ− 4ρ)
κDmax ∈ O(UDmax).

Proof. Assume w.l.o.g. that G∇ ≤ G. Suppose for the sake of contradiction
that tmax ∈ R+

0 is the infimum of all times when the global skew of G∇ is
violated, i.e., for all t ≤ tmax we have that maxv,w∈V {Lv(t)− Lw(t)} ≤ G∇.
Define

∇̃1 :=
G∇

(1− ρ)µ
.

Trivially, we have for any node v ∈ V that Ξ1
v(t) < G∇ at all times t ≤ tmax.

Reasoning as in Lemma 5.24 for s = 1, but with ∇1 replaced by ∇̃1, we see
that for all r ∈ N and t ≤ tmax we have

t ∈
[
T

(r)
1 + ∇̃1, T

(r+1)
1

)
⇒ Ψ1(t) ≤ 2ρ∇̃1.

Thus, at such times t, we have for any two nodes v, w ∈ V joined by a shortest
path p ∈ P 1

v (t) that

Lv(t)− Lw(t) ≤ Ψ1(t) +
3

2
κ`p ≤ 2ρ∇̃1 +

3

2
κDmax = G∇ − 2ρ∇̃1.
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Therefore, tmax 6∈
[
T

(r)
1 + ∇̃1, T

(r+1)
1

)
for any r ∈ N. Moreover, since clock

values are continuous and ∇̃1 ≤ ∇1 < Tµ/2 because G∇ ≤ G, this implies for

any r ∈ N with T
(r)
1 ≤ tmax that

max
v,w∈V

{
Lv
(
T

(r)
1

)
− Lw

(
T

(r)
1

)}
≤ G∇ − 2ρ∇̃1.

Considering that maxv,w∈V {Lv(t) − Lw(t)} grows at most at rate 2ρ since

Aµ satisfies Definition 5.14, we see that also tmax 6∈
[
T

(r)
1 , T

(r)
1 + ∇̃1

]
for any

r with T
(r)
1 ≤ tmax.

Now let rmax ∈ N be maximal such that T
(rmax)
1 ≤ tmax. Combining the

previous observations, we conclude that tmax 6∈
[
T

(rmax)
1 , T

(rmax+1)
1

]
, contra-

dicting the definition of rmax.

We remark that since Aµ is also self-stabilizing, indeed it is sufficient
that D(t) ≤ Dmax for a sufficient period of time in the recent past in order
to ensure the stated bound. However, employing a flooding mechanism to
ensure a small global skew is more reliable, as it tolerates a much weaker
connectivity of the dynamic graph G.

5.6 Discussion

Throughout this chapter, we employed a greatly simplified model in order
to facilitate the presentation of Aµ. In this section, we will discuss our
assumptions and briefly sketch some existing and possible generalizations.
Note that all proposed adaptions of Aµ are mutually compatible, i.e., all
addressed issues may be dealt with simultaneously.

Bounded local memory, computation, and number of events in
finite time. The way we described Aµ, in each round r ∈ N there are

infinitely many times T
(r)
s when each node v ∈ V needs to perform state

changes, infinitely many sets N s
v to store, etc. However, as we have finite

skew bounds, for each node there is a maximal level sv ∈ N up to which these
times and sets are relevant. This value can be bounded by

sv ≤
⌈

1 + logσ

(
G
κ

)⌉
and v needs to check the algorithm’s conditions only up to that level.

Asynchronous edge insertions. It is mandatory to drop the assump-
tion that all nodes synchronously insert new edges on level s at the times
T

(r)
s , r ∈ N. This can be elegantly solved by adding edges at certain logical

clock values instead of fixed points in time. Adding an additional “buffer



68 CHAPTER 5. GRADIENT CLOCK SYNCHRONIZATION

time” ensures that level s stabilized at least locally before advancing to level
s + 1. Putting it simply, the skew bounds from level s− 1 are tight enough
to synchronize edge insertions on level s sufficiently precisely to maintain a
bound of Θ(G/µ) on the overall stabilization time. More specifically, the key
observations are that (i) we stabilize new edges inductively starting from low
levels, (ii) at the time when we insert a new edge adjacent to a node v, up to
certain distances from v the lower levels s′ < s will already have stabilized,
(iii) the skew bounds from these levels s′ < s make sure that nodes that are
close to v will not insert their newly appeared adjacent edges much earlier
or later than v on level s, and (iv) paths that are longer than Cs′ for some
s′ < s will not maximize Ψs, because s′-legality ensures that they exhibit
an average skew smaller than (s+ 1/2)κ, i.e., we do not need to care about
distant nodes. Roughly speaking, instead of reasoning globally about Ψs

and the time intervals
[
T

(r)
s , T

(r)
s+1

)
, we argue locally about some properly

defined Ψs
v and time intervals

[
L−1
v

(
T

(r)
s

)
, L−1

v

(
T

(r)
s+1

))
measured in terms

of the logical time of v. Naturally, localizing the proofs and relating local
times of different nodes adds a number of technical difficulties. We refer the
interested reader to [51] for details.

Asynchronous edge arrivals and departures. Another unrealistic
assumption we made is that both endpoints of an edge detect its appear-
ance or disappearance at exactly the same point in time. Obviously, this is
not possible in practice, as nodes are not perfectly synchronized, send only
finitely many messages, etc. If there is some delay τ between the two nodes
recognizing the event, one of them will still act as if the edge was still opera-
tional for up to τ time while the other does not. It is not hard to believe that,
since nodes can estimate each other’s progress during τ time up to O(µτ) by
means of their hardware clock, increasing κ by O(µτ) is enough to address
this problem. Although this is true, e.g. the fact that Ψs

v and Ξsv cannot
be related to nodes’ actions as cleanly and directly as before increases the
complexity of the proofs considerably. Again, we point to [51] for a full proof
respecting these issues.

Non-differentiable, discrete, and/or finite clocks. We assumed
that hardware and logical clocks are differentiable in order to support the
reader’s intuition. The proofs however rely on the progress bounds of the
clocks only. In a practical system, hardware and logical clocks will both have
finite and discrete values. Putting it simply, having discrete clocks does not
change anything except that the clock resolution imposes a lower bound on
the uncertainty U (see also [59]). The size of clock values can be kept finite
by standard wrap-around techniques, where one needs to make sure that the
range of the clocks exceeds 2G in order to be able to compare values correctly
at all times.
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Initialization. Initialization can be done by flooding. For many rea-
sonable sets of system parameters, the initial clock skews will then be small
enough not to violate the gradient skew constraints (cf. [59]). Alternatively,
one can simply treat all edges as newly appeared and wait for the algorithm
to stabilize. Note that a node that arrives late can set its clock value to the
first one it becomes aware of without violating the global skew constraint.
However, a (long-lasting) partition of the system necessitates to fall back to
self-stabilizing solutions, temporarily jeopardizing the gradient property for
all but one of the previous components.

Non-uniform uncertainties. In almost any practical setting, links
will be different. Consequently, we would like Aµ to deal with different
uncertainties Ue for each edge e ∈ E(t). This is easily achieved by applying
the same rules as Aµ with κ replaced by κe > 2Ue (respectively κ ∈ Ω(Ue +
µτe), where τe replaces the value τ from above). In contrast to the previous
issues, this does not affect the analysis at all—essentially we replace κ by
κe also there (see [50, 51, 52, 55]). In general, uncertainties may also be a
function of time, e.g. due to fluctuations in wireless link quality. This can be
addressed, too, as we will see in a moment.

Short-lived edge failures. If an edge fails for a short period of time,
it is not desirable that we have to wait for Ω(Tµ) time until again a non-
trivial gradient property holds. Also here one could make use of the fact
that the estimates nodes have of their neighbors deteriorate at rate at most
O(µ) in absence of communication. The idea is to gradually increase the
uncertainty of a failed edge accordingly and decrease it again once the edge
returns to being operational. This has to happen slowly, though, leading to a
suboptimal stabilization time when applied to an edge that has been absent
for a long period of time or is completely new [50]. However, we conjecture
that this technique can be freely combined with the edge integration scheme
of Aµ in order to achieve fast stabilization in both cases. Moreover, it offers
a seamless solution to the aforementioned problem of edge uncertainties that
vary over time.

Directed Graphs. Our model considers simple graphs only, i.e., there
are no unidirectional links and uncertainties are symmetric. This require-
ment is crucial for Aµ to work. However, we made no assumption on how
nodes obtain clock estimates of their neighbors. To give but one example
on how to derive a symmetric estimate graph from an asymmetric communi-
cation infrastructure, consider the following setting. Assume that estimates
are computed from direct communication and we have a strongly connected
directed graph. For any two neighbors, the receiving node may respond to
each message with the estimated clock difference via multihop communica-
tion. The returned estimate will lose accuracy in the order of µτ if it travels
for τ time. As long as µτ is not too large (note that choosing µ :=

√
ρ still
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yields an asymptotically optimal gradient property), this way accurate esti-
mates can be obtained. The value of Ue for link e ∈

(
V
2

)
then simply is the

larger of the two accuracy bounds.

Unrestrained clock rates. We imposed that µ ∈ O(1). A lower bound
from [60] shows that permitting larger clock rates is of no use when trying
to achieve a stronger gradient property. One might now ask why we cannot
obtain skew bounds that are linear in the distance between each pair of nodes
by making σ ∈ Θ(µ/ρ) sufficiently large such that the logarithm in Sµ is
bounded by a constant. The problem that arises is that if the algorithm wants
to make use of a large value of µ ∈ ω(1), this entails that also the uncertainty
U must grow linearly in µ, as there is insufficient time to communicate the
intended clock progress first. However, as mentioned in Section 5.2, a larger
value of µ might help to achieve a better stabilization time if one relaxes the
gradient property.

Opposed to that, the main impact of permitting clock rates of o(1) indeed
is that a skew bound linear in the distance can be maintained. Phrasing it
differently, one can pose the question what is the strongest possible guaran-
tee on the progress of logical clocks if we require a skew of O(U) between
neighbors. A simple transformation answers this question by means of The-
orem 5.25 and a second lower bound from [60]. If we slow down logical clock
rates by factor f := logσ(G/(UD)) as soon as the clock skew to any neighbor
exceeds Ω(U), nodes are capable of determining logical clock skews to neigh-
bors up to O(U/f) whenever they exceed some threshold Ω(U). Thus, we
can “scale down” the fast and slow conditions on higher levels, i.e., substitute
κ by some value in O(κ/f) and still guarantee that the conditions can be
implemented. Therefore, analogously to Corollary 5.26, we will get a skew
bound of O(Ud) for paths of length d. The lower bound from [60] tells that
this bound is asymptotically optimal for clock rates of Ω(1/f).

In some sense, this can be read as a statement about synchronizers: A
synchronizer needs to guarantee a skew of O(U) between neighbors in order
to locally trigger a synchronous round every O(U) logical time. Thus, the
derived bounds state that under this constraint we can guarantee that any
node can trigger a round locally at least every O(fU) real time, but not
better. In contrast, a traditional synchronizer might stall a node for up to
Ω(D) time, where D denotes the diameter of the communication graph in
question.

Unknown system parameters. As can be seen from the analysis,
asymptotically optimal global skew, stable gradient skew, and stabilization
time can be achieved without knowledge on the drift ρ. In fact, we merely
need ρ to be bounded away from one in order to compute sufficiently large
values µ, Tµ, etc. Knowledge on ρ is required only if we want to determine
the minimal feasible value of µ due to the condition that µ > 2ρ/(1− ρ).
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In contrast, it is crucial to have a reasonable upper bound on the un-
certainty U , as it affects the gradient property almost linearly through κ.
Similarly, we need a good bound on τ if we consider the setting where nodes
detect edge arrivals and departures asynchronously. We remark that in prac-
tice it is a viable option to employ optimistic bounds on U and τ and adapt
them if they turn out to be too small. The fact that the executions leading
to large skews require “everything to go wrong” for a considerable amount
of time together with the strong stabilization properties of Aµ indicate that
such a scheme should be quite robust to all kinds of dynamics.

Adaptive global skew. The one “parameter”, so to speak, that remains
to be understood is the global skew G. In fact, it is relevant for the stabiliza-
tion time of the algorithm only, as the analysis of the gradient property can
be conducted with the “true” global skew, i.e., maxv,w∈V,t{Lv(t)−Lw(t)}, as
long as the estimate G of this value the algorithm uses is a valid upper bound
at all times. However, ideally the algorithm should be able to incorporate
new edges quickly whenever the maximum skew is small. This is particularly
important in highly dynamic settings, where on the one hand we strive for
resilience to temporary weak connectivity (e.g. a list or even a disconnected
graph), but also for a small stabilization time whenever the topology is more
benign. To this end, a strong estimator is in demand that provides the nodes
with an upper bound on the current maximum skew in the network. Based
on such an estimator, nodes can change the duration of a round appropriately
to achieve good stabilization times in an adaptive manner.

In a static graph, the diameter can be determined easily by a flooding-
echo initiated by some leader. The determined value then is distributed by
a second flooding to all nodes. In a dynamic graph, this approach becomes
difficult as the dynamic diameter of the graph might increase while a flooding
is in progress. However, if the diameter of the graph increases considerably,
the global skew bound does also, i.e., it is feasible to spend a larger amount
of time to incorporate new edges. Moreover, the actual maximal clock skew
between any two nodes increases slowly at a rate of at most 2ρ. Thus, it is
possible to use an approach where only nodes v ∈ V that receive an update on
the estimate of the global skew participate in a round, that is, add new edges
to their neighborhood subsets N s

v . The participating nodes can be certain
that the used bound remains valid until their new edges have stabilized. The
remaining nodes simply wait until a flooding-echo-flooding sequence for the
new, larger diameter terminated (from their perspective) successfully before
adding their edges in the respective round.

This simple approach achieves the desired goal, but suffers from a very
large message size. In order to be certain that a flooding terminated, all
nodes need to report back to the leader. More sophisticated techniques are
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in demand in order to obtain an algorithm that is both practical and adaptive
with respect to the global skew.



Part II

Load Balancing





Chapter 6

An Introduction to Parallel

Randomized Load Balancing

“Divide and conquer.” – Gaius Julius Caesar.

Apart from fault-tolerance, maybe the main motivation to study dis-
tributed computing is parallelism. If a task cannot be solved fast enough
with a single processor, just use more! Nowadays it is common folklore that
this approach does help to a certain degree, but eventually hits fundamen-
tal barriers. Sorting n items, for instance, requires O((n logn)/k) rounds
on k ≤ n processors, whereas in general one cannot be faster than Ω(logn)
rounds – regardless of the amount of hardware thrown at the problem.

In this part of this thesis, we will examine a more subtle obstacle to
parallelism in a distributed world. Even if the considered problem is “em-
barrassingly parallel”, coordinating a distributed system’s efforts to solve it
often incurs an overhead. To achieve perfect scalability, also coordination
must be parallel, i.e., one cannot process information sequentially, or col-
lect the necessary coordination information at a single location. A striking
and fundamental example of coordination is load balancing, which occurs on
various levels: canonical examples are job assignment tasks such as sharing
work load among multiple processors, servers, or storage locations, but the
problem also plays a vital role in e.g. low-congestion circuit routing, channel
bandwidth assignment, or hashing, cf. [86].

A common archetype of all these tasks is the well-known balls-into-bins
problem: Given n balls and n bins, how can one place the balls into the bins
quickly while keeping the maximal bin load small? As in other areas where
centralized control must be avoided (sometimes because it is impossible), the
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key to success is randomization. Adler et al. [1] devised parallel algorithms
for the problem whose running times and maximal bin loads are essentially
doubly-logarithmic. They provide a lower bound which is asymptotically
matching the upper bound. However, their lower bound proof requires two
critical restrictions: algorithms must (i) break ties symmetrically and (ii)
be non-adaptive, i.e., each ball restricts itself to a fixed number of candidate
bins before communication starts. Dropping these assumptions, we are able
to devise more efficient algorithms.

More precisely, we are going to present a simple adaptive and symmetric
algorithm achieving a maximal bin load of two within log∗ n +O(1) rounds
of communication w.h.p. This is achieved using an asymptotically optimal
number of messages. Complementing this upper bound, we prove that—given
the constraints on bin load and communication complexity—the running time
of our first algorithm is (1 + o(1))-optimal for symmetric algorithms. Our
bound necessitates a new proof technique; it is not a consequence of the im-
possibility to gather reliable information in time (e.g. due to asynchronicity,
faults, or explicitly limited local views of the system), rather it emerges from
bounding the total amount of communication. Thus, we demonstrate that
breaking symmetry to a certain degree, i.e., reducing entropy far enough to
guarantee small bin loads, comes at a cost exceeding the apparent minimum
of Ω(n) total bits and Ω(1) rounds. In this light, a natural question to pose
is how much initial entropy is required for the lower bound to hold. We show
that the crux of the matter is that bins are initially anonymous, i.e., balls do
not know globally unique addresses of the bins. This captures the essence of
the aforementioned condition of symmetry imposed by Adler et al. Discard-
ing this requirement, we give an asymmetric adaptive algorithm that runs in
constant time and sends O(n) messages w.h.p., yet achieves a maximal bin
load of three. Completing the picture, we show that the same is possible for
a symmetric algorithm if we incur a slightly superlinear number of messages
or non-constant maximal bin loads. Jointly, the given bounds provide a full
characterization of the parallel complexity of the balls-into-bins problem.

6.1 Model

The system consists of n bins and n balls, and we assume it to be fault-free.
We employ a synchronous message passing model, where one round consists
of the following steps:

1. Balls perform (finite, but otherwise unrestricted) local computations
and send messages to arbitrary bins.

2. Bins receive these messages, do local computations, and send messages
to any balls they have been contacted by in this or earlier rounds.
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3. Balls receive these messages and may commit to a bin (and terminate).

Note that (for reasonable algorithms) the third step does not interfere with
the other two. Hence, the literature typically accounts for this step as “half
a round” when stating the time complexity of balls-into-bins algorithms; we
adopt this convention.

The considered task now can be stated concisely.

Problem 6.1 (Parallel Balls-into-Bins). We want to place each ball into a
bin. The goals are to minimize the total number of rounds until all balls are
placed, the maximal number of balls placed into a bin, and the amount of
involved communication.

In order to classify balls-into-bins algorithms, we fix the notions of an
algorithm being adaptive or symmetric, respectively.

Definition 6.2 (Adaptivity). A balls-into-bins algorithm is non-adaptive,
if balls fix the subset of the bins they will contact prior to all communication.
An algorithm not obeying this constraint is called adaptive.

A natural restriction for algorithms solving Problem 6.1 is to assume
that random choices cannot be biased, i.e., also bins are anonymous. This is
formalized by the following definition.

Problem 6.3 (Symmetric Balls-into-Bins). We call an instance of Prob-
lem 6.1 symmetric, if balls and bins identify each other by u.i.r. port num-
berings. We call an algorithm that can be implemented under this constraint
symmetric.

In contrast, balls executing an asymmetric algorithm may e.g. all decide
to contact bin 42. Note that this is impossible for symmetric algorithms, for
which the uniformly random port numberings even out any non-uniformity
in the probability distribution of contacted port numbers.

Problem 6.4 (Asymmetric Balls-into-Bins). An instance of Problem 6.1 is
asymmetric, if balls identify bins by globally unique addresses 1, . . . , n. An
algorithm relying on this information is called asymmetric.

6.2 Related Work

Probably one of the earliest applications of randomized load balancing has
been hashing. In this context, it was proved that when throwing n balls
u.i.r. into n bins, the fullest bin has load (1 + o(1)) logn/ log logn in expec-
tation [41]. It is also common knowledge that the maximal bin load of this
simple approach is Θ(logn/ log logn) w.h.p. (e.g. [29]).
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With the growing interest in parallel computing, since the beginning of
the nineties the topic received increasingly more attention. Karp et al. [44]
demonstrated for the first time that two random choices are superior to one.
By combining two (possibly not fully independent) hashing functions, they
simulated a parallel random access machine (PRAM) on a distributed mem-
ory machine (DMM) with a factor O(log logn log∗ n) overhead; in essence,
their result was a solution to balls-into-bins with a maximal bin load of
O(log logn) w.h.p. Azar et al. [6] generalized their result by showing that if
the balls choose sequentially from d ≥ 2 u.i.r. bins greedily the currently least
loaded one, the maximal load is log logn/ log d + O(1) w.h.p.1 They prove
that this bound is stochastically optimal in the sense that any other strategy
to assign the balls majorizes2 their approach. The expected number of bins
each ball queries during the execution of the algorithm was later improved to
1+ε (for any constant ε > 0) by Czumaj and Stemann [22]. This is achieved
by placing each ball immediately if the load of an inspected bin is not too
large, rather then always querying d bins.

So far the question remained open whether strong upper bounds can
be achieved in a distributed setting. Adler et al. [1] answered this affir-
matively by devising a parallel greedy algorithm obtaining a maximal load
of O(d + log logn/ log d) within the same number of rounds w.h.p. Thus,
choosing d ∈ Θ(log logn/ log log logn), the best possible maximal bin load of
their algorithm is O(log log n/ log log logn). On the other hand, they prove
that a certain subclass of algorithms cannot perform better with probability
larger than 1 − 1/polylogn. The main characteristics of this subclass are
that algorithms are non-adaptive, i.e., balls have to choose a fixed number
of d candidate bins before communication starts, and symmetric, i.e., these
bins are chosen u.i.r. Moreover, communication takes place only between
balls and their candidate bins. In this setting, Adler et al. show also that
for any constant values of d and the number of rounds r the maximal bin
load is in Ω((logn/ log logn)1/r) with constant probability. Recently, Even
and Medina extended their bounds to a larger spectrum of algorithms by re-
moving some artificial assumptions [32]. A matching algorithm was proposed
by Stemann [100], which for d = 2 and r ∈ O(log logn) achieves a load of
O((logn/ log log n)1/r) w.h.p.; for r ∈ Θ(log logn) this implies a constantly
bounded bin load. The only “adaptive” algorithm proposed so far is due to

1There is no common agreement on the notion of w.h.p. Frequently it refers to prob-
abilities of at least 1 − 1/n or 1 − o(1), as so in the work of Azar et al.; however, their
proof also provides their result w.h.p. in the sense we use throughout this thesis.

2Roughly speaking, this means that any other algorithm is as least as likely to produce
bad load vectors as the greedy algorithm. An n-dimensional load vector is worse than
another, if after reordering the components of both vectors descendingly, any partial sum
of the first i ∈ {1, . . . , n} entries of the one vector is greater or equal to the corresponding
partial sum of the other.
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Even and Medina [31]. If balls cannot be allocated, they get an additional
random choice. However, one could also give all balls this additional choice
right from the start, i.e., this kind of adaptivity cannot circumvent the lower
bound. Consequently, their 2.5 rounds algorithm uses a constant number
of choices and exhibits a maximal bin load of Θ(

√
logn/ log logn) w.h.p.,

the same asymptotic characteristics as parallel greedy with 2.5 rounds and
two choices. In comparison, within this number of rounds our technique
is capable of achieving bin loads of (1 + o(1)) log logn/ log log logn w.h.p.3

See Table 6.1 for a comparison of our results to parallel algorithms. Our
adaptive algorithms outperform all previous solutions for the whole range of
parameters.

Given the existing lower bounds, the only possibility for further im-
provement has been to search for non-adaptive or asymmetric algorithms.
Vöcking [103] introduced the sequential “always-go-left” algorithm which em-
ploys asymmetric tie-breaking in order to improve the impact of the number
of possible choices d from logarithmic to linear. Furthermore, he proved that
dependency of random choices does not offer asymptotically better bounds.
His upper bound holds also true if merely two bins are chosen randomly, but
for each choice d/2 consecutive bins are queried [45]. Table 6.2 summarizes
sequential balls-into-bins algorithms. Note that not all parallel algorithms
can also be run sequentially. Stemann’s collision protocol, for instance, re-
quires bins to accept balls only if a certain number of pending requests is
not exceeded. Thus the protocol cannot place balls until all balls’ random
choices are communicated. In contrast, our approach translates to a sim-
ple sequential algorithm competing in performance with the best known re-
sults [22, 103]. This algorithm could be interpreted as a greedy algorithm
with d =∞.

Beyond that, there is a huge body of work studying variants of the basic
problem [4, 6, 13, 14, 15, 22, 47, 48, 82, 83, 84, 85, 93, 100, 102, 103, 104].
In this exposition we will focus on the simple version of the task. A brief
overview of these works can be found in [68].

Results related to ours have been discovered before for hashing problems.
A number of publications presents algorithms with running times ofO(log∗ n)
(or very close) in PRAM models [10, 38, 78, 81]. At the heart of these
routines as well as our balls-into-bins solutions lies the idea to use an in each
iteration exponentially growing share of the available resources to deal with
the remaining keys or bins, respectively. Implicitely, this approach already
occured in previous work by Raman [94]. For a more detailed review of

3This follows by setting a := (1 + ε) log logn/ log log logn (for arbitrary small ε > 0)

in the proof of Corollary 8.6; we get that merely n/(logn)1+ε balls remain after one
round, which then can be delivered in 1.5 more rounds w.h.p. using O(logn) requests
per ball.
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these papers, we refer the interested reader to [42]. Despite differences in the
models, our algorithms and proofs exhibit quite a few structural similarities
to the ones applicable to hashing in PRAM models. From our point of view,
there are two main differences distinguishing our upper bound results on
symmetric algorithms. Firstly, the parallel balls-into-bins model permits to
use the algorithmic idea in its most basic form. Hence, our presentation
focuses on the properties decisive for the log∗ n+O(1) complexity bound of
the basic symmetric algorithm. Secondly, our analysis shows that the core
technique is highly robust and can therefore tolerate a large number of faults.

The lower bound by Adler et al. (and the generalization by Even and
Medina) is stronger than our lower bound, but it applies to algorithms which
are severely restricted in their abilities only. Essentially, these restrictions
uncouple the algorithm’s decisions from the communication pattern; in par-
ticular, communication is constrained to an initially fixed random graph,
where each ball contributes d edges to u.i.r. bins. This prerequisite seems
reasonable for systems where the initial communication overhead is large. In
general, we believe it to be difficult to motivate that a non-constant number
of communication rounds is feasible, but an initially fixed set of bins may be
contacted only. In contrast, our lower bound also holds for adaptive algo-
rithms; in other words, it arises from the assumption that bins are (initially)
anonymous, which fits a wide range of real-world systems.

Like Linial in his seminal work on 3-coloring the ring [70], we attain a
lower bound of Ω(log∗ n) on the time required to solve the task efficiently.
This connection is more than superficial, as both bounds essentially arise from
a symmetry breaking problem. However, Linial’s argument just uses a highly
symmetric ring topology. This general approach to argue about a simple
topology has been popular when proving lower bounds (see e.g. [25, 65, 89]).
This is entirely different from our setting, where any two parties may poten-
tially exchange information. Therefore, we cannot argue on the basis that
nodes will learn about a specific subset of the global state contained within
their local horizon only. Instead, the random decisions of a balls-into-bins
algorithm define a graph describing the flow of information. This graph is
not a simple random graph, as the information gained by this communication
feeds back to its evolution over time, i.e., future communication may take
the local topology of its current state into account.

A different lower bound technique is by Kuhn et al. [54], where a specific
locally symmetric, but globally asymmetric graph is constructed to render
a problem hard. Like in our work, [54] restricts its arguments to graphs
which are locally trees. The structure of the graphs we consider imposes
to examine subgraphs which are trees as well; subgraphs containing cycles
occur too infrequently to constitute a lower bound. The bound of Ω(log∗ n)
from [38], applicable to hashing in a certain model, which also argues about
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trees, has even more in common with our result. However, neither of these
bounds needs to deal with the difficulty that the algorithm may influence
the evolution of the communication graph in a complex manner. In [54],
input and communication graph are identical and fixed; in [38], there is also
no adaptive communication pattern, as essentially the algorithm may merely
decide on how to further separate elements that share the same image under
the hash functions applied to them so far.

Various other lower bound techniques exist [34, 75], however, they are not
related to the bound presented in Chapter 7. If graph-based, the arguments
are often purely information theoretic, in the sense that some information
must be exchanged over some bottleneck link or node in a carefully con-
structed network with diameter larger than two [72, 92]. In our setting, such
information theoretic lower bounds will not work: Any two balls may ex-
change information along n edge-disjoint paths of length two, as the graph
describing which edges could potentially be used to transmit a message is
complete bipartite. In some sense, this is the main contribution of this part
of our exposition: We show the existence of a coordination bottleneck in a
system without a physical bottleneck.



Chapter 7

Lower Bound on Symmetric

Balls-into-Bins Algorithms

“That’s probably the most complicated thing I’ve ever heard.” –
“Seriously?” – “No, but the way you explain it, it sounds as if
it was.” – Roger’s comment on my first chaotic proof sketch of
the balls-into-bins lower bound.

In this chapter, we derive our lower bound on the parallel complexity
of the balls-into-bins problem. We will show that any symmetric balls-into-
bins algorithm guaranteeing O(n) total messages w.h.p. requires at least
(1 − o(1)) log∗ n rounds w.h.p. to achieve a maximal bin load of o(log∗ n)2.
This chapter is based on [69] and the accompanying technical report [68].

7.1 Definitions

In fact, our lower bound for the symmetric problem holds for a slightly
stronger communication model.

Problem 7.1 (Acquaintance Balls-into-Bins). We call an instance of Prob-
lem 6.1 acquaintance balls-into-bins problem, if the following holds. Initially,
bins are anonymous, i.e., balls identify bins by u.i.r. port numberings. How-
ever, once a ball contacts a bin, it learns its globally unique address, by which
it can be contacted reliably. Thus, by means of forwarding addresses, balls
can learn to contact specific bins directly. The addresses are abstract in the
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sense that they can be used for this purpose only.1 We call an algorithm
solving this problem acquaintance algorithm.

For this problem, we will show the following result.

Theorem 7.2. Any acquaintance algorithm sending in total O(n) messages
w.h.p. and at most polylog n messages per node either incurs a maximal bin
load of more than L ∈ N w.h.p. or runs for (1− o(1)) log∗ n− log∗ L rounds,
irrespective of the size of messages.

In order to show this statement, we need to bound the amount of informa-
tion a ball can collect during the course of the algorithm. As each ball may
contact any bins it has heard of, this information is a subset of an (appropri-
ately labeled) exponentially growing neighborhood of the ball in the graph
where edges are created whenever a ball picks a communication partner at
random.

Definition 7.3 (Balls-into-Bins Graph). The (bipartite and simple) balls-
into-bins graph GA(t) associated with an execution of the acquaintance balls-
into-bins algorithm A running for t ∈ N rounds is constructed as follows.
The node set V := Vt ∪ V◦ consists of |Vt| = |V◦| = n bins and balls. In
each round i ∈ {1, . . . , t}, each ball b ∈ V◦ adds an edge connecting itself to
bin v ∈ Vt if b contacts v by a random choice in that round. By EA(i) we
denote the edges added in round i and GA(t) = (V,∪ti=1EA(i)) is the graph
containing all edges added until and including round t.

In the remainder of this chapter, we will consider such graphs only.
The proof will argue about certain symmetric subgraphs in which not all

balls can decide on bins concurrently without incurring large bin loads. As
can be seen by a quick calculation, any connected subgraph containing a cycle
is unlikely to occur frequently. For an adaptive algorithm, it is possible that
balls make a larger effort in terms of sent messages to break symmetry once
they observe a “rare” neighborhood. Therefore, it is mandatory to reason
about subgraphs that are trees.

We would like to argue that any algorithm suffers from generating a large
number of trees of uniform ball and bin degrees. If we root such a tree at
an arbitrary bin, balls cannot distinguish between their parents and children
according to this orientation. Thus, they will decide on a bin that is closer to
the root with probability inverse proportional to their degree. If bin degrees
are by factor f(n) larger than ball degrees, this will result in an expected
load of the root of f(n). However, this line of reasoning is too simple. As

1This requirement is introduced to prohibit the use of these addresses for symmetry
breaking, as is possible for asymmetric algorithms. One may think of the addresses e.g.
as being random from a large universe, or the address space might be entirely unknown
to the balls.
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edges are added to G in different rounds, these edges can be distinguished by
the balls. Moreover, even if several balls observe the same local topology in
a given round, they may randomize the number of bins they contact during
that round, destroying the uniformity of degrees. For these reasons, we (i)
rely on a more complicated tree in which the degrees are a function of the
round number and (ii) show that for every acquaintance algorithm a stronger
algorithm exists that indeed generates many such trees w.h.p.

In summary, the proof will consist of three steps. Firstly, for any acquain-
tance algorithm obeying the above bounds on running time and message
complexity, an at least equally powerful algorithm from a certain subclass
of algorithms exists. Secondly, algorithms from this subclass generate for
(1−o(1)) log∗ n rounds large numbers of the aforementioned highly symmet-
ric trees in GA(t) w.h.p. Thirdly, enforcing a decision from all balls in such
structures leads to a maximal bin load of ω(1) w.h.p.

The following definition clarifies what we understand by “equally power-
ful” in this context.

Definition 7.4 (W.h.p. Equivalent Algorithms). We call two Algorithms A
and A′ for Problem 6.1 w.h.p. equivalent if their output distributions agree
on all but a fraction of the events occurring with total probability at most
1/nc. That is, if Γ denotes the set of possible distributions of balls into bins,
we have that ∑

γ∈Γ

|PA[γ]− PA′ [γ]| ≤ 1

nc
.

The subclass of algorithms we are interested in is partially characterized
by its behaviour on the mentioned subgraphs, hence we need to define the
latter first. These subgraphs are special trees, in which all involved balls
up to a certain distance from the root see exactly the same topology. This
means that (i) in each round, all involved balls created exactly the same
number of edges by contacting bins randomly, (ii) each bin has a degree that
depends on the round when it was contacted first only, (iii) all edges of such
bin are formed in exactly this round, and (iv) this scheme repeats itself up to
a distance that is sufficiently large for the balls not to see any irregularities
that might help in breaking symmetry. These properties are satisfied by the
following tree structure.

Definition 7.5 (Layered (∆t,∆◦,D)-Trees). A layered (∆t,∆◦,D)-tree of
` ∈ N0 levels rooted at bin R is defined as follows, where ∆t = (∆t1 , . . . ,∆

t
` )

and ∆◦ = (∆◦1, . . . ,∆
◦
` ) are the vectors of bins’ and balls’ degrees on different

levels, respectively, and D ∈ N.

If ` = 0, the “tree” is simply a single bin. If ` > 0, the subgraph of
GA(`) induced by N (2D)

R is a tree, where ball degrees are uniformly
∑`
i=1 ∆◦i .
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X

X X

Figure 7.1: Part of a ((2, 5), (3, 5),D)-tree rooted at the topmost bin. Bins
are squares and balls are circles; neighborhoods of all balls and the bins
marked by an “X” are depicted completely, the remainder of the tree is left
out. Thin edges and white bins were added to the structure in the first round,
thick edges and grey bins in the second. Up to distance 2D from the root,
the pattern repeats itself, i.e., the (2D − d)-neighborhoods of all balls up to
depth d appear identical.

Except for leaves, a bin that is added to the structure in round i ∈ {1, . . . , `}
has degree ∆ti with all its edges in EA(i). See Figure 7.1 for an illustration.

Intuitively, layered trees are crafted to present symmetric neighborhoods
to nodes which are not aware of leaves. Hence, if bins’ degrees are large
compared to balls’ degrees, not all balls can decide simultaneously without
risking to overload bins. This statement will be made mathematically precise
later.

We are now in the position to define the subclass of algorithms we will
analyze. The main reason to resort to this subclass is that acquaintance
algorithms may enforce seemingly asymmetric structures, which complicates
proving a lower bound. In order to avoid this, we grant the algorithms
additional random choices, restoring symmetry. The new algorithms must
be even stronger, since they have more information available, yet they will
generate many layered trees. Since we consider such algorithms specifically
for this purpose, this is hard-wired in the definition.

Definition 7.6 (Oblivious-Choice Algorithms). Assume that an acquain-
tance Algorithm A running for at most t rounds, ∆t = (∆t1 , . . . ,∆

t
t ), and

∆◦ = (∆◦1, . . . ,∆
◦
t ) are given. Suppose T = (T0, . . . , Tt) ∈ (R+)t is a se-

quence such that ∆◦i ∈ O(n/Ti−1) for all i ∈ {1, . . . , t} and for all i ∈
{0, . . . , t} the number of disjoint layered ((∆t1 , . . . ,∆

t
i ), (∆◦1, . . . ,∆

◦
i ), 2

t)-
trees in GA(i) is at least Ti w.h.p.
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We call A a (∆t,∆◦, T )-oblivious-choice algorithm, if the following re-
quirements are met:

(i) The algorithm terminates at the end of round t, when all balls simul-
taneously decide into which bin they are placed. A ball’s decision is
based on its 2t-neighborhood in GA(t), including the random bits of
any node within that distance, and all bins within this distance are
feasible choices.2

(ii) In round i ∈ {1, . . . , t}, each ball b decides on a number of bins to
contact and chooses that many bins u.i.r., forming the respective edges
in GA(i) if not yet present. This decision may resort to the topology
of the 2t-hop neighborhood of a ball in GA(i− 1) (where GA(0) is the
graph containing no edges).

(iii) In round i ∈ {1, . . . , t}, it holds w.h.p. that all balls in depth d ≤ 2t

of Ω(Ti−1) layered ((∆t1 , . . . ,∆
t
i−1), (∆◦1, . . . ,∆

◦
i−1), 2t)-trees in GA(i)

each choose ∆◦i bins to contact.

The larger t can be, the longer it will take until eventually no more layered
trees occur and all balls may decide safely.

7.2 Proof of the Lower Bound

We need to show that for appropriate choices of parameters and non-trivial
values of t, indeed oblivious-choice algorithms exist. Essentially, this is a
consequence of the fact that we construct trees: When growing a tree, each
added edge connects to a node outside the tree, therefore leaving a large
number of possible endpoints for the edge; in contrast, closing a circle in a
small subgraph is unlikely.

Lemma 7.7. Let ∆◦1 ∈ N and C > 0 be constants, L, t ∈ N arbitrary,
T0 := n/(100(∆◦1)2(2C + 1)L) ∈ Θ(n/L), and ∆t1 := 2L∆◦1. Define for
i ∈ {2, . . . , t} that

∆◦i :=

⌈
∆◦1n

Ti−1

⌉
,

∆ti := 2L∆◦i ,

and for i ∈ {1, . . . , t} that

Ti := 2−(n/Ti−1)4·2
t

n.
2This is a superset of the information a ball can get when executing an acquaintance

algorithm, since by address forwarding it might learn of and contact bins up to that
distance. Note that randomly deciding on an unknown bin here counts as contacting it,
as a single round makes no difference with respect to the stated lower bound.
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If Tt ∈ ω(
√
n logn) and n is sufficiently large, then any algorithm fulfilling

the prerequisites (i), (ii), and (iii) from Definition 7.6 with regard to these
parameters that sends at most Cn2/Ti−1 messages in round i ∈ {1, . . . , t}
w.h.p. is a (∆t,∆◦, T )-oblivious-choice algorithm.

Proof. Since by definition we have ∆◦i ∈ O(n/Ti−1) for all i ∈ {1, . . . , t}, in
order to prove the claim we need to show that at least Ti disjoint layered
((∆t1 , . . . ,∆

t
i ), (∆◦1, . . . ,∆

◦
i ), 2

t)-trees occur in GA(i) w.h.p. We prove this
statement by induction. Since T0 ≤ n and every bin is a ((), (), 2t)-tree, we
need to perform the induction step only.

Hence, assume that for i−1 ∈ {0, . . . , t−1}, Ti−1 lower bounds the num-
ber of disjoint layered ((∆t1 , . . . ,∆

t
i−1), (∆◦1, . . . ,∆

◦
i−1), 2t)-trees in GA(i−1)

w.h.p. In other words, the event E1 that we have at least Ti−1 such trees
occurs w.h.p.

We want to lower bound the probability p that a so far isolated bin R be-
comes the root of a ((∆t1 , . . . ,∆

t
i ), (∆◦1, . . . ,∆

◦
i ), 2

t)-tree in GA(i). Starting
from R, we construct the 2D-neighborhood of R. All involved balls take part
in disjoint ((∆t1 , . . . ,∆

t
i−1), (∆◦1, . . . ,∆

◦
i−1), 2t)-trees, all bins incorporated in

these trees are not adjacent to edges in EA(i), and all bins with edges on
level i have been isolated until and including round i− 1.

As the algorithm sends at most
∑i−1
j=1 Cn

2/Tj−1 messages until the end
of round i− 1 w.h.p., the expected number of isolated bins after round i− 1
is at least(

1− 1

nc

)
n

(
1− 1

n

)Cn∑i−1
j=1 n/Tj−1

∈ ne−(1+o(1))Cn/Ti−1

⊂ ne−O(n/Tt−1)

⊂ ω(logn).

Thus Lemma 2.15 and Corollary 2.13 imply that the event E2 that at least
ne−(1+o(1))Cn/Ti−1 such bins are available occurs w.h.p.

Denote by N the total number of nodes in the layered tree. Adding balls
one by one, in each step we choose a ball out of w.h.p. at least Ti−1 −N + 1
remaining balls in disjoint ((∆t1 , . . . ,∆

t
i−1), (∆◦1, . . . ,∆

◦
i−1), 2t)-trees, connect

it to a bin already in the tree, and connect it to ∆◦i − 1 of the w.h.p. at least
ne−(1+o(1))Cn/Ti−1−N+1 remaining bins that have degree zero in GA(i−1).
Denote by E3 the event that the tree is constructed successfully and let us
bound its probability.

Observe that because for all i ∈ {1, . . . , t} we have that ∆ti > 2∆ti−1 and
∆◦i > 2∆◦i−1, it holds that

N <

2t∑
d=0

(
∆ti

(
i∑

j=1

∆◦j

))d
<

2t∑
d=0

(
2∆ti ∆◦i

)d
< 2

(
2∆ti ∆◦i

)2t
. (7.1)
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Furthermore, the inductive definitions of ∆ti , ∆◦i , and Ti, the prerequisite
that Tt ∈ ω(

√
n logn), and basic calculations reveal that for all i ∈ {1, . . . , t},

we have the simpler bound of

N < 2
(
2∆ti ∆◦i

)2t
< 2(4L+ 1)2t

(
∆t1 n

Ti−1

)4t

∈ ne−ω(n/Ti−1) ∩ o(Ti−1) (7.2)

on N .

Recall that A is an oblivious-choice algorithm, i.e., the bins that are
contacted in a given round are chosen independently. Thus, provided that
E1 occurs, the (conditional) probability that a bin that has already been
attached to its parent in the tree is contacted by the first random choice
of exactly ∆ti − 1 balls that are sufficiently close to the roots of disjoint
((∆t1 , . . . ,∆

t
i−1), (∆◦1, . . . ,∆

◦
i−1), 2t)-trees is lower bounded by(

Ti−1 −N + (∆ti − 1)

∆ti − 1

)(
1

n

)∆ti −1(
1− 1

n

)(∆ti −1)(∆◦i−1)

(7.2)
∈

(
Ti−1

n∆ti

)(1+o(1))(∆ti −1)

.

Because ∆ti ∈ O(n/Ti−1), it holds that ln(n∆ti /Ti−1) ∈ o(n/Ti−1). Thus,
going over all bins (including the root, where the factor in the exponent is
∆ti instead of ∆ti − 1), we can lower bound the probability that all bins are
contacted by the right number of balls by(

Ti−1

n∆ti

)(1+o(1))N

∈ e−(1+o(1))Nn/Ti−1 ,

as less than N balls need to be added to the tree in total. Note that we
have not made sure yet that the bins are not contacted by other balls; E3 is
concerned with constructing the tree as a subgraph of GA(t) only.

For E3 to happen, we also need that all balls that are added to the tree
contact previously isolated bins. Hence, in total fewer than N u.i.r. choices
need to hit different bins from a subset of size ne−(1+o(1))Cn/Ti−1 . This
probability can be bounded by(

ne−(1+o(1))Cn/Ti−1 −N
n

)N
(7.2)
∈ e−(1+o(1))CNn/Ti−1 .

Now, after constructing the tree, we need to make sure that it is indeed
the induced subgraph of N (2D)

R in GA(i), i.e., no further edges connect to any
nodes in the tree. Denote this event by E4. As we already “used” all edges
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of balls inside the tree and there are no more than Cn2/Ti−1 edges created
by balls outside the tree, E4 happens with probability at least(

1− N

n

)Cn2/Ti−1

∈ e−(1+o(1))CNn/Ti−1 .

Combining all factors, we obtain that

p ≥ P [E1] · P [E2 | E1] · P [E3 | E1 ∧ E2] · P [E4 | E1 ∧ E2 ∧ E3]

∈
(

1− 1

nc

)2

e−(1+o(1))(C+1)Nn/Ti−1e−(1+o(1))CNn/Ti−1

= e−(1+o(1))(2C+1)Nn/Ti−1

(7.1)

⊆ 2Ne−(1+o(1))(2C+1)(2∆ti ∆◦i )2
t
n/Ti−1e(1+o(1))Cn/Ti−1

⊆ 2Ne−(1+o(1))(2C+1)
(

4L(2∆◦1n/Ti−1)2
)2t

n/Ti−1e(1+o(1))Cn/Ti−1

⊆ 2N2−
(
n/T0(n/Ti−1)3

)2t
e(1+o(1))Cn/Ti−1

⊆ 2NTi
n

e(1+o(1))Cn/Ti−1 .

We conclude that the expected value of the random variable X count-
ing the number of disjoint ((∆t1 , . . . ,∆

t
i ), (∆◦1, . . . ,∆

t
i ), 2t)-trees is lower

bounded by E[X] > 2Ti, as at least e−(1+o(1))Cn/Ti−1n isolated bins are
left that may serve as root of (not necessarily disjoint) trees and each tree
contains less than N bins.

Finally, having fixed GA(i− 1), X becomes a function of w.h.p. at most
O(n2/Ti−1) ⊆ O(n2/Tt−1) ⊆ O(n log(n/Tt)) ⊆ O(n logn) u.i.r. chosen bins
contacted by the balls in round i. Each of the corresponding random variables
may change the value of X by at most three: An edge insertion may add
one tree or remove two, while deleting an edge removes at most one tree and
creates at most two. Due to the prerequisite that Ti ≥ Tt ∈ ω(

√
n logn),

we have E[X] ∈ ω(
√
n logn). Hence we can apply Theorem 2.17 in order to

obtain

P

[
X <

E[X]

2

]
∈ e−Ω(E[X]2/(n logn)) ⊆ n−ω(1),

proving the statement of the lemma.

We see that the probability that layered trees occur falls at most ex-
ponentially in their size to the power of 4 · 2t. Since t is very small, i.e.,
smaller than log∗ n, this rate of growth is comparable to exponentiation by
a polynomial in the size of the tree. Therefore, one may expect that the re-
quirement of Tt ∈ ω(

√
n/ logn) can be maintained for values of t in Ω(log∗ n).

Calculations reveal that even t ∈ (1− o(1)) log∗ n is feasible.
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Lemma 7.8. Using the notation of Lemma 7.7, it holds for

t ≤ t0(n,L) ∈ (1− o(1)) log∗ n− log∗ L

that Tt ∈ ω(
√
n/ logn).

Proof. By basic calculus. We refer to [68].

In light of the upper bounds we will show in the next chapter, this in-
terplay between L and t is by no means arbitrary. We will see that if for
any r ∈ N one accepts a maximal bin load of log(r) n/ log(r+1) n+ r +O(1),
Problem 6.1 can be solved in r +O(1) rounds.

Since now we know that critical subgraphs occur frequently for specific
algorithms, next we prove that this subclass of algorithms is as powerful as
acquaintance algorithms of certain bounds on time and message complexity.

Lemma 7.9. Suppose the acquaintance Algorithm A solves Problem 6.1
within t ≤ t0(n,L), L ∈ N, rounds w.h.p. (t0 as in Lemma 7.8), send-
ing w.h.p. at most O(n) messages in total and polylogn messages per node.
Then, for sufficiently large n, a constant ∆◦1 and an oblivious-choice algo-
rithm A′ with regard to the set of parameters specified in Lemma 7.7 exists
that sends at most O(n2/Ti−1) messages in round i ∈ {1, . . . , t} w.h.p., ter-
minates at the end of round t, and is w.h.p. equivalent to A.

Proof. Observe that A has only two means of disseminating information:
Either, balls can randomly connect to unknown bins, or they can send in-
formation to bins known from previous messages. Thus, any two nodes at
distance larger than 2t from each other in GA(i− 1) must act independently
in round i. Since degrees are at most polylogn w.h.p., w.h.p. no ball knows

more than (polylogn)2t ⊆ no(1) bins (w.l.o.g. t0(n, l) ≤ log∗ n− 2). Assume
that in a given round a ball chooses k bins, excluding the ones of which he
already obtained the global address. If it contacted k′ := d3cke bins u.i.r.
and dropped any drawn bin that it already knows (including repetitions in
the current round), it would make with probability at most

k′∑
j=k′−k+1

(
k′

j

)(
1− 1

n1−o(1)

)k′−j
1

n(1−o(1))j
⊂ n−2(1−o(1))c polylog n ⊂ n−c

less than k new contacts. Thus, we may modify A such that it chooses O(k)
bins u.i.r. whenever it would contact k bins randomly. This can be seen as
augmenting GA(i) by additional edges. By ignoring these edges, the resulting
algorithm A′ is capable of (locally) basing its decisions on the probability
distribution of graphs GA(i). Hence, Condition (ii) from Definition 7.6 is
met by the modified algorithm.
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Condition (i) forces A′ to terminate in round t even if A does not. How-
ever, since A must terminate in round t w.h.p., balls may choose arbitrarily
in this case, w.h.p. not changing the output compared to A. On the other
hand, we can certainly delay the termination of A until round t if A would
terminate earlier, without changing the results. Thus, it remains to show
that we can further change the execution of A during the first t rounds in a
way ensuring Condition (iii) of the definition, while maintaining the required
bound on the number of messages.

To this end, we modify A inductively, where again in each round for
some balls we increase the number of randomly contacted bins compared to
an execution of A; certainly this will not affect Conditions (i) and (ii) from
Definition 7.6, and A′ will exhibit the same output distribution as A (up to
a fraction of 1/nc of the executions) if A′ ignores any of the additional edges
when placing the balls at the end of round t.

Now, assume that the claim holds until round i − 1 ∈ {0, . . . , t − 1}.
In round i ∈ {1, . . . , t}, any pair of balls in depth at most 2t of disjoint
((∆t1 , . . . ,∆

t
i−1), (∆◦1, . . . ,∆

◦
i−1), 2t)-trees in GA′(i) are in distance at least

2t+1 from each other, i.e., they must decide mutually independently on the
number of bins to contact. Consequently, sinceA has less information at hand
than A′, these balls would also decide independently in the corresponding
execution of A. For sufficiently large n, (the already modified variant of) A
will send at most Cn messages w.h.p. (for some constant C ∈ R+). Hence,
the balls that are up to depth 2t of such a tree send together in expectation
less than 2nC/Ti−1 messages, since otherwise Corollary 2.13 and the fact that
Ti−1 ∈ ω(logn) would imply that at least (2 − o(1))Cn messages would be
sent by A in total w.h.p. Consequently, by Markov’s Bound (Theorem 2.6),
with independent probability at least 1/2, all balls in depth 2t or less of a
layered ((∆t1 , . . . ,∆

t
i−1), (∆◦1, . . . ,∆

◦
i−1), 2t)-tree in union send no more than

4Cn/Ti−1 messages in round i. Using Corollary 2.13 again, we conclude that
for Ω(Ti−1) many trees it holds that none of the balls in depth at most 2t

will send more than 4Cn/Ti−1 messages to randomly chosen bins w.h.p.

When executing A′, we demand that each such ball randomly contacts
exactly that many bins, i.e., with ∆◦1 := 4C Condition (iii) of Definition 7.6
is met. By Corollary 2.13, this way at most O(n + n2/Ti−1) = O(n2/Ti−1)
messages are sent in round i w.h.p., as claimed. Moreover, the new algorithm
can ensure to follow the same probability distribution of bin contacts as A,
simply by ignoring the additional random choices made. This completes the
induction step and thus the proof.

The final ingredient is to show that randomization is insufficient to deal
with the highly symmetric topologies of layered trees. In particular, balls
that decide on bins despite not being aware of leaves cannot avoid risking to
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choose the root bin of the tree. If all balls in a tree where bin degrees are
large compared to ball degrees decide, this results in a large load of the root
bin.

Lemma 7.10. Suppose after t rounds of some Algorithm A ball b is in
depth at most 2t of a layered (∆t,∆◦, 2t)-tree of t levels in GA(t). We fix
the topology of the layered tree. Let v be a bin in distance d ≤ 2t from b in
GA(t) and assume that the edge sequence of the (unique) shortest path from
b to v is e1, . . . , ed. If b decides on a bin in round t, the probability that b
places itself in v depends on the sequence of rounds `1, . . . , `d ∈ {1, . . . , t}d
in which the edges e1, . . . , ed have been created only.

Proof. Observe that since b is a ball, it must have an odd distance from
the root of the layered (∆t,∆◦, 2t)-tree it participates in. Thus, the 2t-
neighborhood of b is a subset of the (2t+1 − 1)-neighborhood of the root of
the layered tree. Therefore, this neighborhood is a balanced tree of uniform
ball degrees. Moreover, for all i ∈ {1, . . . , t}, the number of edges from EA(i)
balls up to distance 2t from b are adjacent to is the same. Bin degrees depend
on the round i in which they have been contacted first only, and all edges of
a bin in the tree were created in the respective round (cf. Figure 7.1).

Let b1, . . . , bn and v1, . . . , vn be global, fixed enumerations of the balls
and bins, respectively. Fix a topology T of the 2t-neighborhood of b with
regard to these enumerations. Assume that v and w are two bins in T for
which the edges on the shortest paths from b to v resp. w were added in the
rounds `1, . . . , `d, d ∈ {1, . . . , 2t}. Assume that x and y are the first distinct
nodes on the shortest paths from b to v and w, respectively. The above
observations show that the subtrees of T rooted at x and y are isomorphic
(cf. Figure 7.2). Thus, a graph isomorphism f exists that “exchanges” the
two subtrees (preserving their orientation), fixes all other nodes, and fulfills
that f(v) = w and f ◦ f is the identity. We choose such an f and fix it.
Denote by p(bi, vj) ∈ {1, . . . , n}, i, j ∈ {1, . . . , n}, the port number vj has
in the port numbering of bi and by p(vi, bj) the number bj has in the port
numbering of bin vi. Similarly, r(bi) and r(vi), i ∈ {1, . . . , n}, denote the
string of random bits bi and vi use for randomization, respectively. Using f ,
we define the automorphism h : S → S on the set of tuples of possible port
numberings and random strings (p(·, ·), r(·)) by

h((p(·, ·), r(·))) := (p(f(·), f(·)), r(f(·))).

Set
Sv := {(p(·, ·), r(·)) |T occurs ∧ b chooses v} ⊂ S

and Sw analogously. We claim that h(Sv) = Sw (and therefore also h(Sw) =
h2(Sv) = Sv). This means when applying h to an element of Sv, the topology
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shared
subpath

isomorphic
subtrees

remaining
graph

switch
port numbers

switch
port numbers

and
random strings

switch
port numbers

keep all

keep all

Figure 7.2: Example for the effect of h on the topology of GA(t). Switching
port numberings and random labels of isomorphic subtrees and the port
numberings of their neighborhood, nodes in these subtrees essentially “switch
their identity” with their counterparts. Since the local view of the topmost
ball is completely contained within the tree, it cannot distinguish between
the two configurations.

T is preserved and b chooses w instead of v. To see this, observe that A can
be interpreted as deterministic algorithm on the (randomly) labeled graph
where nodes u are labeled r(u) and edges (u, u′) are labeled (p(u, u′), p(u′, u)).
Hence, h simply switches the local views of u and f(u) in that graph and a
node u takes the role of f(u) and vice versa (cf. Figure 7.2). Thus, b will
choose f(v) = w in the execution with the new labeling. On the other hand,
T is preserved because we chose the function f in a way ensuring that we
mapped the two subtrees in T that are rooted at x and y to each other by a
graph isomorphism, i.e., the topology with regard to the fixed enumerations
b1, . . . , bn and v1, . . . , vn did not change.

In summary, for any topology T of the 2t-neighborhood of b in a layered
(∆t,∆◦, 2t)-tree such that b is connected to v and w by shortest paths for
which the sequences of round numbers when the edges were created are the
same, we have that Sv = h(Sw). Since both port numberings and random
inputs are chosen independently, we conclude that P [(p(·, ·), r(·)) ∈ Sv] =
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P [(p(·, ·), r(·)) ∈ Sw], i.e., b must choose v and w with equal probability as
claimed.

We are now in the position to prove our lower bound on the trade-off
between maximal bin load and running time of acquaintance algorithms.

Proof of Theorem 7.2. Assume that Algorithm A solves Problem 7.1 within
at most t ≤ t0 ∈ (1−o(1)) log∗ n− log∗ L rounds w.h.p. (t0 as in Lemma 7.8).
Thus, due to Lemma 7.9 a constant ∆◦1 and an oblivious-choice Algorithm
A′ with regard to the parameters from Lemma 7.7 whose maximal bin load
is w.h.p. the same as the one of A exist. In the following, we use the notation
from Lemma 7.7.

Suppose that R is the root bin of a layered (∆t,∆◦, 2t)-tree in GA′(t).
According to Lemma 7.10, for all balls b in distance up to 2t from R, the
probability p to choose a bin v solely depends on the sequence s(b, v) =
(s1, . . . , sd) of round numbers when the edges on the shortest path from R

to b were created. Set S :=
⋃2t−1

i=1 S2i−1, where Sd denotes the set of round
sequences s = (s1, . . . , sd) of (odd) length d(s) := d from balls to bins (inside
the tree). Denote for s ∈ S by p(s) the probability that a ball b within
distance 2t from R decides on (any) bin v with s(b, v) = s and by X the
random variable counting the number of balls deciding on R. Recall that for
any i ∈ {1, . . . , t}, we have ∆ti = 2L∆◦i . We compute

E[X] =
∑
s∈S

p(s)
|{b ∈ V◦ | s(b,R) = s}
|{v ∈ Vt | s(b, v) = s}|

=
∑
s∈S

p(s)
∆ts1Π

bd(s)/2c
i=1 ∆◦s2i∆

t
s2i+1

∆◦s1Π
bd(s)/2c
i=1 ∆ts2i∆

◦
s2i+1

=
∑
s∈S

p(s)2L

= 2L,

as each ball must decide with probability 1 on a bin within distance 2t (Con-
dition (ii) of Definition 7.6).

On the other hand, the maximal possible load of R is the number of balls

up to depth 2t of the tree, which we observed to be less than (2∆tt ∆◦t )
2t ∈

O((n/Tt−1)2) ⊂ o(log2 n). We infer that for sufficiently large n we have that
P [X > L] > 1/ log2 n, since otherwise

2L = E[X] ≤ (1− P [X > L])L+ P [X > L] log2 n < 2L.

As Lemma 7.8 states that the number of disjoint layered (∆t,∆◦, 2t)-
trees is at least Tt ∈ ω(

√
n/ logn) w.h.p., we have for the random variable Y
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counting the number of roots of such trees that get a bin load of more than
L that

E(Y ) ≥
(

1− 1

nc

)
P [X > L]Tt ∈ ω(logn).

Recall that Lemma 7.10 holds for fixed topologies of the trees, i.e., the es-
timates for P [X > L] and thus E(Y ) follow after fixing the topology up to
distance 2t+1 from all the roots first. Thus, the bound on the probability
that a root bin gets a load of more than L is independent of the other roots’
loads, since there is no communication between the involved balls. We con-
clude that we can apply Corollary 2.13 to Y in order to see that Y > 0 w.h.p.,
i.e., A′ incurs a maximal bin load larger than L w.h.p. Because A and A′
are w.h.p. equivalent, the same holds true for A, proving the claim.

7.2.1 Generalizations

For ease of presentation, the proof of the lower bound assumed that bins do
not contact other bins. This is however not necessary.

Corollary 7.11. Theorem 7.2 holds also if bins may directly exchange mes-
sages.

Proof Sketch. The presented technique is sufficient for the more general case,
as can be seen by the following reasoning. To adapt the proof, we have
to consider trees similar to layered (∆◦,∆t, 2t)-trees, where now also bins
form edges. Therefore, also bins may create an in each round exponentially
growing number of edges to other bins. However, the probability that a bin
is the root of such a tree structure in round i will still be lower bounded by

2−(n/Ti−1)f(t) , where f(t) is some function such that log∗(f(t)) ∈ log∗ t+O(1)
and Ti−1 is a lower bound on the number of such roots in round i−1. Hence,
Lemmas 7.7 and 7.8 can be changed accordingly. From that point on, the
remainder of the proof can be carried out analogously.

It is important to be aware that this holds only as long as bins initially
identify each other according to u.i.r. port numberings as well. If bins are
aware of a globally consistent labeling of all bins, an asymmetric algorithm
can be executed, as bins may support balls in doing asymmetric random
choices.

Similarly, the upper bound on the number of messages individual nodes
send can be relaxed.

Corollary 7.12. Theorem 7.2 holds also if nodes send at most λn messages
in total, where λ ∈ [0, 1) is a constant.
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Proof Sketch. The critical point of the argumentation is in the proof of
Lemma 7.9, where we replace nodes’ new contacts by u.i.r. chosen bins. For
large numbers of messages, we can no longer guarantee that increasing the
number of balls’ random choices by a constant factor can w.h.p. compensate
for the fact that balls will always contact different bins with each additional
message. Rather, we have to distinguish between nodes sending many mes-
sages and ones sending only few (e.g. polylogn). Only to the latter we apply
the replacement scheme.

Of course, this introduces new difficulties. For instance, we need to ob-
serve that still a constant fraction of the bins remains untouched by balls
sending many messages for the proof of Lemma 7.7 to hold. The worst case
here would be that O(1) nodes send λn messages during the course of the
algorithm, since the bound of O(n) total messages w.h.p. must not be vi-
olated. Thus, the probability that a bin is not contacted by such a ball is
lower bounded by

1− (1− λ)O(1) ⊆ Ω(1).

Using standard techniques, this gives that still many bins are never contacted
during the course of the algorithm w.h.p. Similarly, we need to be sure
that sufficiently many of the already constructed trees are not contacted by
“outsiders”; here we get probabilities that fall exponentially in the size of
such a tree, which is sufficient for the applied techniques.

Another aspect is that now care has to be taken when applying Theo-
rem 2.17 to finish the proof of Lemma 7.7. The problem here is that the
random variable describing the edges formed by a ball of large degree is not
the product of independent random variables. On the other hand, treating
it as a single variable when applying the theorem, it might affect all of the
layered trees, rendering the bound from the theorem useless. Thus, we resort
to first observing that not too many nodes will send a lot of messages, then
fixing their random choices, subsequently bounding the expected number of
layered trees conditional to these choices already being made, and finally
applying Theorem 2.17 merely to the respective random variable depending
on the edges created u.i.r. by balls with small degrees only.

Note that if we remove the upper bound on the number of messages a
single node might send entirely, there is a trivial solution:

1. With probability, say, 1/
√
n, a ball contacts

√
n bins.

2. These balls perform a leader election on the resulting graph (using
random identifiers).

3. Contacting all bins, the leader coordinates a perfect distribution of the
balls.
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In the first step O(n) messages are sent w.h.p. Moreover, the subgraph
induced by the created edges is connected and has constant diameter w.h.p.
Hence step 2, which can be executed with O(n) messages w.h.p., will result
in a single leader within a constant number of rounds, implying that step 3
requires O(n) messages as well. However, this algorithm introduces a central
coordination instance. If this was a feasible solution, there would be no need
for a parallel balls-into-bins algorithm in the first place.

In light of these results, our lower bound essentially boils down to the
following. Any acquaintance algorithm that guarantees w.h.p. both small
bin loads and asymptotically optimal O(n) messages requires (1−o(1)) log∗ n
rounds.



Chapter 8

Balls-into-Bins Algorithms

“I’m getting too old for this. I wish one day I’d manage to
finish earlier than the night of the deadline.” – Thomas Locher
right before submitting our first joint paper, at about 11 pm on
a Friday.

In this chapter, which is also based on [68, 69], we will match the lower
bound from the previous one. More precisely, we show that (i) a symmetric
algorithm can achieve a constant bin load in log∗ n + O(1) time with O(n)
messages w.h.p. and (ii) if we drop either of the requirements of symmetry,
constant maximal bin load, or O(n) total messages, a constant-time solution
exists. Moreover, we briefly present an application of the given techniques
to an exemplary routing problem.

8.1 Optimal Symmetric Algorithm

Our basic symmetric Algorithm Ab originates from a very simple idea. As-
sume that all balls behave identically. Given the constraint that we want
to guarantee a message complexity of O(n), it is infeasible that a ball sends
more than constantly many messages in the first round. Hence, let each ball
contact one random bin. The resulting distribution is well known; in partic-
ular, w.h.p. a fraction of 1 − 1/e ± o(1) of the bins will receive at least one
message. Since we strive for small bin loads, suppose each bin chooses one
of the balls it contacted to be placed into it.

A non-adaptive algorithm would be forced to place each ball into the
single bin it contacted, implying a roughly logarithmic maximal bin load.
Being adaptive, we can instead let each ball that could not be successfully
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placed try again by approaching a different bin. However, we can do better.
As we know that no more than (1 + o(1))n/e balls remain w.h.p., each such
ball may try out two random bins, still guaranteeing that we have less than
n requests in the second round. If again each bin accepts one request, the
probability of failure will be much smaller.

Roughly speaking, we can argue more generally as follows. The probabil-
ity of a ball not being placed in a round where it sends k requests is 2−Ω(k).
Using Chernoff’s bound, the number of remaining balls thus drops by (al-
most) this factor, enabling us to increase the number of requests comparably.
Overall, the number of requests in round i grows like Ω(i)2 until it becomes
e.g. logn. By then, each ball will be placed within a constant number of
rounds w.h.p.

Formally, initialized with k(1) := 1 and i := 1, Algorithm Ab executes
the following loop until termination:

1. Balls contact bk(i)c u.i.r. bins, requesting permission to be placed into
them.

2. Each bin accepts one of the requests (if it received any) and notifies
the respective ball.

3. Any ball receiving at least one acceptance notification chooses an ar-
bitrary of the respective bins to be placed into it and terminates.

4. Set k(i+ 1) := min{k(i)ebk(i)c/5,
√

logn} and i := i+ 1.

We will refer to a single execution of the loop of Ab (or our later algorithms)
as a phase.

Since in each phase of Ab some messages will reach their destination, the
algorithm will eventually terminate. To give strong bounds on its running
time, however, we need some helper statements. The first lemma states that
a sufficiently large uniformly random subset of the requests will be accepted
in step 2 of each phase.

Lemma 8.1. Denote by R the set of requests Ab generates in step 1 of a
phase. Provided that |R| ∈ [ω(logn), n] and n is sufficiently large, w.h.p. a
uniformly random subset of R of size at least |R|/4 is accepted in step 2.

Proof. Set λ := |R|/n ≤ 1. Consider the random experiment where |R| = λn
balls are thrown u.i.r. into n bins. We make a case differentiation. Assume
first that λ ∈ [1/4, 1]. Denote for l ∈ N0 by Bl the random variable counting
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the number of bins receiving exactly l balls. According to Corollary 2.16,

B1 ≥ λn− 2 (B0 − (1− λ)n)

∈
(

2− λ− 2(1 + o(1))e−λ
)
n

=
2− λ− 2(1 + o(1))e−λ

λ
|R|

w.h.p. Since λ ≥ 1/4, the o(1)-term is asymptotically negligible. Without
that term, the prefactor is minimized at λ = 1, where it is strictly larger
than 1/4.

On the other hand, if λ < 1/4, we may w.l.o.g. think of the balls as being
thrown sequentially. In this case, the number of balls thrown into occupied
bins is dominated by the sum of |R| independent Bernoulli variables taking
the value 1 with probability 1/4. Since |R| ∈ ω(logn), Corollary 2.13 yields
that w.h.p. at most (1/4 + o(1))|R| balls hit non-empty bins. For sufficiently
large n, we get that w.h.p. more than (1/2 − o(1))|R| > |R|/4 bins receive
exactly one ball.

Finally, consider step 1 of the algorithm. The above considerations show
that w.h.p. at least |R|/4 bins receive exactly one request, which they will
accept in step 2. Consider such a bin receiving exactly one request. Since
each ball sends each element of R it holds with probability 1/n to this bin,
the accepted request is drawn uniformly at random from R. Furthermore, as
we know that no other copy is sent to the bin, all other messages are sent with
conditional probability 1/(n − 1) each to any of the other bins. Repeating
this argument inductively for all bins receiving exactly one request, the claim
follows.

In order to apply the previous lemma repeatedly, we need to make sure
that the total number of requests in each round remains smaller than n.
This is connected to the fact that the fraction of non-placed balls drops
exponentially in the number of requests per ball w.h.p.

Lemma 8.2. For a phase i ∈ N of Ab, suppose the number of balls that have
not been placed yet is bounded by βi ≤ n/k(i) w.h.p., where βi ∈ R+. Then
the number of unplaced balls remaining after phase i is bounded by

max
{

(1 + o(1))e−k(i)/4βi, e
−
√

lognn
}

w.h.p.

Proof. If βi ≤ e−
√

lognn or n is constantly bounded, the statement is triv-
ial. Thus, as the βi remaining balls send k(i)βi ≤ n requests in phase i,
Lemma 8.1 states that w.h.p. a uniformly random subset of size at least
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k(i)βi/4 of the requests is accepted. For each ball, exactly k(i) requests are
sent. Hence, if we draw requests one by one, each message that we have not
seen yet has probability at least k(i)/(k(i)βi) = 1/βi to occur in the next
trial.

Thus, the random experiment where in each step we draw one of the βi
balls u.i.r. with probability 1/βi each and count the number of distinct balls
stochastically dominates the experiment counting the number of placed balls.
The former is exactly the balls-into-bins scenario from Lemma 2.15, where
(at least) k(i)βi/4 balls are thrown into βi bins. For n sufficiently large, we
have that

k(i) ≤
√

logn ≤ 2(lnn−
√

logn)

ln lnn
≤ 2 ln(k(i)βi)

ln lnn
.

Hence, Corollary 2.16 bounds the number of balls that cannot be placed in
phase i by (1 + o(1))e−k(i)/4βi w.h.p.

Finally, we need to show that the algorithm places a small number of
remaining balls quickly.

Lemma 8.3. Suppose that at the beginning of phase i0 ∈ N of Ab merely
e−
√

lognn balls have not been placed yet and k(i0) =
√

logn. Then all balls
are placed within O(1) more phases of Ab w.h.p.

Proof. Regardless of all other balls’ messages, each request has probability
at least 1−

√
logn e−

√
logn to be accepted. Thus, the probability that a ball

cannot be placed is independently bounded by(√
logn e−

√
logn

)k(i0)

⊆ n−Ω(1).

Since k(i) = k(i0) =
√

logn for all i ≥ i0, all balls are placed within O(1)
phases w.h.p.

Plugging these three lemmas together, we derive our performance bounds
on Ab.

Theorem 8.4. Ab solves Problem 6.1, guaranteeing the following properties:

• It terminates after log∗ n+O(1) rounds w.h.p.

• Each bin in the end contains at most log∗ n+O(1) balls w.h.p.

• In each round, the total number of messages sent is at most n w.h.p.
The total number of messages is in O(n) w.h.p.

• Balls send and receive O(1) messages in expectation and at most
O(
√

logn) messages w.h.p.
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• Bins send and receive O(1) messages in expectation and at most
O(logn/ log logn) messages w.h.p.

Furthermore, the algorithm runs asynchronously in the sense that balls and
bins can decide on any request respectively permission immediately, provided
that balls’ messages contain round counters. According to the previous state-
ments messages then have a size of O(1) in expectation and O(log log∗ n)
w.h.p.

Proof Sketch (see [68] for technical details). We apply Lemma 8.2 inductive-
ly to see that after a constant number of phases, the number of remaining
balls starts to drop exponentially in k(i) in each phase i w.h.p. Moreover,
the definition of k(i) and the lemma yield that the total number of messages
sent in each phase is monotonically decreasing and falls for sufficiently large
k(i) <

√
logn exponentially w.h.p. Lemma 8.3 shows that as soon as k(i)

becomes
√

logn, the algorithm terminates in a constant number of rounds
w.h.p.

By basic calculations with log∗, one infers that w.h.p. the algorithm ter-
minates within log∗ n+O(1) phases and thus also rounds, which immediately
implies a maximal bin load of log∗ n+O(1). Together with the above state-
ments about the number of messages sent, this also proves the third and
fourth statement as well as the bound on the expected number of messages
bins send and receive. The fact that w.h.p. O(n) messages are sent in total
to u.i.r. bins implies by Corollary 2.13 the bound on the maximal number
of messages bins send and receive. Since Lemma 8.1 argues about the bins
receiving exactly one request in a given phase only, all results also hold for
the asynchronous case.

We remark that a more careful analysis would allow for a smaller cap on
the maximal number of requests a ball sends in a given round. This can be
seen in the proof of Lemma 8.3, where we did not exploit that the number
of remaining balls still drops quickly once the arbitrarily chosen threshold of
e−
√

lognn is reached, i.e., the probability for a collision falls further. Incurring
a larger time complexity of e.g. (1 + o(1)) log∗ n or O(log∗ n) permitted to
reduce this bound even more.

The simple approach that motivated Algorithm Ab is quite flexible, as a
number of corollaries will demonstrate. We give only the key arguments of
the proofs and refer to [68] for details. Our first observation is that, without
surprise, starting with less balls leads to earlier termination.

Corollary 8.5. If only m := n/ log(r) n balls are to be placed into n bins for
some r ∈ N, Ab initialized with k(1) := blog(r) nc terminates within r+O(1)
rounds w.h.p.



104 CHAPTER 8. BALLS-INTO-BINS ALGORITHMS

Proof. This can be viewed as the algorithm being started in a later round,
and only log∗ n− log∗(log(r) n) +O(1) = r+O(1) more rounds are required
for the algorithm to terminate.

More interestingly, this can be used to enforce a constant time complexity
at the expense of slightly larger bin loads.

Corollary 8.6. For any r ∈ N, Ab can be modified into an Algorithm Ab(r)
that guarantees a maximal bin load of log(r) n/ log(r+1) n + r + O(1) w.h.p.
and terminates within r+O(1) rounds w.h.p. Its message complexity respects
the same bounds as the one of Ab.

Proof sketch. In order to speed up the process, we rule that in the first phase
bins accept up to l := blog(r) n/ log(r+1) nc many balls. Computation and
Chernoff’s bound show that w.h.p. no more than polylogn+2−Ω(l log l)n balls
remain after the first phase. By Corollary 8.5 this implies the statement.

Another appealing side effect of the adaptive increase in the number of
requests is that it deals with faults implicitly.

Corollary 8.7. Algorithm Ab can be modified to tolerate independent mes-
sage loss with constant probability p. The properties from Theorem 8.4 remain
untouched except that balls now send w.h.p. at most O(logn) messages.

Proof Sketch. In step 4 of Ab we set

k(i+ 1) := min{k(i)eb(1−p)
2k(i)c/5, logn}.

Essentially the reasoning remains the same, except that a request or the
respective response may get lost with independent probability (1 − p) each,
necessitating to increase k(i) more slowly. Moreover, even if few balls remain,
still each request has constant probability to fail. Therefore, we need to
increase the bound on k(i) to logn to ensure quick termination.

The same technique permits to enforce a maximal bin load of two.

Corollary 8.8. We modify Ab into A2
b by ruling that any bins having already

accepted two balls refuse any further requests in step 2, and in step 4 we set

k(i+ 1) := min{k(i)ebk(i)c/10, logn}.

Then the statements of Theorem 8.4 remain true except that balls now send
O(logn) instead of O(

√
logn) messages w.h.p. In turn, the maximal bin load

of the algorithm becomes two.
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Proof Sketch. Trivially, at any time no more than half of the bins may have
two balls placed into them. Thus, if balls inform the bins they commit to,
always at least half of the bins are capable of accepting a ball. Consequently,
the same reasoning as for Corollary 8.7 applies.

The observation that neither balls nor bins need to wait prior to reacting
to a message implies that our algorithms can also be executed sequentially,
placing one ball after another. In particular, we can guarantee a bin load
of two efficiently. This corresponds to the simple sequential algorithm that
queries for each ball sufficiently many bins to find one of load less than two.

Lemma 8.9. An adaptive sequential balls-into-bins algorithm Aseq exists
guaranteeing a maximal bin load of two, requiring at most (2+o(1))n random
choices and bin queries w.h.p.

Proof. The algorithm simply queries u.i.r. bins until one of load less than
two is found; then the current ball is placed and the algorithm proceeds
with the next. Since at least half of the bins have load less than two at any
time, each query has independently a probability of at least 1/2 of being
successful. Therefore, it can be deduced from Corollary 2.13 that no more
than (2 + o(1))n bin queries are necessary to place all balls w.h.p.

8.2 Optimal Asymmetric Algorithm

In this section, we will show that asymmetric algorithms can indeed obtain
constant bin loads in constant time, at asymptotically optimal communica-
tion costs. Note that for asymmetric algorithms, we can w.l.o.g. assume that
n is a multiple of some number l ∈ o(n), since we may simply opt for ig-
noring negligible n− lbn/lc bins. We start by presenting a simple algorithm
demonstrating the basic idea of our solution. Given l ∈ O(logn) that is a
factor of n, A1(l) is defined as follows.

1. Each ball contacts one bin chosen uniformly at random from the set
{il | i ∈ {1, . . . , n/l}}.

2. Bin il, i ∈ {1, . . . , n/l}, assigns up to 3l balls to the bins (i − 1)l +
1, . . . , il, such that each bin gets at most three balls.

3. The remaining balls (and the bins) proceed as if executing the sym-
metric Algorithm A2

b , however, with k initialized to k(1) := 2αl for an
appropriately chosen constant α > 0.

Essentially, we create buckets of non-constant size l in order to ensure that
the load of these buckets is slightly better balanced than it would be the case
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for individual bins. This enables the algorithm to place more than a constant
fraction of the balls immediately. Small values of l suffice for this algorithm
to terminate quickly.

Lemma 8.10. Algorithm A1(l) solves Problem 6.4 with a maximal bin load
of three. It terminates within log∗ n− log∗ l +O(1) rounds w.h.p.

Proof. Let for i ∈ N0 Y i denote the random variables counting the num-
ber of bins receiving at least i messages in step 1. From Lemma 2.15 we
know that Corollary 2.13 applies to these variables, i.e., |Y i − E[Y i]| ∈
O
(

logn+
√

E[Y i] logn
)

w.h.p. Consequently, we have that the number

Y i − Y i+1 of bins receiving exactly i messages differs by at most O
(

logn+√
max{E[Y i],E[Y i+1]} logn

)
from its expectation w.h.p. Moreover, Corol-

lary 2.13 states that these bins receive at most l + O(
√
l logn + logn) ⊂

O(logn) messages w.h.p., i.e., we need to consider values of i ∈ O(logn)
only.

Thus, the number of balls that are not accepted in the first phase is
bounded by

n∑
i=3l+1

(i− 3l)
(
Y i − Y i+1

)

∈
O(logn)∑
i=3l+1

(i− 3l)E
[
Y i − Y i+1

]
+O

(√
n logn

)

⊆ n

l

O(logn)∑
i=3l+1

(i− 3l)

(
n

i

)(
l

n

)i(
1− l

n

)n−i
+O

(√
n logn

)

⊆ n

l

O(logn)∑
i=3l+1

(i− 3l)

(
el

i

)i
+O

(√
n logn

)
⊆ n

l

∞∑
j=1

jl
( e

3

)(j+2)l

+O
(√

n logn
)

⊆ O
(( e

3

)2l

n+
√
n logn

)
⊆

(
3

e

)−(2−o(1))l

n+O
(√

n logn
)

w.h.p., where in the third step we used the inequality
(
n
i

)
≤ (en/i)i.

Thus, w.h.p. at most 2−Ω(l)n + O
(√
n logn

)
balls are not assigned in

the first two steps. Hence, according to Corollary 8.5, we can deal with the



8.2. OPTIMAL ASYMMETRIC ALGORITHM 107

remaining balls within log∗ n − log∗ l + O(1) rounds by running A2
b with k

initialized to 2αl for α ∈ (2−o(1)) log(3/e) when executing As. We conclude
that A1(l) will terminate after log∗ n−log∗ l+O(1) rounds w.h.p. as claimed.

In particular, if we set l := log(r) n, for any r ∈ N, the algorithm termi-
nates within r + O(1) rounds w.h.p. However, the result of Lemma 8.10 is
somewhat unsatisfactory with respect to the balls-into-bins problem, since
a subset of the bins has to deal with an expected communication load of
l + O(1) ∈ ω(1). Hence, we want to modify the algorithm such that this
expectation is constant.

To this end, assume that l ∈ O(logn/ log logn) and l2 is a factor of n.
Consider the following algorithm A2(l) which assigns balls as coordinators of
intervals of up to l2 consecutive bins.

1. With probability 1/l, each ball picks one bin interval Ij := {(j − 1)l+
1, . . . , jl}, j ∈ {1, . . . , n/l}, uniformly at random and contacts these
bins. These messages from each ball contain a (for each ball fixed)
string of d(c+ 2) logne random bits.

2. Each bin that receives one or more messages sends an acknowledgement
to the ball whose random string represents the smallest number; if two
or more strings are identical, no response is sent.

3. Each ball b that received acknowledgements from a contacted inter-
val Ij queries one u.i.r. chosen bin from each interval Ij+1, . . . , Ij+l−1

(taking indices modulo n/l) whether it has previously acknowledged a
message from another ball; these bins respond accordingly. Ball b be-
comes the coordinator of Ij and all consecutive intervals Ij+1, . . . , Ij+k,
k < l such that none of these intervals has already responded to an-
other ball in step 2.

The algorithm might miss some bin intervals, but overall most of the bins
will be covered.

Lemma 8.11. When A2(l) terminates after a constant number of rounds,
w.h.p. all but 2−Ω(l)n bins have a coordinator. The number of messages sent
or received by each ball is constant in expectation and at most O(l). The
number of messages sent or received by each bin is constant in expectation
and O(logn/ log logn) w.h.p. The total number of messages is in O(n) w.h.p.

Proof. The random strings chosen in step 2 are unique w.h.p., since the
probability that two individual strings are identical is at most 2−(c+2) logn =
n−(c+2) and we have

(
n
2

)
< n2 different pairs of balls. Hence, we may w.l.o.g.
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assume that no identical strings are received by any bins in step 2 of the
algorithm.

In this case, if for some j the bins in Ij are not contacted in steps 1 or 3,
this means that l consecutive intervals were not contacted by any ball. The
probability for this event is bounded by(

1− 1

l
· l

n/l

)n
=

(
1− l

n

)n
< e−l,

Hence, in expectation less than e−ln/l intervals get no coordinator assigned.
The variables indicating whether the Ij have a coordinator are negatively

associated, as can be seen as follows. We interpret the first round as throwing
n balls u.i.r. into n bins, of which n/l are labeled I1, . . . , In/l. An interval
Ij has a coordinator exactly if one of the bins Ij−l+1, . . . , Ij (again, indices
modulo n/l) receives a ball. We know from Lemma 2.15 that the indicator
variables Y 1

i counting the non-empty bins are negatively associated; however,
the third step of its proof uses Statement (iii) from Lemma 2.14, which ap-
plies to any set of increasing functions. Since maxima of increasing functions
are increasing, also the indicator variables max{Y 1

Ij−l+1
, Y 1
Ij−l+2

, . . . , Y 1
Ij
} are

negatively associated.
Therefore, Corollary 2.13 yields that the number of intervals that have

no coordinator is upper bounded by O(e−ln/l+ logn) w.h.p. Consequently,
w.h.p. all but O(e−ln+ l logn) ⊆ e−Ω(l)n bins are assigned a coordinator.

Regarding the communication complexity, observe that balls send at most
O(l) messages and participate in the communication process with probability
1/l. In expectation, n/l balls contact u.i.r. chosen bin intervals, implying that
bins receive in expectation one message in step 1. Similarly, at most l balls
pick u.i.r. bins from each Ij to contact in step 3. Since in step 3 at most l−1
messages can be received by bins, it only remains to show that the bound
of O(logn/ log logn) on the number of messages bins receive in step 1 holds.
This follows from the previous observation that we can see step 1 as throwing
n balls u.i.r. into n bins, where n/l bins represent the Ij . For this setting
the bound follows from Lemma 2.15 and Corollary 2.13. Finally, we apply
Corollary 2.13 to the number of balls choosing to contact bins in step 1 in
order to see that O(n) messages are sent in total w.h.p.

Finally, algorithm A(l) essentially plugs A1(l) and A2(l) together, where
l ∈ O(

√
logn) and l2 is a factor of n.

1. Run Algorithm A2(l).

2. Each ball contacts one bin, chosen uniformly.

3. Each coordinator contacts the bins it has been assigned to by A2(l).
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4. The bins respond with the number of balls they received a message
from in step 2.

5. The coordinators assign (up to) three of these balls to each of their
assigned bins. They inform each bin where the balls they received
messages from in step 2 need to be redirected.

6. Each ball contacts the same bin as in step 2. If the bin has a co-
ordinator and the ball has been assigned to a bin, the bin responds
accordingly.

7. Any ball receiving a response informs the respective bin that it is placed
into it and terminates.

8. The remaining balls (and the bins) proceed as if executing Algorithm
A2
b , however, with k initialized to k(1) := 2αl for an appropriately

chosen constant α > 0.

Theorem 8.12. Algorithm A(l) solves Problem 6.4 with a maximal bin load
of three. It terminates after log∗ n−log∗ l+O(1) rounds w.h.p. Both balls and
bins send and receive a constant number of messages in expectation. Balls
send and receive at most O(logn) messages w.h.p., bins O(logn/ log log n)
many w.h.p. The total number of messages is in O(n) w.h.p.

Proof. Lemma 8.11 states that all but 2−Ω(l)n bins have a coordinator.
Steps 2 to 7 of A(l) emulate steps 1 and 2 of Algorithm A1(l) for all balls that
contact bins having a coordinator. By Lemma 8.10, w.h.p. all but 2−Ω(l)n
of the balls could be assigned if the algorithm would be run completely, i.e.,
with all bins having a coordinator. Since w.h.p. only 2−Ω(l)n bins have no
coordinator and bins accept at most three balls, we conclude that w.h.p. after
step 7 of A(l) merely 2−Ω(l)n balls have not been placed into bins. Thus,
analogously to Lemma 8.10, step 8 will require at most log∗ n− log∗ l+O(1)
rounds w.h.p. Since steps 1 to 7 require constant time, the claimed bound
on the running time follows.

The bounds on message complexity and maximal bin load are direct con-
sequences of Corollary 8.5, Lemma 8.11, the definition of A(l), and the bound
of O(

√
logn) on l.

Thus, choosing l = log(r) n for any r ∈ N, Problem 6.4 can be solved
within r +O(1) rounds.
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8.3 Symmetric Solution Using ω(n) Messages

A similar approach is feasible for symmetric algorithms if we permit ω(n)
messages in total. Basically, Algorithm A(l) relied on asymmetry to assign
coordinators to a vast majority of the bins. Instead, we may settle for coor-
dinating a constant fraction of the bins; in turn, balls will need to send ω(1)
messages to find a coordinated bin with probability 1− o(1).

Consider the following Algorithm Aω(l), where l ≤ n/ logn is integer.

1. With probability n/l, a ball contacts a uniformly random subset of l
bins.

2. Each bin receiving at least one message responds to one of these mes-
sages, choosing arbitrarily. The respective ball is the coordinator of
the bin.

This simple algorithm guarantees that a constant fraction of the bins will be
assigned to coordinators of Ω(l) bins.

Lemma 8.13. When executing Aω(l), bins receive O(logn/ log log n) mes-
sages w.h.p. In total O(n) messages are sent w.h.p. W.h.p., a constant
fraction of the bins is assigned to coordinators of Ω(l) bins.

Proof. Corollary 2.13 states that in step 1 w.h.p. Θ(n/l) balls decide to con-
tact bins, i.e., Θ(n) messages are sent. As before, the bound on the number
of messages bins receive follows from Lemma 2.15 and Corollary 2.13. Using
Lemma 2.15 and Corollary 2.13 again, we infer that w.h.p. a constant frac-
tion of the bins receives at least one message. Thus, Θ(n/l) balls coordinate
Θ(n) bins, implying that also Θ(n) bins must be coordinated by balls that
are responsible for Ω(l) bins.

Permitting communication exceeding n messages by more than a constant
factor, this result can be combined with the technique from Section 8.1 to
obtain a constant-time symmetric algorithm.

Corollary 8.14. For l ∈ O(logn), an Algorithm Ac(l) exists that sends
O(ln) messages w.h.p. and solves Problem 6.3 with a maximal bin load of
O(1) within log∗ n− log∗ l+O(1) rounds w.h.p. Balls send and receive O(l)
messages in expectation and O(logn) messages w.h.p.

Proof Sketch. W.h.p., Algorithm Aω(l) assigns coordinators to a constant
fraction of the bins such that these coordinators control l0 ∈ Ω(l) bins. The
coordinators inform each of their bins b of the number of bins `(b) they
supervise, while any other ball contacts a uniformly random subset of l bins.
Such a bin b, if it has a coordinator, responds with the value `(b). Note that
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the probability that the maximal value a ball receives is smaller than l0 is
smaller than 2−Ω(l); Corollary 2.13 therefore states that w.h.p. (1− 2−Ω(l))n
balls contact a bin b with `(b) ≥ l0.

Next, these balls contact a bin b from which they received a value `(b) ≥
l0, where they pick a feasible bin uniformly at random. The respective co-
ordinators assign (at most) constantly many of these balls to each of their
bins. By the same reasoning as in Lemma 8.10, we see that (if the constant
was sufficiently large) all but 2−Ω(l)n balls can be placed. Afterwards, we
again proceed as in Algorithm A2

b , with k initialized to 2αl for an appropriate
α > 0; analogously to Lemma 8.10 we obtain the claimed running bound.
The bounds on message complexity can be deduced from Chernoff bounds
as usual.

Again, choosing l = log(r) n for any r ∈ N, Problem 6.3 can be solved
within r +O(1) rounds using O(n log(r) n) messages w.h.p.

8.4 An Application

We conclude this chapter by briefly presenting an exemplary application of
our results. Consider the following routing problem. Assume we have a
system of n fully connected nodes, where links have uniform capacity. All
nodes have unique identifiers, that is, v ∈ V denotes both the node v and its
identifier. For the sake of simplicity, let communication be synchronous and
reliable. During each synchronous round, nodes may perform arbitrary local
computations, send a (different) message to each other node, and receive
messages.

Ideally, we would like to fully exploit the outgoing and incoming band-
width (whichever is more restrictive) of each node with marginal overhead
w.h.p. More precisely, we strive for enabling nodes to freely divide the mes-
sages they can send in each round between all possible destinations in the
network. Naturally, this is only possible to the extent dictated by the capa-
bility of nodes to receive messages in each round, i.e., the amount of time
required can at best be proportional to the maximal number of messages any
node must send or receive, divided by n.

This leads to the following problem formulation.

Problem 8.15 (Information Distribution Task). Each node v ∈ V is given
a (finite) set of messages

Sv = {mi
v | i ∈ Iv}

with destinations d(mi
v) ∈ V , i ∈ Iv. Messages can be distinguished (e.g.,

by including the sender’s identifier and the position in an internal ordering



112 CHAPTER 8. BALLS-INTO-BINS ALGORITHMS

of the messages of that sender). The goal is to deliver all messages to their
destinations, minimizing the total number of rounds. By

Rv :=

{
mi
w ∈

⋃
w∈V

Sw

∣∣∣∣∣ d(mi
w) = v

}

we denote the set of messages a node v ∈ V shall receive. We abbreviate
Ms := maxv∈V |Sv| and Mr := maxv∈V |Rv|, i.e., the maximal numbers of
messages a single node needs to send or receive, respectively.

Note that this task is not trivial, as nodes have no information on who
wants to send messages to whom, while indirection is crucial to achieve a
small time complexity. Abstractly speaking, we have n concurrent balls-
into-bins problems: If we can for each node v ∈ V distribute the messages
destined to it among all other nodes in a constant number of rounds, such
that no node holds more than constantly many messages for each destination,
all messages can be delivered within constant time. Thus, using the approach
from Section 8.2, the following statement can be derived (cf. [68]).

Theorem 8.16. Problem 8.15 can be solved in

O
(
Ms +Mr

n

)
rounds w.h.p.

As can be seen from this bound, it is feasible to apply our techniques also
if the number of balls m is not at most the number of bins n. Essentially,
this is accounted for by increasing the maximal bin load to O(m/n).

Similar results are obtained if one bases a solution on Algorithm Ab,
however, with an additive term of O(log∗ n) in the time needed to solve
Problem 8.15 [68]. Figure 8.1 shows simulation results agreeing with the
bounds from our analysis.



8.4. AN APPLICATION 113

Figure 8.1: Simulations of a solution to Problem 8.15 based on Algorithm Ab.
Number of remaining messages plotted against passed phases (taking two
rounds each). 512 runs were simulated for 32 (left) and 64 (right) nodes.
(Ms +Mr)/n was close to 2 for all runs. In both cases, most of the instances
terminated after three phases; for 32 nodes, a single instance required 5
phases.
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Chapter 9

An Introduction to Graph Problems

“How many papers have you published yet?” – “Three.” – “And
how long are your studies supposed to take?” – “Three years.”
– “Then you have to write six more papers before you’re done!”
– My mother’s approximation to the number of publications that
make up a thesis.

In large parts, theoretical computer science is the study of the complexity
of archetypical problems, many of which are naturally formulated on graphs.
Traditionally, one primarily examines how many sequential computing steps
are required to solve an instance of a problem in the worst case. This is mea-
sured in terms of the input size, frequently expressed by the number of nodes
n. With the advent of distributed computing, this approach had to be recon-
sidered. While NP-hard problems remain (supposedly) intractable even if one
increases the computing power by factor n, the main hurdles for “solvable”
graph problems in distributed systems are usually limits on communication
and concurrency. In fact, classical distributed symmetry breaking problems
like finding a coloring of the nodes with ∆+1 colors (see Definition 2.25) or a
maximal set of non-adjacent nodes (see Definition 9.6 are completely trivial
from the perspective of sequential algorithms.

In this part of this thesis, we consider two well-known graph problems,
the first being the minimum dominating set problem.

Definition 9.1 (Dominating Sets). Given a graph G = (V,E), a node v ∈ V
(set A ⊆ V ) covers N+

v (N+
A ). The set D ⊆ V is a dominating set (DS) if it

covers V . A dominating set of minimal cardinality is a minimum dominating
set (MDS).
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As easy as it is to state the problem of finding a minimum dominating
set, as difficult it is to solve. In fact, finding a minimum dominating set was
one of the first tasks known to be NP-hard [37]. Consequently, one typically
is satisfied with an approximative solution.

Definition 9.2 (Minimum Dominating Set Approximations). Given f ∈
R+, a DS D is an f MDS approximation, if |D| ≤ f |M | for any MDS
M . For f : N → R+, an f approximation algorithm for the MDS problem
returns for any feasible graph of n nodes a DS that is an f(n) approximation.
For randomized algorithms this might happen only with at least a certain
probability; this probability bound however must not depend on the particular
instance.

In general, it is also NP-hard to compute a C log ∆ approximation [95],
where C > 0 is some constant. Indeed, unless NP is a subset of the problems
that can be solved within nO(log logn) steps, a (1− o(1)) ln ∆ approximation
is intractable in general graphs.

While this bound is easily matched by the centralized algorithm that al-
ways picks the node covering the most yet uncovered nodes, the distributed
case is more involved. Here, the lower bound on the approximation ratio
can be asymptotically matched within O(logn) rounds by a randomized al-
gorithm [56], whereas any distributed algorithm achieving a polylogarithmic
approximation must take Ω(log ∆) and Ω(

√
logn) rounds [54]. Therefore, the

algorithm from [56] is O(logn/ log ∆)-optimal with respect to the running
time. We remark, though, that the algorithm makes use of messages whose
size respects no non-trivial bound, i.e., nodes might need to learn about the
entire graph. For this reason, the authors also propose a variant of their
algorithm running in O(log2 ∆) rounds with message size O(log ∆), yielding
a complexity gap of O(log ∆) in running time.

While not tight, these results seem to suggest that we are not far from
understanding the distributed complexity of the MDS problem. We believe
that this is not the case. The lower bound from [54] is based on graphs that
have large girth, yet many edges. Although such graphs exist and show that
there is no algorithm solving the problem more efficiently in any graph of n
nodes or maximum degree ∆, in a practical setting one will never encounter
one of these constructed instances. Thus, we argue that it is reasonable to
restrict inputs to graph families which occur in realistic settings. Of course,
this approach suffers from the drawback that it is not trivial to find appropri-
ate families of graphs—supposing they even exist—offering both sufficiently
efficient solutions as well as wide practical applicability. We do not claim to
have a satisfying answer to this question. Instead, we confine ourselves to
striving for an extended knowledge on the complexity of the MDS problem
in restricted families of graphs.
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To this end, we devise two MDS approximation algorithms for graphs of
small arboricity presented in Chapter 12.

Definition 9.3 (Forest Decomposition and Arboricity). For f ∈ N0, an f -
forest decomposition of a graph G = (V,E) is a partition of the edge set into
f rooted forests. The arboricity A(G) is the minimum number of forests in
a forest decomposition of G.

The graph class of (constantly) bounded arboricity is quite general, as
any family of graphs excluding a fixed minor has bounded arboricity.

Definition 9.4 (Contractions and Minors). Given a simple graph G, a minor
of G can be obtained by any sequence of the following operations.

• Deleting an edge.

• Deleting a node.

• Contracting an edge {v, w}, i.e., replacing v and w by a new node u
such that Nu := (Nv ∪Nw)/{v, w}.

Note, however, that graphs of bounded arboricity may contain arbitrary
minors. In particular, if we take the complete graph K√n of

√
n nodes and

replace its edges by edge-disjoint paths of length two, we obtain a graph of
fewer than n nodes and arboricity two that has K√n as minor. Therefore,
demanding bounded arboricity is considerably less restrictive than excluding
the existence of certain minors.

Both presented algorithms improve on the results from [56] that apply
to general graphs. However, the lower bound from [54] does not hold for
graphs of bounded arboricity, yet these algorithms have logarithmic running
times. In Chapter 13, we present a different approach that on planar graphs
achieves an O(1) approximation in a few number of rounds.

Definition 9.5 (Planarity). A graph G is planar if and only if it can be
drawn in the two-dimensional plane such that no two nodes are mapped to
the same point and edges intersect at their endpoints only. Equivalently, G is
planar if and only if it does neither contain K3,3 nor K5 as a minor, where
Kk,k, k ∈ N, is the complete bipartite graph of k nodes each and Kk is the
complete graph of k nodes.

Although our algorithm for planar graphs is not practical due to the use
of large messages, we deem this result interesting because it shows that a
fast solution exists in a graph family where an O(1) approximation is not
immediately evident. In contrast, in trees the set of inner nodes forms a
three approximation, for instance, and in graphs of bounded degree ∆ taking
all nodes yields a ∆ + 1 approximation.
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Our algorithms and the one from [56] share two similarities. On the one
hand, they all act greedily in one way or the other. Considering that the
sequential algorithm matching the (1−o(1)) lnn lower bound on the approx-
imation ratio on general graphs is also greedy, this could be anticipated. More
interestingly, a main obstacle for all these algorithms is symmetry breaking.
While in [56] this is achieved by randomized rounding, our algorithms ex-
ploit the additional structure present in graphs of small arboricity and pla-
nar graphs, respectively. Nevertheless, one of our algorithms additionally
relies on randomized symmetry breaking, employing a standard technique
for constructing a so-called maximal independent set.

Definition 9.6 (Independent Sets). Given a graph G = (V,E), a subset of
the nodes I ⊆ V is an independent set (IS), if for any v, w ∈ I, v 6= w,
we have that {v, w} 6∈ E. An IS is a maximal independent set (MIS), if no
nodes can be added without destroying independence, i.e., for all v ∈ V \ I,
the set I ∪ {v} is not independent. A maximum independent set (MaxIS) is
an IS of maximal size.

Note that any MIS is a DS. Moreover, an MIS can be very different from
a MaxIS, as can be seen by example of the star graph.

Computing an MIS sequentially is trivial, whereas in general graphs the
best known distributed solutions run in O(logn) randomized rounds [2, 43,
73, 80]. In case of MIS the lower bound construction from [54] applies to line
graphs and proves this to be optimal up to a factor of O(

√
logn). Except for

graph classes where the problem is much simpler because the number of inde-
pendent nodes in a neighborhood is small, no considerably faster distributed
algorithms are known. In particular, even in a (non-rooted) forest the fastest
solution takes O(logn/ log logn) rounds, while the strongest lower bound is
Ω(log∗ n) [70, 89]. This startling complexity gap motivates to study the MIS
problem in forests, which we do in Chapter 10.

Finally, we consider unit disk graphs, where the problems of finding an
MIS and approximating an MDS are closely related, as any MIS is a constant-
factor MDS approximation.

Definition 9.7 (Unit Disk Graphs). A unit disk graph G(ι) = (V,E) is de-
fined by a mapping ι : V → R2, where E :=

{
{v, w} ∈

(
V
2

) ∣∣ ‖v − w‖R2 ≤ 1
}

.

For this family of graphs, we generalize the lower bound from [70] in
Chapter 11 to show that no deterministic algorithm can find a constant-
factor MDS approximation in o(log∗ n) rounds; this bound has been matched
asymptotically [98].

Unit disk graphs and generalizations thereof have been employed in the
study of wireless communication to model interference and communication
ranges [53, 76]. The algorithm from [98] is efficient for the much larger class



9.1. MODEL 121

of graphs of bounded growth which satisfies that the number of independent
nodes up to a certain distance r is bounded by some function f(r) that is
independent of n. Thus, together these bounds classify the deterministic com-
plexity of finding a constant MDS approximation in geometric graph families
up to constants. We remark, though, that neither the technique from [98]
nor our lower bound apply if one uses the more sophisticated physical model
(see e.g. [88] and references therein).

9.1 Model

In this part of the thesis, we make use of a very simple network model. We
assume a fault-free distributed system. A simple graph G = (V,E) describes
the MDS or MIS problem instance, respectively, as well as the communication
infrastructure. In each synchronous round, each node v ∈ V may send a
(different) message to each of its neighbors w ∈ Nv, receives all messages
from its neighbors, and may perform arbitrary finite local computations.
Initially, node v knows its neighbors Nv and possibly a unique identifier of
size O(logn).

For some algorithms a port numbering is sufficient, i.e., the node v has
a bijective mapping p(v, ·) : Nv → {1, . . . , |Nv|} at hand. When sending a
message, it may specify which neighbor receives which message by means of
the respective port numbers. When receiving, it can tell apart which neighbor
sent which message, also in terms of its port numbering. At termination, the
node must output whether it is part of the DS or MIS, respectively, and these
outputs must define a valid solution of the problem with regard to G.

In the context of distributed graph algorithms, this abstract model can
be motivated as follows.

• Asynchronicity can be dealt with by a synchronizer (cf. [3]).

• Recovery from transient faults can be ensured by making the algorithm
self-stabilizing (see Definition 5.27). There is a simple transformation
from algorithms obeying the given model to self-stabilizing ones [5, 64].

• Changing topology due to joining and leaving nodes, crash failures,
etc. also changes the input, i.e., we need to rerun the algorithm on the
new topology.

• With respect to lower bounds, we typically restrict neither the number
of messages nor their size. For algorithms, these values should of course
be small. This is not enforced by the model, but considered as quality
measure like the running time.
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• Local computation and memory are typically not critical resources, as
the most efficient algorithms usually are not highly complicated (within
a small number of rounds, only little information is available that can
be processed).

Note that if the algorithm terminates within T rounds, recovery from faults
or adaption to new topology require local operations up to distance at most
T from the event only. In particular, if T is sublogarithmic and degrees are
bounded, we get a non-trivial bound on the size of the subgraph that may
affect the outcome of a node’s computations. This underlines the importance
of both upper and lower bounds on the time complexity of algorithms in this
model; for small time complexities, this might even be the most significant
impact of such bounds – for applications the difference between 5 and 10
rounds of communication might be of no concern, but whether a small frac-
tion or the majority of the nodes has to re-execute the algorithm and change
its state in face of e.g. a single node joining the network could matter a lot.

9.2 Overview

In Chapter 10 we propose an algorithm computing an MIS in non-rooted
forests. For rooted forests, the problem is known to have a time complexity of
Θ(log∗ n) [19, 89]. In contrast, for non-rooted forests no stronger lower bound
is known, yet the previously fastest algorithm requires Θ(logn/ log log n)
rounds [9]. With a running time of O(

√
logn log logn), our result reduces

this gap considerably.

To be fair, the deterministic algorithm from [9] is efficient for the much
more general class of graphs of bounded arboricity. However, it makes use of
an f -forest decomposition requiring at least Ω(logn/ log f) rounds, as derived
in [9] from a coloring lower bound by Linial [70]. Hence, this technique
cannot be made faster. Moreover, once the decomposition is obtained, the
respective algorithm makes heavy use of the fact that the outdegree (i.e., the
number of parents) of each node is small. Similarly, other fast solutions that
run in time Θ(log∗ n) on rooted forests [19], graphs of bounded degree [40],
or graphs of bounded growth [98] exploit that in one way or another the
number of neighbors considered by each node can be kept small. By partly
related techniques, one can color the graph with ∆+1 colors and subsequently
incrementally add still independent nodes of each color to an IS concurrently,
until eventually an MIS has been constructed. This results in deterministic
algorithms with a running time of O(∆ + log∗ n) [8, 49]. See Table 9.1 for
an overview of results on MIS computation.

In light of these results and the fact that forests are a very restrictive
graph family, maybe the most interesting point about the algorithm presented



9.2. OVERVIEW 123

Table 9.1: Upper and lower bounds on distributed time complexities of the
MIS problem in various graph families.

graph family running time deterministic

general [2, 43, 73, 80] O(logn) no

general [90] 2O(
√

logn) yes

line graphs [54] Ω
(
min

{√
logn, log ∆

})
no

rings & forests [73, 89] log∗ n
2
−O(1) no

rings & rooted forests [19] O(log∗ n) yes

maximum degree ∆ [8, 49] O(∆ + log∗ n) yes

bounded growth [98] O(log∗ n) yes

bounded arboricity [9] O
(

logn
log logn

)
yes

forests (Chapter 10) O
(√

logn log log n
)

no

in Chapter 10 is the following: Despite an unbounded number of independent
neighbors and the lack of a conducive edge orientation, it can break symmetry
in considerably sub-logarithmic time.

In Chapter 11, we turn to studying the problem of approximating an
MDS in unit disk graphs. Leveraging Linial’s lower bound [70] of (log∗ n −
1)/2 on the number of rounds required to compute a 3-coloring or maximal
independent set on the ring, we can show that no deterministic algorithm
can compute an f(n) approximation in g(n) rounds if f(n)g(n) ∈ o(log∗ n).
Independently, Czygrinow et al. showed by a related, but different approach
that a constant approximation is impossible within o(log∗ n) rounds [25].

On the other hand, unit disk graphs feature bounded growth, i.e., the
maximal number of independent nodes in each r-hop neighborhood is poly-
nomially bounded in r:

∀v ∈ V, r ∈ N : max
IS I⊆N (r)

v

{|I|} ≤ f(r),

where f is some polynomial. This property can be exploited in order to
compute an MIS in O(log∗ n) deterministic rounds [98]. Note that graphs
of bounded growth (and thus in particular unit disk graphs) also exhibit the
weaker property of bounded independence, i.e., the neighborhood of each node
contains a constantly bounded number of independent nodes only. This im-
plies that an MIS (which is always a DS) is an O(1) MDS approximation, as
the size of any IS is bounded by the size of an MDS times the respective con-
stant. Therefore, our lower bound is matched asymptotically for the class of
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graphs of bounded growth. In contrast, the fastest known MIS algorithms on
graphs of bounded independence are just the ones for general graphs, leaving
a factor of O(logn/ log∗ n) between the strongest upper and lower bounds
known so far. Note, however, that algorithms that are based on computing
a MIS cannot be faster than Ω(

√
logn) rounds, as the lower bound by Kuhn

et al. [54] applies to line graphs which feature bounded independence.

Complementary, in Chapter 12, we consider graphs of small arboricity.
Such graphs can be very different from graphs with small independence.
While in the latter case the number of edges may be large (in particular,
in the complete graph there are no two independent nodes), graphs of con-
stantly bounded arboricity have O(n) edges, but potentially large sets of
independent neighbours (the star graph has arboricity one). We remark that
it is not difficult to see that demanding both bounded growth and arboric-
ity is equivalent to asking for bounded degree. In the family of graphs of
maximum degree ∆ ∈ O(1) simply taking all nodes yields a trivial ∆ + 1
MDS approximation; we already mentioned that finding an MIS here takes
Θ(log∗ n) rounds [40, 89].

We devise two algorithms for graphs of small arboricity A. The first
employs a forest decomposition to obtain an O(A2) MDS approximation
within time O(logn) w.h.p. This algorithm utilizes the fact that not too
many nodes may be covered by their children in a given forest decomposition,
implying that a good approximation ratio can be maintained if we cover all
nodes that have one by a parent. Solving this problem approximatively can be
reduced to computing an arbitrary MIS in some helper graph. Therefore, we
get a randomized running time ofO(logn) w.h.p., whereas the approximation
guarantee of O(A2) is deterministic.

The second algorithm we propose is based on the property that subgraphs
of graphs of bounded arboricity are sparse, i.e., if having n′ nodes, they con-
tain at most A(n′ − 1) edges. For this reason, we can build on the very
simple greedy strategy of adding all nodes of locally large degree to the out-
put set simultaneously, until eventually, after O(log ∆) rounds, all nodes are
covered. This straightforward approach yields an O(A log ∆) approximation
if one makes sure that the number of covered nodes in each repetition is at
least the number of selected nodes. The latter can easily be done by requiring
that uncovered nodes choose one of their eligible neighbors to enter the set
instead of just electing all possible candidates into the set. Playing with the
factor up to which joining nodes are required to have largest degree within
their two-neighborhood, the algorithm can be modified to an O(αA logα ∆)
approximation within O(logα ∆) time, for any integer α ≥ 2. This second al-
gorithm appeals by its simplicity; unlike the first, it is uniform, deterministic,
and merely requires port numbers.
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Recall that the best algorithm with polylogarithmically sized messages
for general graphs has running time O(log2 ∆) and approximation ratio
O(log ∆) [56]. Thus, the algorithms given in Chapter 12 clearly improve
on this result for graphs of bounded arboricity. However, although the lower
bound from [54] fails to hold for such graphs, our algorithms’ running times
do not get below the thresholds of Ω(

√
logn) and Ω(log ∆), respectively. In

contrast, we show in Chapter 13 that in planar graphs an O(1) approxima-
tion can be computed in O(1) rounds.1 Our algorithm makes use of the facts
that planar graphs and their minors are sparse, i.e., contain only O(n) edges,
and that in planar graphs circles separate their interior (with respect to an
embedding) from their outside.

A drawback of our algorithm for planar graphs is that it is rendered im-
practical because it relies on messages that in the worst case encode the
whole graph. For the same reason, the technique by Czygrinow et al. [25]
to obtain a 1 + ε approximation in O(log∗ n) rounds is also of theoretical
significance only. If message size is required to be (poly)logarithmic in n,
to the best of our knowledge the most efficient distributed algorithms are
the ones from Chapter 12. More generally, the same is true for any graph
family excluding fixed minors. Also here distributed 1 + ε approximations
are known [23, 24], however of polylogarithmic running time with large ex-
ponent and again using large messages. Excluding particular minors is a rich
source of graph families, apart from planar graphs including e.g. graphs of
bounded genus or treewidth. Again to the best of our knowledge, currently
no distributed algorithms tailored to these families of graphs exist. More-
over, as mentioned before, graphs of bounded (or non-constant, but slowly
growing) arboricity extend beyond minor-free graph families. Therefore, the
algorithms presented in Chapter 12 improve on the best known solutions for
a wide range of inputs. See Table 9.2 for a comparison of distributed MDS
approximations.

1This result was claimed previously, in [61] by us and independently in [25] by others.
Sadly, both proofs turned out to be wrong.
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Chapter 10

Maximal Independent Sets on Trees

“In fact, distributed MIS computation can be seen as a Dro-
sophila of distributed computing as it prototypically models sym-
metry breaking [. . . ]” – Fabian Kuhn, The Price of Locality.

In this chapter, we present a uniform randomized MIS algorithm that
has a running time of O(

√
logn log logn) in forests w.h.p. Over each edge,

O(logn) bits are transmitted w.h.p. This material appears as [67].

10.1 Algorithm

For the sake of simplicity, we first describe a simplified variant of the al-
gorithm, which (i) is non-uniform, (ii) makes use of uniformly random real
numbers, and (iii) whose pseudocode contains a generic term of Θ(R). In
Theorem 10.10, we will show how to remove the first two assumptions, and
it will turn out that for the uniform algorithm the precise choice of the con-
stants in the term Θ(R) is of no concern (barring constant factors).

The algorithm seeks to increase the number of nodes in the independent
set I perpetually until it is maximal. Whenever a node enters I, its inclusive
neighborhood is removed from the graph and the algorithm proceeds on the
remaining subgraph of G. The algorithm consists of three main steps, each
of which employs a different technique to add nodes to I. It takes a single
parameter R, which ideally is small enough to guarantee a small running
time of the first two loops of the algorithm, but large enough to guarantee
that the residual nodes can be dealt with quickly by the final loop of the
algorithm.
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Algorithm 10.1: Fast MIS on Trees.

input : R ∈ N
output: MIS I
I := ∅1

for i ∈ {1, . . . ,Θ(R)} do // reduce degrees2

for v ∈ V in parallel do3

rv := u.i.r. number from [0, 1] ⊂ R4

if rv > maxw∈Nv{rw} then // join IS (no neighbor can)5

I := I ∪ {v}6

delete N+
v from G7

end8

end9

end10

for i ∈ {1, 2} do // remove nodes of small degree11

H := subgraph of G induced by nodes of degree δv ≤ R12

(R+ 1)-color H13

for i ∈ {1, . . . , R+ 1} do14

for v ∈ V with C(v) = i in parallel do // colors independent15

I := I ∪ {v}16

delete N+
v from G17

end18

end19

end20

while V 6= ∅ do // clean up21

for v ∈ V in parallel do22

if δv ∈ {0, 1} then // remove isolated nodes and leaves23

if ∃w ∈ Nv with δw = 1 then // adjacent leaves24

rv := u.i.r. number from [0, 1] ⊂ R25

if rv > rw then26

I := I ∪ {v}27

delete N+
v from G28

end29

end30

else31

I := I ∪ {v}32

delete N+
v from G33

end34

end35

end36

end37
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We proceed by describing the parts of the algorithm in detail. See Algo-
rithm 10.1 for its pseudocode. In the first part, the following procedure is
repeated Θ(R) times. Each active node draws a number from [0, 1] ⊂ R u.i.r.
and joins I if its value is larger than the ones of all its neighbors.1 Tech-
niques similar to this one, which is due to Luby [73], have been known for a
long time and reduce the number of edges in the graph exponentially w.h.p.;
however, in our case we have the goal of reducing the maximum degree in
the graph rapidly. Once the maximum degree is small, we cannot guarantee
a quick decay w.h.p. anymore, therefore the employed strategy is changed
after Θ(R) rounds.

Consequently, the second part of the algorithm aims at dealing with small-
degree nodes according to a deterministic scheme. We will show that if R
is large enough, most nodes will not have more than R neighbors of degree
larger than R in their neighborhood, even if not all nodes of degree larger
than R could be removed during the first loop. Thus, removing all nodes of
degree at most R, we reduce for most nodes the degree to R. To this end,
we first (R + 1)-color the subgraph induced by all nodes of degree at most
R and then iterate through the colors, concurrently adding all nodes to I
that share a color. Executing this subroutine for a second time, all nodes
that previously had at most R neighbors of degree larger than R will be
eliminated.

Yet, a small fraction of the nodes may still remain active. To deal with
these nodes, we repeat the step of removing all leaves and isolated nodes
from the forest until all nodes have terminated.

As evident from the description of the algorithm, each iteration of the first
or third loop can be implemented within a constant number of synchronous
distributed rounds. The second loop requires O(R) time plus the number of
rounds needed to color the respective subgraph; for this problem determin-
istic distributed algorithms taking O(R + log∗ n) time are known [8, 49]. In
Theorem 10.9 we will show that for some R ∈ O(

√
logn log logn), the third

loop of the algorithm will complete inO(R) rounds w.h.p. Thus, for an appro-
priate value of R, the algorithm computes an MIS within O(

√
logn log log n)

rounds.

10.2 Analysis

For the purpose of our analysis, we will w.l.o.g. assume that the graph is a
rooted tree. In order to execute the algorithm, the nodes do not need access
to this information. The children of v ∈ V are denoted by Cv ⊆ Nv. The

1A random real number from [0, 1] can be interpreted as infinite string of bits of
decreasing significance. As nodes merely need to know which one of two values is larger,
it is sufficient to generate and compare random bits until the first difference occurs.
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lion’s share of the argumentation will focus on the first loop of Algorithm 10.1.
We will call an iteration of this loop a phase. By δv(i) we denote the degree
of node v at the beginning of phase i ∈ {1, . . . ,Θ(R)} in the subgraph of G
induced by the nodes that have not been deleted yet; similarly, Nv(i) and
Cv(i) are the sets of neighbors and children of v that are still active at the
beginning of phase i, respectively.

We start our analysis with the observation that in any phase, a high-
degree node without many high-degree children is likely to be deleted in that
phase, independently of the behavior of its parent.

Lemma 10.1. Suppose that at the beginning of phase i it holds for a node v
that half of its children have degree at most δv(i)/(16 ln δv(i)). Then, inde-
pendently of the random number of its parent, v is deleted with probability at
least 1− 5/δv(i) in that phase.

Proof. Observe that the probability that v survives phase i is increasing in
the degree δw(i) of any child w ∈ Cv(i) of v. Thus, w.l.o.g., we may assume
that all children of v of degree at most δ := δv(i)/(16 ln δv(i)) have exactly
that degree.

Consider such a child w. With probability 1/δ, its random value rw(i) is
larger than all its children’s. Denote by X the random variable counting the
number of children w ∈ Cv(i) of degree δ satisfying that

∀u ∈ Cw(i) : rw(i) > ru(i). (10.1)

It holds that

E[X] =
∑

w∈Cv(i)
δw(i)=δ

1

δ
≥ δv

2δ
≥ 8 ln δv(i).

Since the random choices are independent, applying Corollary 2.13 yields
that

P

[
X <

E[X]

2

]
< e−E[X]/8 ≤ 1

δv(i)
.

Node v is removed unless the event E that rv(i) > rw(i) for all the children
w ∈ Cv(i) of degree δ satisfying (10.1) occurs. If E happens, this implies
that rv(i) is also greater than all random values of children of such w, i.e.,
rv(i) is greater than δ E[X]/2 ≥ δv(i)/4 other independent random values.
Since the event that X ≥ E[X]/2 depends only on the order of the involved
random values, we infer that P [E |X ≥ E[X]/2] < 4/δv(i). We conclude that
v is deleted with probability at least

P

[
X ≥ E[X]

2

]
P

[
Ē
∣∣∣∣X ≥ E[X]

2

]
>

(
1− 1

δv(i)

)(
1− 4

δv(i)

)
> 1− 5

δv(i)
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as claimed. Since we reasoned about whether children of v join the indepen-
dent set only, this bound is independent of the behavior of v’s parent.

Applied inductively, this result implies that in order to maintain a high
degree for a considerable number of phases, a node must be the root of a
large subtree. This concept is formalized by the following definition.

Definition 10.2 (Delay Trees). A delay tree of depth d ∈ N0 rooted at node
v ∈ V is defined recursively as follows. For d = 0, the tree consists of v only.
For d > 0, node v satisfies at least one of the following criteria:

(i) At least δv(d)/4 children w ∈ Cv are roots of delay trees of depth d− 1
and have δw(d− 1) ≥ δv(d)/(16 ln δv(d)).

(ii) Node v is the root of a delay tree of depth d − 1 and δv(d − 1) ≥
δv(d)2/(324 ln δv(d)).

In order to bound the number of phases for which a node has a high
chance of retaining a large degree, we bound the depth of delay trees rooted
at high-degree nodes.

Lemma 10.3. Assume that R ≥ 2
√

lnn ln lnn and δv(d) ≥ eR. Then for a
delay tree of depth d rooted at v it holds that d ∈ O(

√
logn/ log log n).

Proof. Assume w.l.o.g. that d > 1. Denote by si(δ), where i ∈ {0, . . . , d− 1}
and δ ∈ N, the minimal number of leaves in a delay tree of depth i rooted at
some node w satisfying δw(i+ 1) = δ.

We claim that for any δ and i ≤ ln δ/(2 ln(324 ln δ)), it holds that

si(δ) ≥
i∏

j=1

δ

(324 ln δ)j−1
,

which we show by induction. This is trivially true for i = 1, hence we need to
perform the induction step only. For any i ∈ {2, . . . , bln δ/(2 ln(324 ln δ))c},
the assumption that the claim is true for i− 1 and the recursive definition of
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delay trees yield that

si(δ) ≥ min

{
δ

4
si−1

(
δ

16 ln δ

)
, si−1

(
δ2

324 ln δ

)}
≥ min

{
δ

4

i−1∏
j=1

δ/(16 ln δ)

(16 ln(δ/(16 ln δ)))j−1
,

i−1∏
j=1

δ2/(324 ln δ))

(324 ln(δ/(324 ln δ)))j−1

}

> min

{
δ

4

i−1∏
j=1

δ

(16 ln δ)j
,

i−1∏
j=1

δ2

(324 ln δ)j

}

> δ

i−1∏
j=1

δ

(324 ln δ)j

=

i∏
j=1

δ

(324 ln δ)j−1
.

Thus the induction step succeeds, showing the claim.
Now assume that v is the root of a delay tree of depth d−1. As δv(d) ≥ eR,

we may insert any i ∈ {1, . . . ,min{d− 1, bR/(2 ln 324R)c}} into the previous
claim. Supposing for contradiction that d − 1 ≥ bR/(2 ln 324R)c, it follows
that the graph contains at least

bR/(2 ln 324R)c∏
j=1

eR

(324R)j−1
>

bR/(2 ln 324R)c∏
j=1

eR/2 ∈ eR
2/((4+o(1)) lnR) ⊆ n2−o(1)

nodes. On the other hand, if d− 1 < bR/(2 ln 324R)c, we get that the graph
contains at least e(d−1)R/2 nodes, implying that d ∈ O(

√
lnn/ ln lnn) as

claimed.

With this statement at hand, we infer that for R ∈ Θ(
√

logn log logn), it
is unlikely that a node has degree eR or larger for R phases.

Lemma 10.4. Suppose that R ≥ 2
√

lnn ln lnn. Then, for any node v ∈ V
and some number r ∈ O(

√
logn/ log logn), we have that δv(r + 1) < eR

with probability at least 1− 6e−R. This statement holds independently of the
behavior of v’s parent.

Proof. Assume that δv(r) ≥ eR. According to Lemma 10.1, node v is re-
moved with probability at least 1 − 5/δv(r) in phase r unless half of its
children have at least degree δv(r)/(16 ln δv(r)).

Suppose the latter is the case and that w is such a child. Applying
Lemma 10.1, we see that in phase r − 1, when we have δw(r − 1) ≥ δw(r) ≥
δv(r)/(16 ln δv(r)), w is removed with probability 1−5/δw(r−1) if it does not



10.2. ANALYSIS 133

have δw(r−1)/2 children of degree at least δw(r−1)/(16 ln δw(r−1)). Thus,
the expected number of such nodes w that do not themselves have many
high-degree children in phase r − 1 but survive until phase r is bounded by

5δv(r − 1)

δw(r − 1)
≤ 80δv(r − 1) ln δv(r)

δv(r)
.

Since Lemma 10.1 states that the probability bound for a node w ∈ Cv(r−
1) to be removed is independent of v’s actions, we can apply Corollary 2.13
in order to see that

(80 + 1/2)δv(r − 1) ln δv(r)

δv(r)
+O(logn)

of these nodes remain active at the beginning of phase r w.h.p. If this number
is not smaller than δv(r)/4 ∈ ω(logn), it holds that δv(r−1) ∈ δv(r)2/(4(80+
1/2+o(1)) ln δv(r)). Otherwise, at least δv(r)/2−δv(r)/4 = δv(r)/4 children
w ∈ Cv(r−1) have degree δw(r−1) ≥ δv(r)/16 ln δv(r). In both cases, v meets
one of the conditions in the recursive definition of a delay tree. Repeating
this reasoning inductively for all r ∈ O(

√
logn/ log logn) rounds (where we

may choose the constants in the O-term to be arbitrarily large), we construct
a delay tree of depth at least r w.h.p.

However, Lemma 10.3 states that r must be in O(
√

logn/ log logn) pro-
vided that δv(r) ≥ eR. Therefore, for an appropriate choice of constants, we
conclude that the event E that both half of the nodes in Cv(r) have degree
at least δv(r)/16 ln δv(r) and δv(r) ≥ eR w.h.p. does not occur. If E does not
happen, but δv(r) ≥ eR, Lemma 10.1 gives that v is deleted in phase r with
probability at least 1− 5e−R.

Thus, the total probability that v is removed or has sufficiently small
degree at the beginning of phase r + 1 is bounded by

P
[
Ē
]
· P
[
v deleted in phase r

∣∣∣ Ē and δv(r) ≥ eR
]

>

(
1− 1

nc

)(
1− 5

eR

)
> 1− 6e−R,

where we used that R < lnn because δv ≤ n − 1. Since all statements used
hold independently of v’s parent’s actions during the course of the algorithm,
this concludes the proof.

For convenience, we rephrase the previous lemma in a slightly different
way.
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Corollary 10.5. Provided that R ≥ 2
√

logn log log n, for any node v ∈
V it holds with probability 1 − e−ω(R) that δv(R) < eR. This bound holds
independently of the actions of a constant number of v’s neighbors.

Proof. Observe that R ∈ ω(r), where r and R are defined as in Lemma 10.4.
The lemma states that after r rounds, v retains δv(r + 1) ≥ eR with proba-
bility at most 6e−R. As the algorithm behaves identically on the remaining
subgraph, we can apply the lemma repeatedly, giving that δv(R) < eR with
probability 1−e−ω(R). Ignoring a constant number of v’s neighbors does not
change the asymptotic bounds.

Since we strive for a sublogarithmic value of R, the above probability
bound does not ensure that all nodes will have degree smaller than eR after
R phases w.h.p. However, on paths of length at least

√
lnn, at least one of

the nodes will satisfy this criterion w.h.p. Moreover, nodes of degree smaller
than eR will have left a few high-degree neighbors only, which do not interfere
with our forthcoming reasoning.

Lemma 10.6. Assume that R ≥ 2
√

logn log logn. Given some path P =
(v0, . . . , vk), define for i ∈ {0, . . . , k} that Gi is the connected component of
G containing vi after removing the edges from P . If δvi(R) < eR, denote
by Ḡi the connected (sub)component of Gi consisting of nodes w of degree

δw(R) < eR that contains vi. Then, with probability 1− e−ω(
√

lnn), we have
that

(i) δvi(R) < eR and

(ii) nodes in Ḡi have at most
√

lnn neighbors w of degree δw(R) ≥ eR.

This probability bound holds independently of anything that happens outside
of Gi.

Proof. Corollary 10.5 directly yields Statement (i). For the second statement,
let u be any node of degree δu(R) < eR. According to Corollary 10.5, all
nodes w ∈ Cu(R) have δw(R) < eR with independently bounded probability
1−e−ω(R). In other words, the random variable counting the number of such
nodes having degree δw(R) ≥ eR is stochastically dominated from above by
the sum of δu(R) independent Bernoulli variables attaining the value 1 with

probability e−ω(R) ⊂ e−ω(
√

lnn). Applying Corollary 2.13, we conclude that
w.h.p. no more than

√
lnn of u’s neighbors have a degree that is too large.

Due to the union bound, thus both statements are true with probability

1− e−ω(
√

lnn).
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Having dealt with nodes of degree eR and larger, we need to show that
we can get rid of the remaining nodes sufficiently fast. As a first step, we
show a result along the lines of Lemma 10.1, trading in a weaker probability
bound for a stronger bound on the degrees of a node’s children.

Lemma 10.7. Given a constant β ∈ R+, assume that in phase i ∈ N for a
node v ∈ V we have that at least e−βδv(i) of its children have degree at most
eβδv(i). Then v is deleted with at least constant probability in that phase,
regardless of the random value of its parent.

Proof. As in Lemma 10.1, we may assume w.l.o.g. that all children of v
with degree at most δ := eβδv(i) have exactly that degree. For the random
variable X counting the number of nodes w ∈ Cv(i) of degree δ that satisfy
Condition 10.1 we get that

E[X] =
∑

w∈Cv(i)
δw(i)=δ

1

δ
≥ e−2β .

Since the random choices are independent, applying Chernoff’s bound yields
that

P [X = 0] ≤ e−E[X]/2 < e−e
−2β/2 =: γ.

Provided that X > 0, there is at least one child w ∈ Cv of v that joins the
set in phase i unless rv(i) > rw(i). Since rw(i) is already larger than all of
its neighbors’ random values (except maybe v), the respective conditional
probability P [rv(i) > rw(i) |w satisfies Inequality (10.1)] certainly does not
exceed 1/2, i.e.,

P [X > 0] · P [v is deleted in phase i |X > 0] ≥ 1− γ
2

.

Since we reasoned about whether children of v join the independent set
exclusively, this bound is independent of the behavior of v’s parent.

We cannot guarantee that the maximum degree in the subgraph formed
by the active nodes drops quickly. However, we can show that for all but a
negligible fraction of the nodes this is the case.

Lemma 10.8. Denote by H = (VH , EH) a subgraph of G still present in
phase R in which all nodes have degree smaller than eR and for any node
no more than O(

√
logn) neighbors outside H are still active in phase R. If

R ≥ R(n) ∈ O(
√

logn log logn), it holds that all nodes from H are deleted
after the second for-loop of the algorithm w.h.p.
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Proof. For the sake of simplicity, we consider the special case that no edges
to nodes outside H exist first. We claim that for a constant α ∈ N and all
i, j ∈ N0 such that i > j and eR−j ≥ 8ec lnn, it holds that

max
v∈V

{∣∣∣{w ∈ Cv(R+ αi) | δw(R+ αi) > eR−j
}∣∣∣} ≤ max

{
eR−2i+j , 8c lnn

}
w.h.p. For i = 1 we have j = 0, i.e., the statement holds by definition because
degrees in H are bounded by eR. Assume the claim is established for some
value of i ≥ 1.

Consider a node w ∈ H of degree δw(R+ αi) > eR−j ≥ 8ec lnn for some
j ≤ i. By induction hypothesis, the number of children of w having degree
larger than eR−(j−1) in phase R + αi (and thus also subsequent phases) is
bounded by max{eR−(2i−(j−1)), 8c lnn} ≤ eR−(j+1) w.h.p., i.e., at least a
fraction of 1 − 1/e of w’s neighbors has degree at most factor e larger than
δw(R + αi) in phase R + αi. According to Lemma 10.7, this implies that w
is removed with constant probability in phase R + αi. Moreover, as long as
w has such a high degree, there is at least a constant probability that w is
removed in each subsequent phase. This constant probability bound holds
independently from previous phases (conditional to the event that w retains
degree larger than eR−j). Furthermore, due to the lemma, it applies to all
children w of a node v ∈ H independently. Hence, applying Corollary 2.13,
we get that in all phases k ∈ {αi, αi + 1, . . . , α(i + 1) − 1}, the number
|{w ∈ Cv(k) | δw(k) > eR−j}| is reduced by a constant factor w.h.p. (unless
this number is already smaller than 8c lnn). Consequently, if the constant α
is sufficiently large, the induction step succeeds, completing the induction.

Recapitulating, after in total O(R) phases, no node in H will have more
than O(logn) neighbors of degree larger than O(logn). The previous argu-
ment can be extended to reduce degrees even further. The difficulty arising
is that once the expected number of high-degree nodes removed from the
respective neighborhoods becomes smaller than Ω(logn), Chernoff’s bound
does no longer guarantee that a constant fraction of high-degree neighbors is
deleted in each phase. However, as used before, for critical nodes the applied
probability bounds hold in each phase independently of previous rounds.
Thus, instead of choosing α as a constant, we simply increase α with i.

Formally, if j0 is the last index such that eR−j ≥ 8ec lnn, we define

α(i) :=

{
α if i ≤ j0⌈

αei−j0
⌉

otherwise.

This way, the factor e loss in size of expected values (weakening the outcome
of Chernoff’s bound) is compensated for by increasing the number of consid-
ered phases by factor e (which due to independence appears in the exponent
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of the bound) in each step. Hence, within

R∑
i=dln

√
logn e

α(i) ∈ O

R+

dln(8ec lnn)e∑
i=dln

√
logne

lnn

ei

 = O
(
R+

lnn√
logn

)
= O(R)

phases no node in H will have left more than O(
√

logn) neighbors of degree
larger than O(

√
logn) w.h.p. Assuming that constants are chosen appropri-

ately, this is the case after the first for-loop of the algorithm.
Recall that in the second loop the algorithm removes all nodes of degree

at most R in each iteration. Thus, degrees in H are reduced to O(
√

logn) in
the first iteration of the loop, and subsequently all remaining nodes from H
will be removed in the second iteration. Hence, indeed all nodes from H are
deleted at the end of the second for-loop w.h.p. as claimed.

Finally, recall that no node has more than O(
√

logn) edges to nodes
outside H. Choosing constants properly, these edges contribute only a negli-
gible fraction to the nodes’ degrees even once these degrees reach O(

√
logn).

Thus, the asymptotic statement obtained by the above reasoning holds true
also if we consider a subgraph H where nodes have O(

√
logn) edges leaving

the subgraph. Thus the proof concludes.

We can now prove our bound on the running time of Algorithm 10.1.

Theorem 10.9. Assume that G is a forest and the coloring steps of Algo-
rithm 10.1 are performed by a subroutine running for O(R+ log∗ n) rounds.
Then the algorithm eventually terminates and outputs a maximal indepen-
dent set. Furthermore, if R ≥ R(n) ∈ O(

√
logn log logn), Algorithm 10.1

terminates within O(R) rounds w.h.p.

Proof. Correctness is obvious because (i) adjacent nodes can never join I
concurrently, (ii) the neighborhoods of nodes that enter I are deleted imme-
diately, (iii) no nodes from V \(∪v∈IN+

v ) get deleted, and (iv) the algorithm
does not terminate until V = ∅. The algorithm will terminate eventually, as
in each iteration of the third loop all leaves and isolated nodes are deleted
and any forest contains either of the two.

Regarding the running time, assume that R ∈ O(
√

logn log logn) is suf-
ficiently large, root the tree at an arbitrary node v0 ∈ V , and consider any
path P = (v0, . . . , vk) of length k ≥

√
lnn. Denote by Gi, i ∈ {0, . . . , k},

the connected component of G containing vi after removing the edges of P
and—provided that δvi(R) < eR—by Ḡi the connected (sub)component of
Gi that contains vi and consists of nodes w of degree δw(R) < eR (as in
Lemma 10.6). Then, we have by Lemma 10.6 for each i with a probability

that is independently lower bounded by 1− e−ω(
√

lnn) that
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(i) δvi(R) < eR and

(ii) nodes in Ḡi have at most
√

lnn neighbors w of degree δw(R) ≥ eR.

In other words, for each i, with probability independently bounded by 1−
e−ω(

√
lnn), Ḡi exists and satisfies the prerequisites of Lemma 10.8, implying

that all nodes in Ḡi are deleted by the end of the second for-loop w.h.p. We
conclude that independently of all vj 6= vi, node vi is not deleted until the

end of the second loop with probability e−ω(
√

lnn). Thus, the probability
that no node on P is deleted is at most(

e−ω(
√

lnn)
)k
⊆ e−ω(lnn) = n−ω(1).

Hence, when the second loop is completed, w.h.p. no path of length k ≥
√

lnn
starting at v0 exists in the remaining graph. Since v0 was arbitrary, this
immediately implies that w.h.p. after the second loop no paths of length
k ≥
√

lnn exist anymore, i.e., the components of the remaining graph have
diameter at most

√
lnn. Consequently, it will take at most

√
lnn iterations

of the third loop until all nodes have been deleted.
Summing up the running times for executing the three loops of the algo-

rithm, we get that it terminates within O(R+ (R+ log∗ n) +
√

lnn) = O(R)
rounds w.h.p.

We complete our analysis by deducing a uniform algorithm featuring the
claimed bounds on time and bit complexity.

Theorem 10.10. A uniform MIS algorithm exists that terminates on gen-
eral graphs within O(logn) rounds and on forests within O(

√
logn log log n)

rounds, both w.h.p. It can be implemented such that O(logn) bits are sent
over each link w.h.p.

Proof. Instead of running Algorithm 10.1 directly, we wrap it into an outer
loop trying to guess a good value for R (i.e., R(n) ≤ R ∈ O(R(n)), where
R(n) as in Theorem 10.9). Furthermore, we restrict the number of iterations
of the third loop to R, i.e., the algorithm will terminate after O(R) steps,
however, potentially without producing an MIS.2 Starting e.g. from two, with
each call R is doubled. Once R reaches R(n), according to Theorem 10.9 the
algorithm outputs an MIS w.h.p. provided that G is a forest. Otherwise,
R continues to grow until it becomes logarithmic in n. At this point, the
analysis of Luby’s algorithm by Métivier et al. [80] applies to the first loop of
our algorithm, showing that it terminates and return an MIS w.h.p. Hence,

2There is no need to start all over again; one can build on the IS of previous iterations,
although this does not change the asymptotic bounds.
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as the running time of each iteration of the outer loop is (essentially) linear
in R and R grows exponentially, the overall running time of the algorithm is
O(
√

logn log logn) on forests and O(logn) on arbitrary graphs w.h.p.
Regarding the bit complexity, consider the first and third loop of Algo-

rithm 10.1 first. In each iteration, a constant number of bits for state updates
(entering MIS, being deleted without joining MIS, etc.) needs to be communi-
cated as well as a random number that has to be compared to each neighbor’s
random number. However, in most cases exchanging a small number of lead-
ing bits is sufficient to break symmetry. Overall, as shown by Métivier et
al. [80], this can be accomplished with a bit complexity of O(logn) w.h.p.
Essentially, for every round their algorithm generates a random value and
transfers the necessary number of leading bits to compare these numbers to
each neighbor only. By Corollary 2.13, comparing O(logn) random num-
bers between neighbors thus requires O(logn) exchanged bits w.h.p., as in
expectation each comparison requires to examine a constant number of bits.
Thus, if nodes do not wait for a phase to complete, but rather continue to
exchange random bits for future comparisons in a stream-like fashion, the bit
complexity becomes O(logn).

However, in order to avoid increasing the (sublogarithmic) time complex-
ity of the algorithm on forests, more caution is required. Observe that in each
iteration of the outer loop, we know that Θ(R) many random values need
to be compared to execute the respective call of Algorithm 10.1 correctly.
Thus, nodes may exchange the leading bits of these Θ(R) many random val-
ues concurrently, without risking to increase the asymptotic bit complexity.
Afterwards, for the fraction of the values for which the comparison remains
unknown, nodes send the second and the third bit to their neighbors simul-
taneously. In subsequent rounds, we double the number of sent bits per
number repeatedly. Note that for each single value, this way the number of
sent bits is at most doubled, thus the probabilistic upper bound on the total
number of transmitted bits increases at most by a factor of two. Moreover,
after log logn rounds, logn bits of each single value will be compared in a
single round, thus at the latest after log logn+O(1) rounds all comparisons
are completed w.h.p. Employing this scheme, the total time complexity of
all executions of the first and third loop of Algorithm 10.1 is (in a forest)
bounded by

O

dlogR(n)e∑
i=1

(
2i + log logn

) ⊆ O(R(n) + logR(n) log logn)

= O
(√

logn log logn
)

w.h.p.
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It remains to show that the second loop of Algorithm 10.1 does not require
the exchange of too many bits. The number of transmitted bits to execute
this loop is determined by the number of bits sent by the employed coloring
algorithm. Barenboim and Elkin [8] and Kuhn [49] independently provided
deterministic coloring algorithms with running time O(R + log∗ n). These
algorithms start from an initial coloring with a number of colors that is
polynomial in n (typically one assumes identifiers of size O(logn)), which can
be obtained by choosing random colors from the range {1, . . . , nO(1))} w.h.p.
Exchanging these colors (which also permits to verify that the random choices
indeed resulted in a proper coloring) thus costs O(logn) bits.3 However,
as the maximum degree of the considered subgraphs is R + 1, which is in
O(logn) w.h.p., subsequent rounds of the algorithms deal with colors that
are of (poly)logarithmic size in n. As exchanging coloring information is the
dominant term contributing to message size in both algorithms, the overall
bit complexity of all executions of the second loop of Algorithm 10.1 can be
kept as low as O(logn+R(n) log logn) = O(logn).

3To derive a uniform solution, one again falls back to doubling the size of the bit
string of the chosen color until the coloring is locally feasible.



Chapter 11

A Lower Bound on Minimum

Dominating Set Approximations in

Unit Disk Graphs

“Whoever solves one of these problems gets a bag of Swiss choco-
late.” – An incentive Roger offered for devising the lower bound
presented in this chapter.

In this chapter, we will show that in unit disk graphs, no determinis-
tic distributed algorithm can compute an f(n) MDS approximation in g(n)
rounds for any f , g with f(n)g(n) ∈ o(log∗ n). This bound holds even if mes-
sage size is unbounded, nodes have unique identifiers, and the nodes know n.
This chapter is based on [65].

11.1 Definitions and Preliminary Statements

The lower bound proof will reason about the following highly symmetric
graphs.

Definition 11.1 (Rkn). For k, n ∈ N, we define the k-ring with n nodes
Rkn := (Vn, E

k
n) by

Vn := {1, . . . , n}

En :=

{
{i, j} ∈

(
Vn
2

)∣∣∣∣∣ |(i− j) mod n| ≤ k

}
.



142 CHAPTER 11. AN MDS APPROXIMATION LOWER BOUND

See Figure 11.1 for an illustration. By Rn := R1
n we denote the “simple”

ring. Moreover, we will take numbers modulo n when designating nodes on
the ring, e.g. we identify 3n+ 5 ≡ 5 ∈ Vn.

Obviously, for any k and n this graph is a UDG (see Definition 9.7).

Lemma 11.2. Rkn can be realized as a UDG.

Proof. For n > 2k + 1, place all nodes equidistantly on a circle of radius
1/(2 sin(kπ/n)). Otherwise, use any circle of radius at most 1/2.

Figure 11.1: R3
16. Realized as UDG k is controlled by the scaling.

Our bound will be inferred from a classic result by Linial [70], which was
later generalized to randomized algorithms by Naor [89].

Theorem 11.3. There is no deterministic distributed algorithm 3-coloring
the ring Rn in fewer than 1

2
(log∗ n − 1) communication rounds, even if the

nodes know n.

Proof. See e.g. [91].
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We will use the following notion, which captures the amount of symmetry
breaking information in the output of an algorithm.

Definition 11.4 (σ(n)-Alternating Algorithms). Suppose A is an algorithm
operating on Rn which assigns each node i ∈ Vn a binary output b(i) ∈ {0, 1}.
We call A σ(n)-alternating, if the length ` of any monochromatic sequence
b(i) = b(i+ 1) = . . . = b(i+ `) in the output of A is smaller than σ(n).

If a σ(n)-alternating algorithm is given, one can easily obtain a 3-coloring
of the ring Rn in O(σ(n)) time.

Lemma 11.5. Given a σ(n)-alternating algorithm A running in O(σ(n))
rounds, a 3-coloring of the ring can be computed in O(σ(n)) rounds.

Proof Sketch. Essentially, nodes simply need to find the closest switch from
0 to 1 (or vice versa) in the output bits. From there, nodes are colored
alternatingly, while the third color is used to resolve conflicts where the
alternating sequences meet. One has to respect the fact that nodes do not
agree on “left” and “right”, though. See [65] for details.

11.2 Proof of the Lower Bound

To establish our lower bound, we construct a σ(n)-alternating algorithm
using an MDS approximation algorithm.

Lemma 11.6. Assume a deterministic f(n) approximation algorithm A for
the MDS problem on UDG’s running in at most g(n) ≥ 1 rounds is given,
where f(n)g(n) ∈ o(log∗ n). Then an o(log∗ n)-alternating algorithm A′ re-
quiring o(log∗ n) communication rounds exists.

Proof. Assume w.l.o.g. that identifiers on Rkn are from {1, . . . , n}. Consider
Rkn and label each node i ∈ Vn with its input l(i), i.e., its identifier. Set
σk(n) := max{f(n), k}g(n) and define

Lkn :=
{(
l1, . . . , lσk(n)+2kg(n)

)
∈
{
{1, . . . , n}σk(n)+2kg(n) | li 6= lj∀i 6= j

}
|
(
l(1) = l1 ∧ . . . ∧ l(σk(n) + 2kg(n)) = lσk(n)+2kg(n)

)
⇒
(
b(kg(n) + 1) = . . . = b(σk(n) + kg(n)) = 1 on Rkn

)}
,

i.e., the set of sequences of identifiers such that σk(n) consecutive nodes will
take the decision b(v) = 1 when A is executed on Rkn, where the choices
of the leading and trailing kg(n) nodes may also depend on labels not in
the considered sequence. As the decision of any node i ∈ Vn depends on
identifiers of nodes in N (kg(n))

i only because it cannot learn from information
further away in g(n) rounds of communication on Rkn, Lkn is well-defined.
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We distinguish two cases. The first case assumes that values k0, n0 ∈
N exist, such that for n ≥ n0 at most n/2 identifiers can simultaneously
participate in disjoint sequences from Lk0n in a valid labeling of Rk0n (where no
identifier is used twice). Thus, for n′ := max{n0, 2n}, an injective mapping
λn : {1, . . . , n} → {1, . . . , n′} exists such that no element of Lk0n′ is completely
contained in the image of λn. Therefore, we can define A′ to simulate a run
of A on Rk0n′ where node i ∈ {1, . . . , n} is labeled by λn(l(i)) and return the
computed result. Each simulated round of A will require k0 communication
rounds, thus the running time of A′ is bounded by k0g(n′) ∈ o(log∗ n). At
most 2k0 consecutive nodes will compute b(i) = 0, as A determines a DS,
and by definition of Lk0n′ at most σk0(n′)−1 ∈ O(f(n′)g(n′)) ⊂ o(log∗(n′)) =
o(log∗ n) consecutive nodes take the decision b(i) = 1. Hence A′ is o(log∗ n)-
alternating.

In the second case, no pair k0, n0 ∈ N as assumed in the first case exists.
Thus, for any k ∈ N some n ∈ N exists for which we can construct a labeling
of Rkn with at least n

2
many identifiers from disjoint sequences in Lkn. We

line up these sequences one after another and label the remaining nodes in a
way resulting in a valid labeling of Rkn. Running A on such an instance will
yield at least

nσk(n)

2(σk(n) + 2kg(n))
≥ n

6
∈ Ω(n)

nodes choosing b(i) = 1.
On the other hand, a minimum dominating set of Rkn has O(n/k) nodes.

For k ∈ N, define that nk is the minimum value of n for which it is possible
to construct a labeling of Rkn with n

2
identifiers from sequences in Lkn. Thus,

we have a lower bound of
f(nk) ∈ Ω(k) (11.1)

on the approximation ratio of A.
As the approximation quality f of A is sublinear, we conclude that

limk→∞ nk = ∞. Therefore, a minimum value k(n) exists such that n′ :=
2n < nk(n). Consequently, we can define an injective relabeling function

λn : {1, . . . , n} → {1, . . . , n′}, such that no element of Lk(n)

n′ lies completely
in the image of λn. We define A′ to be the algorithm operating on Rn,
but returning the result of a simulated run of A on R

k(n)

n′ , where we relabel
all nodes i ∈ Vn by λn(l(i)). By definition of k(n) we have nk(n)−1 ≤ n′.
Together with (11.1) this yields

k(n) = (k(n)− 1) + 1 ∈ O(f(nk(n)−1) + 1) ⊆ O(f(n′)) = O(f(n)), (11.2)

where the last step exploits the fact that f grows asymptotically sublinearly.
Hence we can estimate the running time of A′ by k(n)g(n′) ∈ O(f(n)g(n)),
using that g grows asymptotically sublinearly as well.
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Since the simulated run of A yields a dominating set, at worst 2k(n) ∈
O(f(n)) ⊆ O(f(n)g(n)) consecutive nodes may compute b(v) = 0. By the
definitions of Lkn and λn at most σk(n)(n

′) − 1 < max{f(n′), k(n)}g(n′) ∈
O(f(n)g(n)) consecutive nodes may take the decision b(i) = 1. Thus A′ is
o(log∗ n)-alternating, as claimed.

This result implies the lower bound, as the assumption that a good ap-
proximation ratio is possible leads to the contradiction that the ring could
be 3-colored quickly.

Theorem 11.7. No deterministic f(n) MDS approximation on UDG’s run-
ning in at most g(n) rounds exists such that f(n)g(n) ∈ o(log∗ n).

Proof. Assuming the contrary, we may w.l.o.g. assume that g(n) ≥ 1 for
all n ∈ N. Thus, we can combine Lemma 11.6 and Lemma 11.5 to con-
struct an algorithm that 3-colors the ring in o(log∗ n) rounds, contradicting
Theorem 11.3.

By the same technique, we can show that on the ring, an f(n) MaxIS ap-
proximation that takes g(n) rounds with f(n)g(n) ∈ o(log∗ n) is impossible.

Definition 11.8 (Maximum Independent Set Approximations). Given f ∈
R+, an IS I is an f MaxIS approximation, if f |I| ≥ |M | for any MaxIS M .
For f : N → R+, a deterministic f approximation algorithm for the MaxIS
problem outputs on any graph of n nodes an IS that is an f(n) approximation.

Corollary 11.9. No deterministic f(n) MaxIS approximation on the ring
running in at most g(n) rounds exists such that f(n)g(n) ∈ o(log∗ n).

Proof. See [65].

We remark that it is an open question whether a randomized algorithm
can break this barrier for MDS approximations. For the MaxIS problem it
is known that in planar graphs (and thus in particular on the ring), for any
fixed constant ε > 0 a constant-time randomized algorithm can guarantee a
1 + ε approximation w.h.p. [25].





Chapter 12

Minimum Dominating Set

Approximations in Graphs of

Bounded Arboricity

“Be greedy!” – An approach common in computer science, and
maybe too common in other areas.

This chapter presents two MDS approximation algorithms from [66] de-
vised for graphs of small arboricity A. The first algorithm employs a forest
decomposition, achieving a guaranteed approximation ratio of O(A2) within
O(logn) rounds w.h.p. The second computes an O(A log ∆) approximation
deterministically inO(log ∆) rounds. Both algorithms require small messages
only.

12.1 Constant-Factor Approximation

In this section, we present an algorithm that computes a dominating set at
most a factor of O(A2) larger than optimum. After presenting the algorithm
and its key ideas, we proceed with the formal proof of its properties.

Algorithm

Our first algorithm is based on the following observations. Given an f -forest
decomposition and an MDS M , the nodes can be partitioned into two sets.
One set contains the nodes which are covered by a parent, the other contains
the remaining nodes, which thus are themselves in M or have a child in M .
Since each dominating set node can cover at most f parents, the latter set
contains in total at most (f + 1)|M | many nodes. Even if all these covered
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nodes elect all of their parents into the dominating set, we have chosen at
most f(f + 1)|M | nodes.

For the first set, we can exploit the fact that each node has at most f
parents in a more subtle manner. Covering the nodes in this set by parents
only, we need to solve a special case of set cover where each element is part
of at most f sets. Such instances can be approximated well by a simple
sequential greedy algorithm: Pick any element that is not yet covered and
add all sets containing it; repeat this until no element remains. Since in each
step we add at least one new set from an optimal solution, we get a factor f
approximation. This strategy can be parallelized by computing a maximal
independent set in the graph where two nodes are adjacent exactly if they
share a parent, as adding the parents of the nodes in an independent set in
any order would be a feasible execution of the sequential greedy algorithm.

Putting these two observations together, first all parents of nodes from a
maximal independent set in a helper graph are elected into the dominating
set. In this helper graph, two nodes are adjacent if they share a parent.
Afterwards, the remaining uncovered nodes have no parents, therefore it is
uncritical with respect to the approximation ratio to select them all. Denot-
ing for v ∈ V by P (v) the set of parents of v in a given forest decomposition
of G, this approach is summarized in Algorithm 12.1.

Algorithm 12.1: Parent Dominating Set

input : f -forest decomposition of G
output: dominating set D
H :=

(
V,
{
{v, w} ∈

(
V
2

) ∣∣P (v) ∩ P (w) 6= ∅
})

1

Compute a maximal independent set I with respect to H2

D :=
⋃
v∈I P (v)3

D := D ∪ (V \ N+
D )4

Analysis

We need to bound the number of nodes that join the dominating set because
they are elected by children.

Lemma 12.1. In Line 3 of Algorithm 12.1, at most f(f+2)|M | many nodes
enter D, where M denotes an MDS of G.

Proof. Denote by VC ⊆ V the set of nodes that have a child in M or are
themselves in M . We have that |VC | ≤ (f + 1)|M |, since no node has more
than f parents. Each such node adds at most f parents to D in Line 3 of
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the algorithm, i.e., in total at most f(f + 1)|M | many nodes join D because
they are elected by children in I ∩ VC .

Now consider the set of nodes VP ⊆ V that have at least one parent in M ,
in particular the nodes in I ∩ VP that are also in the computed independent
set. By the definition of H and the fact that I is an independent set, no node
in M can have two children in I. Thus, |I ∩ VP | ≤ |M |. Since no node has
more than f parents, we conclude that at most f |M | many nodes join |D|
because they are elected into the set by a child in I ∩ VP .

Finally, observe that since M is a dominating set, we have that VC∪VP =
V and thus

|D| ≤ f |I ∩ VC |+ f |I ∩ VP | ≤ f(f + 1)|M |+ f |M | = f(f + 2)|M |,

concluding the proof.

The approximation ratio of the algorithm now follows easily.

Theorem 12.2. Algorithm 12.1 outputs a dominating set D containing at
most (f2 + 3f + 1)|M | nodes, where M is an optimum solution.

Proof. By Lemma 12.1, at most f(f + 2)|M | nodes enter D in Line 3 of the
algorithm. Since I is an MIS in H, all nodes that have a parent are adjacent
to at least one node in D after Line 3. Hence, the nodes selected in Line 4
must be covered by a child in M or themselves be in M . As no node has
more than f parents, thus in Line 4 at most (f + 1)|M | many nodes join
D. Altogether, at most (f2 + 3f + 1)|M | many nodes may end up in D as
claimed.

Employing known algorithms for computing an O(G(A))-forest decom-
position and an MIS, we can construct a distributed MDS approximation
algorithm.

Corollary 12.3. In any graph G, a factor O(A(G)2) approximation to an
MDS can be computed distributedly in O(logn) rounds w.h.p., provided that
nodes know a polynomial upper bound on n, or a linear upper bound on A(G).
In particular, on graphs of bounded arboricity a constant-factor approxima-
tion can be obtained in O(logn) rounds w.h.p. This can be accomplished with
messages of size O(logn).

Proof. We run Algorithm 12.1 in a distributed fashion. To see that this is
possible, observe that (i) nodes need to know whether a neighbor is a parent
or a child only, (ii) that H can be constructed locally in two rounds and (iii)
a synchronous round in H can be simulated by two rounds in G. Thus, we
may simply pick distributed algorithms to compute a forest decomposition
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of G and an MIS and plug them together to obtain a distributed variant of
Algorithm 12.1.

For the forest decomposition, we employ the algorithm from [8], yielding
a decomposition into O(A(G)) forests in O(logn) rounds; this algorithm is
the one that requires the bound on n or A(G), respectively, that is asked for
in the preliminaries of the corollary. An MIS can be computed in O(logn)
rounds w.h.p. by well-known algorithms [2, 43, 73], or a more recent similar
technique [80]. In total the algorithm requires O(logn) rounds w.h.p. and
according to Theorem 12.2 the approximation guarantee is O(A(G)2).

Regarding the message size, the algorithm to compute a forest decompo-
sition requires messages of O(logn) bits. Thus, we need to check that we do
not require large messages because we compute an MIS on H. Formulated
abstractly, the algorithm from [80] breaks symmetry by making each node
still eligible for entering the IS choosing a random value in each round and
permitting it to join the IS if its value is a local minimum. This concept
can for instance be realized by taking O(logn) random bits as encoding of
some number and comparing it to neighbors. The respective values will differ
w.h.p. This approach can be emulated using messages of size O(logn) in G:
Nodes send their random values to all parents in the forest decomposition,
which then forward the smallest values only to their children.1

We remark that the same approach can be used by a centralized algorithm
in order to compute an O(A(G)2) approximation within O(A(G)n) steps. A
sequential algorithm does not need to incur an overhead of O(logn), as a
forest decomposition can be determined in linear time and finding an MIS
becomes trivial.

Corollary 12.4. Deterministically, on any graph G an O(A(G)2) MDS ap-
proximation can be computed in O(|E|+ n) ⊆ O(A(G)n) centralized steps.

Proof. See [66].

12.2 Uniform Deterministic Algorithm

Algorithm 12.1 might be unsatisfactory with regard to several aspects. Its
running time is logarithmic in n even if the maximum degree ∆ is small. This
cannot be improved upon by any approach that utilizes a forest decomposi-
tion, as a lower bound of Ω(logn/ log f) is known on the time to compute a
forest decomposition into f forests [8]. The algorithm is not uniform, as it
necessitates global knowledge of a bound on A(G) or n.

1If (an upper bound on) n is not known, one can start with constantly many bits and
double the number of used bits in each round where two nodes pick the same value. This
will not slow down the algorithm significantly and bound message size by O(logn) w.h.p.
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Moreover, the algorithm requires randomization in order to compute an
MIS quickly. Considering deterministic algorithms, one might pose the ques-
tion how much initial symmetry breaking information needs to be provided to
the nodes. While randomized algorithms may generate unique identifiers of
size O(logn) in constant time w.h.p., many deterministic algorithms assume
them to be given as input. Milder assumptions are the ability to distinguish
neighbors by means of a port numbering and/or an initially given orientation
of the edges.

In this section, we show that a uniform, deterministic algorithm exists
that requires a port numbering only, yet achieves a running time of O(log ∆)
and a good approximation ratio. The size of the computed dominating set
is bounded linearly in the product of the arboricity A(G) of the graph and
the logarithm of the maximum degree ∆.

Algorithm

The basic idea of Algorithm Greedy-by-Degree (Algorithm 12.2) is that it is
always feasible to choose nodes of high residual degree simultaneously, i.e.,
all the nodes that cover up to a constant factor as many nodes as the one
covering the most uncovered nodes.

Definition 12.5 (Residual Degree). Given a set D ⊆ V , the residual degree
of node v ∈ V with respect to D is δ̄v := |N+

v \ N+
D |.

This permits to obtain strong approximation guarantees without the
structural information provided by knowing A(G) or a forest decomposi-
tion; the mere fact that the graph must be “locally sparse” enforces that if
many nodes are elected into the set, also the dominating set must be large.
A difficulty arising from this approach is that nodes are not aware of the
current maximum residual degree in the graph. Hence, every node checks
whether there is a node in its 2-hop neighborhood having a residual degree
larger by a factor two. If not, the respective nodes may join the dominating
set (even if their degree is not large from a global perspective), implying that
the maximum residual degree drops by a factor of two in a constant number
of rounds.

A second problem occurs once residual degrees become small. In fact, it
may happen that a huge number of already covered nodes can each cover
the same small set of A(G) − 1 nodes. For this reason, it is mandatory to
ensure that not more nodes join the dominating set than actually need to be
covered. To this end, nodes that still need to be covered elect one of their
neighbors (if any) that are feasible according to the criterion of (locally) large
residual degree explained above. This scheme is described in Algorithm 12.2.

Note that nodes never leave D once they entered it. Thus, nodes may
terminate based on local knowledge only when executing the algorithm, as
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Algorithm 12.2: Greedy-by-Degree.

output: dominating set D
D := ∅1

while V 6= N+
D do2

C := ∅ // candidate set3

for v ∈ V in parallel do4

δ̄v := |N+
v \ N+

D | // residual degree5

∆v := max
w∈N+

v
{δ̄w} // maximum within one hop6

∆v := max
w∈N+

v
{∆w} // maximum within two hops7

if dlog δ̄ve ≥ dlog ∆ve then8

C := C ∪ {v}9

end10

if v ∈ N+
C \ N

+
D then11

choose any w ∈ C ∩N+
v // e.g. smallest port number12

D := D ∪ {w} // uncovered nodes select a candidate13

end14

end15

end16

they can cease executing the algorithm as soon as δ̄v = 0, i.e., their entire
inclusive neighborhood is covered by D. Moreover, it can easily be verified
that one iteration of the loop can be executed within six rounds by a local
algorithm that relies on port numbers only.

Analysis

In the sequel, when we talk of a phase of Algorithm 12.2, we refer to a
complete execution of the while loop. We start by proving that not too
many nodes with small residual degrees enter D.

Lemma 12.6. Denote by M an MDS of G. During the execution of Al-
gorithm 12.2, in total at most 16A(G)|M | nodes join D in Line 13 of the
algorithm after computing δ̄v ≤ 8A(G) in Line 5 of the same phase.

Proof. Fix a phase of the algorithm. Consider the set S consisting of all
nodes v ∈ V that become covered in some phase by some node w ∈ N+

v

that computes δ̄w ≤ 8A(G) and joins D. As according to Line 8 nodes
join D subject to the condition that residual degrees throughout their 2-hop
neighborhoods are less than twice as large as their own, no node m ∈M can
cover more than 16A(G) nodes from S. Hence, |S| ≤ 16A(G)|M |. Because
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of the rule that a node needs to be elected by a covered node in order to
enter D, this is also a bound on the number of nodes joining D in a phase
when they have residual degree at most 8A(G).

Next, we show that in each phase, at most a constant factor more nodes
of large residual degree are chosen than are in an MDS.

Lemma 12.7. If M is an MDS, in each phase of Algorithm 12.2 at most
16A(G)|M | nodes v ∈ V that compute δ̄v > 8A(G) in Line 5 join D in
Line 13.

Proof. Fix some phase of the algorithm and denote by D′ the set of nodes
v ∈ V joining D in Line 13 of this phase after computing δ̄v > 8A(G). Define
V ′ to be the set of nodes that had not been covered at the beginning of the
phase. Define for i ∈ {0, . . . , dlogne} that

Mi := {v ∈M | δ̄v ∈ (2i−1, 2i]}

Vi :=

{
v ∈ V ′

∣∣∣∣ max
w∈N+

v

{δ̄w} ∈ (2i−1, 2i]

}
Di := {v ∈ D′ | δ̄v ∈ (2i−1, 2i]}.

Note that
⋃dlogne
i=dlog 8A(G)eDi = D′.

Consider any j ∈ {dlog 8A(G)e, . . . , dlogne}. By definition, nodes in Vj
may be covered by nodes from Mi for i ≤ j only. Thus,

j∑
i=0

2i|Mi| ≥ |Vj |.

Nodes v ∈ Dj cover at least 2j−1+1 nodes from the set
⋃
i∈{j,...,dlogne} Vi,

as by definition they have no neighbors in Vi for i < j. On the other hand,
Lines 5 to 8 of the algorithm impose that these nodes must not have any
neighbors of residual degree larger than 2dlog δ̄ve = 2j , i.e., these nodes cannot
be in a set Vi for i > j. Hence, each node v ∈ Dj has at least 2j−1 neighbors
in Vj . This observation implies that the subgraph induced by Dj ∪Vj has at
least 2j−2|Dj | ≥ 2A(G)|Dj | edges. On the other hand, by definition of the
arboricity, this subgraph has fewer than A(G)(|Dj | + |Vj |) edges. It follows
that

|Dj | <
A(G)|Vj |

2j−2 −A(G)
≤ 23−jA(G)|Vj | ≤ 23−jA(G)

j∑
i=0

2i|Mi|.
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We conclude that

|D′| =

dlogne∑
j=dlog 8A(G)e

|Dj |

≤
dlogne∑

j=dlog 8A(G)e

23−jA(G)

j∑
i=0

2i|Mi|

≤ 8A(G)

dlogne∑
j=0

j∑
i=0

2i−j |Mi|

< 8A(G)

dlogne∑
i=0

∞∑
j=i

2i−j |Mi|

= 16A(G)

dlogne∑
i=0

|Mi|

≤ 16A(G)|M |,

as claimed.

We now can bound the approximation quality of the algorithm.

Theorem 12.8. Algorithm 12.2 terminates within 6dlog(∆+1)e rounds and
outputs a dominating set that is at most a factor 16A(G) log ∆ larger than
optimum. The message size can be bounded by O(log log ∆).

Proof. We first examine the running time of the algorithm. Denote by ∆(i)
the maximum residual degree after the ith phase, i.e., ∆(0) = ∆ + 1 (as a
node also covers itself). As observed earlier, each phase of Algorithm 12.2
takes six rounds. Because all nodes v computing a δ̄v satisfying dlog δ̄ve =
dlog ∆(i)e join C in phase i and any node in N+

C becomes covered, we have
that dlog ∆(i + 1)e ≤ dlog ∆(i)e − 1 for all phases i. Since the algorithm
terminates at the end of the subsequent phase once ∆(i) ≤ 2, in total at
most dlog ∆(0)e = dlog(∆ + 1)e phases are required.

Having established the bound on the running time of the algorithm, its
approximation ratio directly follows2 by applying Lemmas 12.6 and 12.7.
The bound on the message size follows from the observation that in each
phase nodes need to exchange residual degrees rounded to powers of two and
a constant number of binary values only.

Like it is possible for the MDS approximation algorithm for general graphs
from [56], we can sacrifice accuracy in order to speed up the computation.

2Note that in the last three phases the maximum degree is at most 8 ≤ 8A(G).
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Corollary 12.9. For any integer α ≥ 2, Algorithm 12.2 can be modi-
fied such that it has a running time of O(logα ∆) and approximation ra-
tio O(A(G)α logα ∆). The size of messages becomes O(log logα ∆) with this
modification.

Proof. We simply change the base of the logarithms in Line 8 of the algo-
rithm, i.e., instead of rounding residual degrees to integer powers of two, we
round to integer powers of α. Naturally, this affects the approximation guar-
antees linearly. In the proof of Lemma 12.7, we just replace the respective
powers of two by powers of α as well, yielding a bound of O(A(G)α logα ∆) on
the approximation ratio by the same reasoning as in Theorem 12.8. Similarly,
the bound on the message size becomes O(log logα ∆).

If it was not for the computation of an MIS, we could speed up Algo-
rithm 12.1 in almost the same manner (accepting a forest decomposition
into a larger number of forests). However, the constructed helper graph
is of bounded independence, but not arboricity or growth. For this graph
class currently no distributed algorithm computing an MIS in time o(logn)
is known.

Finally, we would like to mention that if nodes know A(G) (or a rea-
sonable upper bound), a port numbering is not required anymore. In this
case, nodes will join D without the necessity of being elected by a neighbor,
however only if the prerequisite δ̄v > 8A(G) is satisfied. To complete the
dominating set, uncovered nodes may join D independently of δ̄v once their
neighborhood contains no more nodes of residual degree larger than 8A(G).
It is not hard to see that with this modification, essentially the same analy-
sis as for Algorithm 12.2 applies, both with regard to time complexity and
approximation ratio.





Chapter 13

Minimum Dominating Set

Approximations in Planar Graphs

“Well, it’s a constant.” – Jukka Suomela on the approximation
ratio of the algorithm presented in this chapter.

In this chapter, which is based on [62], we introduce an algorithm com-
puting a constant approximation of a minimum dominating set in planar
graphs in constant time.1 Assuming maximum degree ∆ and identifiers of
size O(logn), the algorithm makes use of messages of size O(∆ logn). As
planar graphs exhibit unbounded degree, the algorithm is thus not suitable
for practice. Moreover, the constant in the approximation ratio is 130, i.e.,
there is a large gap to the lower bound of 5 − ε (for any constant ε > 0).
Nevertheless, we demonstrate that in planar graphs in principle it is feasible
to obtain a constant MDS approximation in a constant number of distributed
rounds.

13.1 Algorithm

The key idea of the algorithm is to exploit planarity in two ways. On the
one hand, planar graphs have arboricity three, i.e., the number of edges of
any subgraph is linear in its number of nodes. What is more, as planarity is
preserved under taking minors, so does any minor of the graph. On the other
hand, in a planar graph circles are barriers separating parts of the graph from

1Note that the original paper [61] contained an error and the stated algorithm does not
compute a constant MDS approximation. Moreover, the proof of the algorithm from [25]
is incomplete.
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Algorithm 13.1: MDS Approximation in Planar Graphs

output: DS D of G
D := ∅1

for v ∈ V in parallel do2

if @A ⊆ N (2)
v \ {v} such that Nv ⊆ N+

A and |A| ≤ 6 then3

D := D ∪ {v}4

end5

end6

for v ∈ V in parallel do7

δ̄v := |N+
v \ N+

D | // residual degree8

if v ∈ V \ N+
D then9

∆v := max
w∈N+

v
{δ̄w} // maximum within one hop10

choose any d(v) ∈ {w ∈ N+
v | δ̄w = ∆v}11

D := D ∪ {d(v)}12

end13

end14

others; any node enclosed in a circle cannot cover nodes on the outside. This
is a very strong structural property enforcing that dominating sets are either
large or exhibit a simple structure. It will become clear in the analysis how
these properties are utilized by the algorithm.

The algorithm consists of two main steps. In the first step all nodes check
whether their neighborhood can be covered by six or less other nodes. After
learning about their two-hop neighborhood in two rounds, nodes can decide
this locally by means of a polynomial-time algorithm.2 If this is not the
case, they join the (future) dominating set. In the second step, any node
that is not yet covered elects a neighbor of maximal residual degree (i.e.,
one that covers the most uncovered nodes, see Definition 12.5) into the set.
Algorithm 13.1 summarizes this scheme.

13.2 Analysis

As evident from the description of the algorithm, it can be executed in six
rounds and, due to the second step, computes a dominating set. Therefore,
we need to bound the number of nodes selected in each step in terms of the
size of a minimum dominating set M of the planar graph G. For the purpose
of our analysis, we fix some MDS M of G. By D1 and D2 we denote the sets of

2Trivially, one can try all combinations of six nodes. Note, however, that planarity
permits more efficient solutions.
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nodes that enter D in the first and second step of the algorithm, respectively.
Moreover, we denote neighborhoods in a graph H 6= G by Nv(H), N+

A (H),
etc.

We begin by bounding the number of nodes in D1 \M after the first step.

Lemma 13.1. |D1 \M | < 3|M |.

Proof. We construct the following subgraph H = (VH , EH) of G (see Fig-
ure 13.1).

• Set VH := N+
D1\M ∪M and EH := ∅.

• Add all edges with an endpoint in D1 \M to EH .

• Add a minimal subset of edges from E to EH such that VH = N+
M (H),

i.e., M is a DS in H.

Thus, each node v ∈ VH \ (D1 ∪M) has exactly one neighbor m ∈M , as we
added a minimal number of edges for M to cover VH . For all such nodes v,
we contract the edge {v,m}, where we identify the resulting node with m.
In other words, the star subgraph of H induced by N+

m(H) \D1 is collapsed
into m. By Lemma 2.24, the resulting minor H̄ = (VH̄ , EH̄) of G satisfies
that |EH̄ | < 3|VH̄ |. Due to the same lemma, the subgraph of H̄ induced by
D1 \M has fewer than 3|D1 \M | edges. As the neighborhood of a node from
D1 \M ⊂ VH̄ cannot be covered by fewer than seven nodes, the performed
edge contractions did not reduce the degree of such a node below seven.

Altogether, we get that

7|D1 \M | − 3|D1 \M |

<
∑

d∈D1\M

δd(H̄)−
∣∣{{d, d′} ∈ EH̄ | d, d′ ∈ D1 \M

}∣∣
≤ |EH̄ |
< 3|VH̄ |
≤ 3(|D1 \M |+ |M |),

which can be rearranged to yield the claimed bound.

To bound the number of nodes |D2| that is chosen in the second step of
the algorithm, more effort is required. We consider the following subgraph
of G.

Definition 13.2. We define H = (VH , EH) to be the subgraph of G obtained
from the following construction.

• Set VH := ∅ and EH := ∅.
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Nd

d ∈ D1 \M

≥ 7 nodes
from M

Figure 13.1: Part of the subgraph constructed in Lemma 13.1.

• For each node d ∈ D2 for which this is possible, add one node v ∈ V \M
to VH such that d = d(v) in Line 11 of the algorithm.

• Add M \ D1 to VH and a minimal number of edges to EH such that
N+
M\D1

(H) = VH , i.e., M \ D1 covers the nodes added to H so far

(this is possible as only nodes from V \ N+
D1

elect nodes into D2).

• For each m ∈ M \ D1, add a minimal number of nodes and edges to
H such that there is a set Cm ⊆ VH \ {m} of minimal size satisfying
Nm(H) ⊆ N+

Cm
(H), i.e., Cm covers m’s neighbors in H. We define

that C := ∪m∈M\D1
Cm.

• Remove all nodes v ∈ VH \ (C ∪M) for which d(v) ∈M ∪ C.

• For each m ∈M \D1, remove all edges to Cm.

See Figure 13.2 for an illustration.

In order to derive our bound on |D2|, we consider a special case first.

Lemma 13.3. Assume that for each node m ∈M \D1 it holds that

(i) no node m′ ∈M ∩ Cm covers more than seven nodes in Nm(H) and

(ii) no node v ∈ Cm \M covers more than four nodes in Nm(H).

Then it holds that |D2| < 98|M |.

Proof. Denote by A1 ⊆ VH \ (M ∪C) the nodes in VH that elect others into
D2 and have two neighbors in M , i.e., when we added C to VH , they became
covered by a node in M ∩C. Analogously, denote by A2 ⊆ VH \ (M ∪C) the
set of electing nodes for which the neighbor in C is not in M . Observe that
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A := A1 ∪ A2 = VH \ (M ∪ C) and A1 ∩ A2 = ∅. Moreover, we claim that
|A| ≥ |D2|−14|M |. To see this, recall that in the first step of the construction
of H, we choose for each element of |D2| that is not elected by elements of
M only one voting node v, i.e., at least |D2| − |M | nodes in total. In the
second last step of the construction, we remove v if d(v) ∈ {m}∪Cm for some
m ∈M \D1. As m ∈M \D1, its neighborhood can be covered by six or less
nodes from V \ {m}. Therefore |Cm| ≤ 6 for all M \ D1 and we remove in
total at most 7|M | nodes in the second last step. Finally, in the last step we
cut off at most |C| ≤ 6|M | voting nodes from their dominators in M \ D1.
The definition of A explicitly excludes these nodes, hence |A| ≥ |D2|−14|M |.

We contract all edges from nodes a ∈ A to the respective nodes m ∈
M \D1 covering them we added in the third step of the construction of H.
Denote the resulting minor of G by H̄ = (VH̄ , EH̄). For every seven nodes in
A1, there must be a pair of nodes m,m′ ∈ M \D1 such that m ∈ Cm′ and
vice versa, as by assumption no such pair shares more than seven neighbors.
Thus, for every seven nodes in A1, we have two nodes less in VH̄ than the
upper bound of |VH̄ | ≤ |M |+ |C| ≤ 7|M |. By Lemma 2.24, H̄ thus has fewer
than

3|VH̄ | ≤ 3|M ∪ C| ≤ 3|M |+ 3

(
6|M | − 2|A1|

7

)
= 21|M | − 6|A1|

7

edges.

On the other hand,

|EH̄ | ≥
|A1|

7
+
|A2|

4
,

as by assumption each pair of nodes from M may share at most seven neigh-
bors in A1 and pairs of nodes m ∈ M \D1, v ∈ Cm \M share at most four
neighbors. We conclude that

|A2| < 84|M | − 4|A1|

and therefore

|D2| ≤ |A1|+ |A2|+ 14|M | < 98|M | − 3|A1| ≤ 98|M |.

In order to complete our analysis, we need to cope with the case that
a node m ∈ M \ D1 and an element of Cm share many neighbors. In a
planar graph, this results in a considerable number of nested circles which
separate their interior from their outside. This necessitates that nodes from
the optimal solution M are enclosed that we may use to compensate for
the increased number of nodes in A in comparison to the special case from
Lemma 13.3.
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m ∈M \D1

Cm with |Cm| ≤ 6

Nm(H) ⊆ VH \ (M ∪ C)

Figure 13.2: Part of the subgraph H from Definition 13.2.

Lemma 13.4. Suppose the subgraph H from Definition 13.2 violates condi-
tion (i) or (ii) from Lemma 13.3. Fix a planar embedding of G and consider
either

(i) nodes m ∈M \D1 and v ∈M ∩ Cm with |Nm(H) ∩Nv(H)| ≥ 8 or

(ii) nodes m ∈M \D1 and v ∈ Cm \M with |Nm(H) ∩Nv(H)| ≥ 5.

Then the outmost circle formed by m, v, and two of their common neighbors
in H must enclose some node m′ ∈M (with respect to the embedding).

Proof. Set Ã := Nm(H) ∩ Nv(H). Consider case (i) first and assume for
contradiction that there is no node from M enclosed in the outmost circle.
W.l.o.g., we may assume that |Ã| = 8 (otherwise we simply ignore some
nodes from Ã). There are four nodes from Ã that are enclosed by two nested
circles consisting of v, m, and the four nodes that are the outer nodes from
Ã according the embedding (see Figure 13.3). Recall that by the second last
step of the construction of H nodes a ∈ Ã satisfy that d(a) 6∈ {m, v} ⊆ M .
Therefore, these enclosed nodes elected (distinct) nodes into D2 that are
enclosed by the outmost circle. As the electing nodes a ∈ Ã are connected to
m and v, by Line 11 of the Algorithm the nodes d(a) they elected must have
at least residual degree δ̄d(a) ≥ max{δ̄v, δ̄m}. In other words, they cover as
least as many nodes from V \ N+

D1
as both m and v.

Denote by ` the number of enclosed nodes from G that are neither in Ã ⊆
V \N+

D1
nor already covered by D1. We thus have a subgraph S = (VS , ES)

of G that has |VS | = l + |Ã|+ |{v,m}| = `+ 10 nodes and

|ES | ≥ |Nv(S)|+ |Nm(S)|+ 4 max{|Nv(S)|, |Nm(S)|} − 18

≥ 3(|Nv(S)|+ |Nm(S)| − 6)
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m ∈M \D1

v ∈ Cm ∩M

Ã ⊆ V \M a ∈ Ã

d(a) ∈ D2 \ (M ∪ C)

Figure 13.3: Example of a subgraph considered in the first case of the proof
of Lemma 13.4. While the choices d(a) of the two leftmost and rightmost
nodes a ∈ Ã may have large degrees because of nodes outside the outer circle,
the choices of the four inner nodes must have many neighbors that are not
covered by D1 on or inside the outer circle.

edges, where we subtracted 18 because (i) no edge is required for one of the
four nodes to cover itself, (ii) we might have counted

(
4
2

)
= 6 edges between

pairs of the four considered nodes d(a) ∈ D2 twice, and (iii) we might have
counted up to 8 edges between these four nodes and {v,m} twice. As we
made sure that Ã ∩M = ∅ by adding nodes from V \M only to VH in the
second construction step in Definition 13.2, the assumption that no other
node from M is enclosed by the outmost circle implies that everything inside
is covered by {v,m}. Therefore, it holds that

|Nv(S)|+ |Nm(S)| ≥ 2|Ã|+ ` = `+ 16.

However, Lemma 2.24 lower bounds |VS | in terms of |ES |, yielding

3(`+ 10) = 3|VS | > |ES | ≥ 3(|Nv(S)|+ |Nm(S)| − 6) ≥ 3(`+ 10),

a contradiction.
Case (ii) is treated similarly, but it is much simpler. This time, the

assumption that no node from M is enclosed by the outmost circle implies
that all the nodes inside must be covered by m alone, as M is a DS. Since v
and m are connected via the (at least) five nodes in Ã, for the node d(a) 6∈
{m, v} elected into D2 by the innermost node a ∈ Ã, it must hold that
N+
d(a) \ N

+
m ⊆ {v} (see Figure 13.4). However, there are at least two nodes

in Ã ⊆ V \N+
D1

that are not connected to d(a), i.e., we get the contradiction
that a would have preferred m over d(a) in Line 11 of the algorithm.

Next, we repeatedly delete nodes from H until eventually the precondi-
tions of Lemma 13.3 are met. Arguing as in the proof of Lemma 13.4, we can
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Ã ⊆ V \M

m ∈M \D1

v ∈ Cm \M

d(a) ∈ D2 \ (M ∪ C)

a ∈ Ã

Figure 13.4: Example of a subgraph considered in the second case of the
proof of Lemma 13.4. Supposing there is no other node m′ ∈ M inside the
outer circle, apart from v all neighbors of the node chosen by the innermost
node from Ã must also be neighbors of m.

account for deleted nodes by allocating them to enclosed nodes from M ∪C.
Doing this carefully, we can make sure that no nodes from M ∪ C need to
compensate for more than four deleted nodes.

Corollary 13.5. |D2| < 126|M |.

Proof. Fix an embedding of G and thus of all its subgraphs. We will argue
with respect to this embedding only. We use the notation from the proof
of Lemma 13.3. Starting from H, we iteratively delete nodes from A until
we obtain a subgraph H ′ satisfying the prerequisites of the lemma. Assume
that H ′ := H violates one of the preconditions of Lemma 13.3. No matter
which of the conditions (i) and (ii) from Lemma 13.3 is violated, we choose
respective nodes m ∈ M \D1 and v ∈ Cm satisfying precondition (i) or (ii)
of Lemma 13.4 such that the smallest circle formed by m, v, and a1, a2 ∈
Ã := N+

v (H ′)∩Nm(H ′) enclosing an element m′ ∈M has minimal area. We
delete the two elements from Ã ⊆ A participating in the circle. Since the
area of the circle is minimal, there is no third element from Ã enclosed in the
circle.

We repeat this process until H ′ satisfies the preconditions of Lemma 13.3.
We claim that we can account for deleted nodes in terms of nodes from M∪C
in a way such that no element of M ∪C needs to compensate for more than
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four deleted nodes. Whenever we delete a pair of nodes, we count a node
from M ∪ C enclosed by the respective circle that has not yet been counted
twice.

We need to show that this is indeed always possible. To see this, observe
that the minimality of the enclosed area of a chosen circle X together with
the planarity of G ensures that any subsequent circle X ′ either encloses this
circle or its enclosed area is disjoint from the one of X. In the latter case,
we obviously must find a different node from M ∪C enclosed in X ′ than the
one we used when deleting nodes from X. Hence, we need to examine the
case when there are three nested circles X1, X2, and X3 that occur in the
construction. If the nodes m ∈ M and v ∈ Cm participating in each circle
are not always the same, one node from the first such pair becomes enclosed
by one of the subsequent circles.

Hence, the remaining difficulty is that we could have three such nested
circles formed by nodes m ∈ M , v ∈ Cm, and three pairs of nodes from
Nm(H) ∩ Nv(H) (see Figure 13.5). Any node chosen by a node a 6∈ {m, v}
lying on the outmost circle X3 is separated from nodes enclosed by X1 by
X1. Therefore, nodes m′ ∈M enclosed by X1 can cover only nodes that are
either not adjacent to the nodes from D2 considered in Lemma 13.4 (when
applied to H ′ after X1 and X2 already have been removed) or lie on X1.
Since the nodes on X1 are m, v, and two of their shared neighbors in H, we
can thus argue analogously to the proof of Lemma 13.4 in order to find a
node m′′ ∈M enclosed by X3, but not enclosed by X1.

Altogether, for each element of M ∪C we remove at most two times two
nodes each from A, i.e., in total no more than 4|M ∪ C| ≤ 28|M | nodes. To
the remaining subgraph H ′, we apply Lemma 13.3, yielding

|D2| < (28 + 98)|M | = 126|M |.

Having determined the maximum number of nodes that enter the domi-
nating set in each step, it remains to assemble the results and finally state
the approximation ratio our algorithm achieves.

Theorem 13.6. |D| < 130|M |.

Proof. Combining Lemma 13.1 and Corollary 13.5, we obtain

|D| ≤ |M |+ |D1 \M |+ |D2| < (1 + 3 + 126)|M | = 130|M |.
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m ∈ M \D1

v ∈ C

Nm(H) ∩Nv(H)

m ∈ M

m′ ∈ M

Figure 13.5: Example of a sequence of three nested circles as considered in
Corollary 13.5. Each pair of two voting nodes involved in a circle is deleted
from H ′ after it has been accounted for. Therefore, all neighbors of the two
outmost nodes from Nm(H) ∩ Nv(H) are not adjacent to nodes inside the
innermost circle.



Chapter 14

Conclusions

“I was confused and uncertain about all the little details of life.
But now, while I’m still confused and uncertain, it’s on a much
higher plane [. . . ]” – Terry Pratchett, Equal Rites.

In this thesis, we examined several coordination problems arising in dis-
tributed systems. We believe all presented findings to be of theoretical in-
terest. For this reason, we would like to conclude our exposition with an
educated guess on their practical significance.

In Part I, we considered the problem of synchronizing clocks in a dis-
tributed system. Chapter 4 discussed this topic in the context of wireless
networks. We were able to derive and analyze a model whose implications
could be validated in practice. PulseSync, the presented algorithm tailored
to this model, outperforms FTSP, a commonly used synchronization protocol
for sensor networks. Considering that there are ongoing efforts to form an
applicable protocol out of the prototypical implementation, we hope to see
first systems employing our approach in the medium term.

Less clear is the situation for our second algorithm Aµ introduced in
Chapter 5. However, several indicators suggest that a potential implementa-
tion could be beneficial. Firstly, the algorithm is very robust. It can tolerate
worst-case crash failures, is self-stabilizing, and does not depend on a benign
behavior of clock drifts or message jitters. Secondly, it has a low complexity.
While protocols like PulseSync or FTSP compute a regression line out of a
history of recent clock estimates, Aµ follows simpler rules based on its current
estimates of neighbors’ clock values. These estimates can be obtained in an
arbitrary manner; upper and lower bounds show that Aµ makes best use of
the available information up to a small factor. Thirdly, the synchronization
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guarantees of Aµ are deterministic, which for smaller systems and/or large
time frames carries the advantage of more reliable logical clocks. With these
qualities, Aµ might e.g. help providing distributed clock generation at hard-
ware level (cf. [36]). Another canonical application area for Aµ are highly
dynamic ad-hoc networks. In such systems, the impossibility of preserving
strong connectivity at all times favors an adaptive algorithm that is robust,
yet ensures strong skew bounds whenever the topology is benign.

In Part II of this thesis, we analyzed the distributed balls-into-bins prob-
lem. Clearly, the practical merit of our bound of (1 − o(1)) log∗ n on the
time complexity of symmetric algorithms with small maximal bin load and
a linear number of messages is negligible. At best, it shows that one should
not invest time into the search for a constant-time solution. Similarly, the
given algorithms that circumvent the lower bound are of no practical con-
cern, as they are more complex than the simpler symmetric algorithms. In
fact, the additional rounds of communication used to ensure a constant run-
ning time render these algorithms slower than the symmetric ones for any
realistic values1 of n, unless a considerable overhead in message complexity is
accepted. In contrast, we assess in particular A2

b notable practical relevance.
In comparison to previous distributed balls-into-bins algorithms, A2

b is min-
imalistic in terms of complexity, yet achieves a maximal bin load of two in
log∗ n + O(1) rounds due to adaptivity. Moreover, the algorithm convinces
by its robustness. Since the constant hidden in the additive term of O(1) is
small (and can be reduced further by a more careful analysis), we estimate
A2
b to be well-suited for real-world use.

In Part III of our presentation, we looked into the subjects of MDS ap-
proximation and MIS computation in various graph families. For applica-
tions, it appears questionable whether the MIS algorithm from Chapter 10 is
advantageous. On the one hand, it competes with the O(logn) time solutions
on general graphs which do not require a complicated coloring subroutine.
On the other hand, our analysis yields the asymptotically stronger bound on
the running time for forests only. Nevertheless, if tuned well, the algorithm
might reduce running times for instances that typically occur in practice, as
it might constitute an efficient heuristic also for graphs that are not forests.

Like the lower bound from Chapter 7, the log∗ lower bound from Chap-
ter 11 on the product between running time and approximation ratio of MDS
approximation algorithms in unit disk graphs is a primarily theoretic state-
ment. Similarly, the algorithm for planar graphs given in Chapter 13 is of
purely theoretic interest, as it employs by far too large messages to be feasible
in practice. Fascinating—and probably challenging—open questions emerg-
ing from this result are whether a constant-time O(1) approximation can be
achieved with reasonably sized messages and what the precise approxima-

1For log∗ n to be larger than five, n must be at least 265,536.
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tion ratio is that can be achieved by distributed constant-time algorithms.
Finally, from a practical viewpoint, the algorithms from Chapter 12 are more
promising. Algorithm Greedy-by-Degree appeals by its low time complexity
and message size. The main advantage of Algorithm Parent Dominating
Set is that it achieves a constant approximation ratio on graphs of bounded
arboricity. Moreover, both algorithms are considerably less complex to im-
plement than the one from [56], making them an expedient alternative in the
quite general class of graphs of small arboricity.





Bibliography

[1] M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Par-
allel Randomized Load Balancing. In Proc. 27th Symposium on Theory
of Computing (STOC), pages 238–247, 1995.

[2] N. Alon, L. Babai, and A. Itai. A Fast and Simple Randomized Par-
allel Algorithm for the Maximal Independent Set Problem. Journal of
Algorithms, 7(4):567–583, 1986.

[3] B. Awerbuch. Complexity of Network Synchronization. Journal of the
ACM, 32(4):804–823, 1985.

[4] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S.
Vitter. Load Balancing in the Lp Norm. In Proc. 36th Symposium on
Foundations of Computer Science (FOCS), pages 383–391, 1995.

[5] B. Awerbuch and M. Sipser. Dynamic Networks are as Fast as Static
Networks. In Proc. 29th Symposium on Foundations of Computer Sci-
ence (FOCS), pages 206–219, 1988.

[6] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced Alloca-
tions. SIAM Journal on Computing, 29(1):180–200, 1999.

[7] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time-Complexity of
Broadcast in Multi-hop Radio Networks: An Exponential Gap Between
Determinism and Randomization. Journal of Computer and System
Sciences, 45(1):104–126, 1992.

[8] L. Barenboim and M. Elkin. Distributed (∆+1)-Coloring in Linear (in
∆) Time. In Proc. 41st Symposium on Theory of Computing (STOC),
pages 111–120, 2009.

[9] L. Barenboim and M. Elkin. Sublogarithmic Distributed MIS algorithm
for Sparse Graphs using Nash-Williams Decomposition. Distributed
Computing, 22(5–6):363–379, 2009.

171



172 BIBLIOGRAPHY

[10] H. Bast and T. Hagerup. Fast and Reliable Parallel Hashing. In Proc.
3rd Symposium on Parallel Algorithms and Architectures (SPAA),
pages 50–61, 1991.

[11] M. Ben-Or, D. Dolev, and E. N. Hoch. Fast Self-Stabilizing Byzantine
Tolerant Digital Clock Synchronization. In Proc. 27th Symposium on
Principles of Distributed Computing (PODC), pages 385–394, 2008.

[12] I. Ben-Zvi and Y. Moses. Beyond Lamport’s Happened-Before: On the
Role of Time Bounds in Synchronous Systems. In Proc. 24th Sympo-
sium on Distributed Computing (DISC), pages 421–436, 2010.

[13] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. W. Goldberg, Z. Hu,
and R. Martin. Distributed Selfish Load Balancing. SIAM Journal on
Computing, 37(4):1163–1181, 2007.

[14] P. Berenbrink, T. Friedetzky, Z. Hu, and R. Martin. On Weighted
Balls-into-Bins Games. Theoretical Computer Science, 409(3):511–520,
2008.

[15] P. Berenbrink, F. Meyer auf der Heide, and K. Schröder. Allocating
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