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Abstract We present a new approximation algorithm for rate-monotonic multi-
processor scheduling of periodic tasks with implicit deadlines. We prove that for
an arbitrary parameter k ∈ N it yields solutions with at most ( 3

2
+ 1

k
)OPT +9k

many processors, thus it gives an asymptotic 3/2-approximation algorithm. This
improves over the previously best known ratio of 7/4. Our algorithm can be im-
plemented to run in time O(n2), where n is the number of tasks. It is based on
custom-tailored weights for the tasks such that a greedy maximal matching and
subsequent partitioning by a first-fit strategy yields the result.

1 Introduction

In this paper, we consider the synchronous rate-monotonic real-time scheduling prob-
lem with implicit deadlines. That is, we are given a set of n tasks V := {τ1, . . . , τn}
attributed with execution times c(τi) and periods p(τi). Each task releases a job at time
0 and subsequently at each integer multiple of its period (hence synchronous). Fur-
thermore, each job of a task has to be finished before the next job of the same task is
released. In other words the relative deadlines of jobs are implicitly given by the peri-
ods. We allow preemption, but we require fixed priorities to reduce the overhead during
runtime. That is, the current job is preempted, if a new job with a higher priority is
released. In this context, Liu and Layland [1] have shown that if there are feasible fixed
priorities then rate-monotonic priorities, which are higher for smaller periods, also de-
fine a feasible schedule. See the book of Buttazzo [2] for a comparison of fixed-priority
versus dynamic-priority scheduling policies.

Since multi-core and multi-processor environments become more and more popular,
we consider the problem of assigning the tasks to a minimum number of processors such
that there is a feasible rate-monotonic schedule for each processor. Formally

Given tasks V = {τ1, . . . , τn}, running times c : V → Q+, and periods
p : V → Q+, where each task τ generates a job of length c(τ) ≤ p(τ) and
relative deadline p(τ) at z ·p(τ), for all z ∈ Z≥0, find the minimum ` such that
there is a partition of V = P1∪̇ . . . ∪̇P` subject to RM-schedulability of Pj for
each j.
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Here we forbid migration, i.e. jobs of the same task must always be processed on the
same machine. This scheduling problem has received considerable attention in the real-
time and embedded-systems community. This popularity is due to the fact that more
and more safety-critical control applications are carried out by microprocessors and in
particular by multiprocessor environments. Such scheduling problems are today a major
algorithmic challenge in the automotive and aviation industry.

The idea for our algorithm is as follows: Suppose all tasks had utilization larger
than 1

3 . Then at most 2 tasks can be assigned to each processor. Define an undirected
graph G = (V,E) with the tasks being the nodes and an edge {τ1, τ2} for each pair
such that τ1 and τ2 can be RM-scheduled on a single processor. Then the size of a
maximum matching plus the number of nodes not covered by that matching givesOPT .
We incorporate the existence of small tasks by only including an edge {τ1, τ2} ∈ E if
w(τ1)+w(τ2) exceeds a certain threshold. Herew(τ) is a proper weight function which
is monotonically increasing with the utilization u(τ) = c(τ)

p(τ) .

1.1 Related work

The famous Bin Packing problem is an important special case of our scheduling prob-
lem. The objective of Bin Packing is to find a partition of a set of items of different sizes,
say ui ∈ (0, 1] for i = 1, . . . , n, into a minimum number of bins such that the total size
of each bin does not exceed 1. The similarity to our scheduling problem becomes ap-
parent by introducing the notion of the utilization of a task, i.e. u(τ) = c(τ)/p(τ). If all
periods are the same, e.g. the common denominator of rational item sizes, then the pri-
orities for the rate-monotonic scheduling problem become irrelevant and a set of tasks
is feasible for one processor, if and only if their total utilization does not exceed 1.

Successful heuristics for Bin Packing are First Fit, Next Fit and Best Fit. In all
variants the items are assigned in a consecutive manner to a bin, which has enough
space (or a new one is opened). For First Fit the current item is assigned to the bin with
the smallest index, in Best Fit it is assigned to the bin, whose item sum is maximal.
For Next Fit an active bin is maintained. If the current item does not fit into it, a new
bin is opened, now being the active one; old bins are never considered again. In First
Fit Decreasing the items are first sorted by decreasing sizes and then distributed via
First Fit. In the worst-case Next Fit produces a 2-approximation, while First Fit needs
d 1710OPTBinPackinge + 1 many bins [3]. Asymptotically, Best and First Fit Decreasing
have an approximation ratio of 11/9 [4]. Furthermore, there is an asymptotic PTAS [5]
and even an asymptotic FPTAS exists [6]. More on Bin Packing can be found in the
excellent survey of Coffman et al. [7].

The utilization of a task set V ′ is defined as u(V ′) =
∑
τ∈V ′ c(τ)/p(τ). If V ′

is feasible (i.e. RM-schedulable on a single machine), then the utilization u(V ′) is at
most 1. However, V ′ can be infeasible, even if u(V ′) < 1. Liu and Layland [1] have
shown that V ′ is feasible, if u(V ′) is bounded by n′(21/n

′ − 1), where n′ = |V ′|. This
bound tends to ln(2) and the condition is not necessary for feasibility, as the example
with equal periods shows. Stronger, but still not necessary conditions for feasibility are
given in [8,9,10].

The response time of a job is the difference of release time and completion time.
The response time of a task is defined as the maximal response time of any of its jobs.
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In our synchronous setting, this value is attained for the first job (which is released at
time 0), see [1].

If p(τ1) ≤ . . . ≤ p(τn) then the response time for τi in a rate-monotonic, uni-
processor schedule is given by the smallest value r(τi) ≥ 0 with

r(τi) = c(τi) +
∑
j<i

⌈
r(τi)

p(τj)

⌉
c(τj).

Of course τ1, . . . , τn are feasible if and only if r(τi) ≤ p(τi) for i = 1, . . . , n. But it
was proved in [11] that such response times cannot even be approximated in polyno-
mial time within a constant factor, unless NP = P. Nevertheless in practice response
times can be efficiently computed using a fix-point iteration approach [12]. Furthermore
Baruah and Fisher [13] showed that there is an FPTAS for computing the minimum
processor speed, which is needed to make a task system RM-schedulable. However, the
complexity status of verifying, whether the RM-schedule of a set of implicit deadline
tasks on a single machine is feasible, remains an open problem [14]. Fortunately for
n = 2 there is an simple exact criterion (cf. [15], chapter 32): The task set {τ1, τ2} with
p(τ1) ≤ p(τ2) is RM-schedulable if and only if

c(τ2) ≤
⌊
p(τ2)

p(τ1)

⌋
(p(τ1)− c(τ1)) + max

{
0, p(τ2)−

⌊
p(τ2)

p(τ1)

⌋
p(τ1)− c(τ1)

}
. (1)

This constant time test will be used in our algorithm.
Most popular algorithms for rate-monotonic multiprocessor scheduling first sort the

tasks in a suitable way and then distribute them in a First Fit or Next Fit manner us-
ing a sufficient feasibility criterion. See the following table for an overview (with our
algorithm in the last row, for the sake of comparability).

algorithm references sorting distribution ratio time
RMNF [16,17] inc. p(τ) Next Fit 2.67 O(n log n)
RMFF [16,17] inc. p(τ) First Fit 2.00 O(n log n)
RRM-FF [18] - First Fit 2.00 O(n log n)
RRM-BF [18] inc. p(τ) Best Fit 2.00 O(n log n)
FFDU [17] dec. u(τ) First Fit 2.00 O(n log n)
RMST [8] inc. S(τ) Next Fit 1

1−α O(n log n)

RMGT [8] - First Fit + RMST 1.75 O(n2)
FFMP [19] inc. S(τ) First Fit 2.00 O(n log n)
k-RMM - - Matching + FFMP 1.50 O(n2)

Here S(τ) = log2 p(τ) − blog2 p(τ)c and α = maxτ∈V u(τ). In the table, column
“ratio” denotes the best known upper bounds on the asymptotic approximation ratio.
The Rate-monotonic general task algorithm [8] distributes tasks with utilization at most
1/3 using RMST and the rest separately with First Fit. Also the algorithms RRM-FF
and RRM-BF apply the same grouping strategy. A more detailed description can be
found in [17].

Furthermore there is an asymptotic PTAS under resource augmentation, computing
for any fixed ε > 0 a solution with (1 + ε)OPT + O(1) processors, where the tasks



4 Andreas Karrenbauer and Thomas Rothvoß

on each processor can be feasibly scheduled after increasing the processor speed by
a factor of 1 + ε [20]. In the same paper it was proved that unless P 6= NP, no
asymptotic FPTAS can exist for this multiprocessor scheduling problem. But it is still
an open question whether an asymptotic PTAS is possible. We refer to the article [21]
for an overview on complexity issues of real-time scheduling.

1.2 Our Contribution
We present a new polynomial time algorithm for rate-monotonic real-time scheduling,
which is based on matching techniques and yields solutions of at most ( 32+

1
k )OPT+9k

many processors. The asymptotic approximation ratio tends to 3/2 (for growing k), im-
proving over the previously best known value of 7/4. Moreover, we provide experimen-
tal evidence that our new algorithm outperforms all other existing algorithms.

2 Preliminaries

During our algorithm it will happen, that we discard a set of (in general small) tasks
V ′ ⊆ V and schedule them using a simple heuristic termed First Fit Matching Periods
(FFMP), which was introduced in [19]. For a task τ define

S(τ) := log2 p(τ)− blog2 p(τ)c and β(V ) := max
τ∈V

S(τ)−min
τ∈V

S(τ)

then the FFMP heuristic can be stated as follows

Algorithm 1 FFMP
(1) Sort tasks such that 0 ≤ S(τi) ≤ . . . ≤ S(τn) < 1
(2) FOR i = 1, . . . , n DO

(3) Assign τi to the processor Pj with the least index j such that

u(Pj ∪ {τi}) ≤ 1− β(Pj ∪ {τi}) · ln(2)

The idea for this ordering of the tasks is that consecutive tasks will have periods
that are nearly multiples of each other and hence the bin packing aspect of the problem
becomes dominant. Let FFMP(V ) denote the value of the solution, which FFMP pro-
duces, if applied to V . One can prove the following lemma using well known techniques
from [8] (see also [15]).

Lemma 1. Given periodic tasks V = {τ1, . . . , τn} and k ∈ N. FFMP always produces
feasible solutions such that

– If u(τi) ≤ α ≤ 1
2 for all i = 1, . . . , n, then FFMP(V ) ≤ 1

1−αu(V ) + 3.
– If u(τi) ≤ 1

2 −
1
k for all i = 1, . . . , n, then FFMP(V ) ≤ n

2 + k
2 .

The RMST algorithm of Liebeherr et al. [8] also fulfills the same properties. But
on average the First Fit distribution for FFMP behaves much better than the Next Fit
distribution of RMST. However just for a worst-case analysis one could replace FFMP
by RMST.
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3 Matchings and Schedules

As a powerful tool, we will use matchings in our algorithm. To this end, we define an
undirected graph G = (V,E) such that the nodes correspond to the tasks. If there is an
edge between the nodes τ1 and τ2, then the corresponding tasks can be scheduled on one
processor. Suppose for the time being that all tasks have a utilization of more than 1

3 and
thus at most two tasks fit on one processor. Then the maximum cardinality matching
in G determines a schedule with a minimum number of processors by reserving one
processor for each edge in the matching and one processor for each unmatched node.

For the general setting of tasks with arbitrary utilization, this basic idea for our
algorithm persists: Compute a matching in G, schedule each pair of matched tasks
together on one processor, and distribute the remaining tasks by FFMP. Of course, the
matching should be in such a way that we use the processors efficiently. To this end,
we will assign weights to the nodes depending on the utilization of the corresponding
tasks. We will later define the weights exactly. For now, let the weights be a function
w : V → [0, 1] and let the price of a matching M ⊆ E be

price(M) := |M |+ w(M),

where M := {v ∈ V | ∀e ∈ M : v 6∈ e} ⊆ V is the set of unmatched nodes
and w(M) :=

∑
v∈M w(v). That is, we have to allocate 1 processor for each matched

pair of tasks and also some more processors for distributing the remaining unmatched
tasks. Note that finding the matching with minimum price is equivalent to computing
the maximum weight matching with edge weights w(e) := w(u) + w(v) − 1 for each
edge e = {u, v}, since

w(M) :=
∑
e∈M

w(e) =
∑
v∈V

w(v)−
∑
v∈M

w(v)− |M | = w(V )− price(M).

While a maximum weight matching in a graph with n nodes and m edges can be
found in O(n(m + n log n)) [22], we will see that it is sufficient for our purpose to
compute an inclusion-wise maximal matching greedily. That is, we maintain the prop-
erty, that for all e ∈ E \M we have w(e′) ≥ w(e) for all e′ ∈ M or there is an edge
e′ ∈M with e ∩ e′ 6= ∅ and w(e′) ≥ w(e), throughout the algorithm. Furthermore, the
algorithm iterates until M does not contain an edge, i.e. |e ∩M | < 1 for all e ∈ E.
Note that such a greedy maximal matching can be computed in O(n2) by sorting the
tasks by decreasing weight and searching for each task τi the first unmatched τj with
{τi, τj} ∈ E. Although we do not have an explicit representation of the edges, the
check whether a pair of nodes forms an edge takes only constant time. The interested
reader is pointed to [23] or [24] for an extensive account on matchings.

4 The Algorithm

As indicated in the previous section, we compute a weighted matching to find a good
schedule. It remains to define the weights properly. Note that each edge yields a pro-
cessor in the partition. Hence, we do not want to match two nodes which do not use the
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processor to some extent. Moreover, each unmatched node is first discarded and later
scheduled via FFMP. We are now going to define node weights w in such a way, that a
matching with costs γ can be turned into a feasible schedule of roughly γ many proces-
sors. Intuitively, the weight w(τ) ∈ [0, 1] will denote the average number of processors
per task, which the FFMP algorithm needs to schedule a large number of tasks, if all
tasks have the same utilization as τ . Here we distinguish 3 categories of tasks:

– Small tasks (0 ≤ u(τ) ≤ 1
3 ): Consider tasks τ1, . . . , τm with a small utilization, i.e.

u(τi) ≤ α for all i = 1, . . . ,m and α ≤ 1/3. Then we may schedule such tasks
with FFMP using u({τ1, . . . , τm}) 1

1−α +3 ≤ m ·α 1
1−α +3 many processors (see

Lemma 1), thus we choose w(τ) := u(τ)
1−u(τ) for a small task τ .

– Medium tasks ( 13 < u(τ) ≤ 1
2 −

1
12k ): Suppose we have tasks τ1, . . . , τm whose

utilization is at least 1/3, but bounded away from 1/2, say u(τi) ≤ 1
2 −

1
12k , where

k is an integer parameter that we determine later. Then FFMP({τ1, . . . , τm}) ≤
m/2+O(k) (see again Lemma 1), thus we choose w(τ) := 1/2 for medium tasks.

– Large tasks (u(τ) > 1
2 −

1
12k ): For a large task one processor is sufficient and

possibly needed, thus w(τ) := 1 in this case.

Algorithm 2 k-Rate-Monotonic-Matching algorithm (k-RMM)
(1) Construct G = (V,E) with edges e = {τ1, τ2} ∈ E ⇔ {τ1, τ2} RM-schedulable (accord-

ing to condition (1)) and w(e) > 0.
(2) Sort the edges by decreasing weight (ties are broken arbitrarily) and compute the greedy

maximal matching M w.r.t. this order.
(3) For all {τ1, τ2} ∈M create a processor with {τ1, τ2}
(4) Define

– Vi = {τ ∈M : 1
3
· i−1

k
≤ u(τ) < 1

3
· i
k
} ∀i = 1, . . . , k

– Vk+1 = {τ ∈M : 1
3
≤ u(τ) ≤ 1

2
− 1

12k
}

– Vk+2 = {τ ∈M : u(τ) > 1
2
− 1

12k
}

(5) Distribute Vk+2, Vk+1, . . . , V1 via FFMP.

The reason to define the weights in this way becomes clear with the proof of the
following Theorem, saying that the number of used machines is essentially determined
by the price of the matching.

Theorem 1. Let M be an arbitrary matching in G. The schedule created from M as
described in Algorithm 2, uses at most(

1 +
1

2k

)
· price(M) + 9k

many processors.

Proof. We create |M | processors, covering pairs of tasks {τ1, τ2} ∈M . For scheduling
the tasks in Vk+1 we know that according to Lemma 1

FFMP(Vk+1) ≤
|Vk+1|

2
+

12k

2
=

∑
τ∈Vk+1

w(τ) + 6k
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using that the utilization of all tasks in Vk+1 lies between 1
3 and 1

2 −
1

12k . Of course
FFMP(Vk+2) ≤ |Vk+2| =

∑
τ∈Vk+2

w(τ). For each Vi (i = 1, . . . , k) we know that the
utilization of each task is sandwiched by 1

3 ·
i−1
k and 1

3 ·
i
k . Consequently

FFMP(Vi) ≤
1

1− i
3k

·u(Vi)+3 ≤
(
1+

1

2k

) 1

1− i−1
3k

·u(Vi)+3 ≤
(
1+

1

2k

)
w(Vi)+3

by applying again Lemma 1 together with the fact that w(τ) ≥ u(τ) · 1
1−(i−1)/(3k) for

all τ ∈ Vi. We conclude that the total number of processors in the produced solution is

|M |+
k+2∑
i=1

FFMP(Vi) ≤ |M |+
∑

τ∈Vk+1∪Vk+2

w(τ) + 6k

+
(
1 +

1

2k

) ∑
τ∈V1∪...∪Vk

w(τ) + 3k

≤ |M |+
(
1 +

1

2k

) ∑
τ∈V1∪...∪Vk+2

w(τ) + 9k

≤
(
1 +

1

2k

)
· price(M) + 9k.

ut

It remains to show that the price of the matching computed by Algorithm 2 is at
most roughly 3

2 times the number of necessary processors. To this end, we first show
that for any partition, there is a matching with the appropriate price.

Theorem 2. For any feasible partition P = {P1, . . . , P`} of the tasks, there is a match-
ing MP with

price(MP) ≤
(3
2
+

1

12k

)
· |P|

such that no e ∈MP crosses a Pi ∈ P, i.e. either e ⊆ Pi or e ∩ Pi = ∅.

Proof. Consider a processor Pi. After reordering let τ1, . . . , τq be the tasks on Pi, sorted
such that u(τ1) ≥ . . . ≥ u(τq). First suppose that q ≥ 2. We will either cover two tasks
in Pi by a matching edge or leave all tasks uncovered. But in any case we guarantee,
that the tasks in Pi contribute at most ( 32 + 1

12k ) to price(MP). We distinguish two
cases, depending on whether Pi contains a large task or not.

Case τ1 not large: We leave all tasks in Pi uncovered. Note that all tasks in Pi are
either of small or medium size, hence w(τj) ≤ 3

2u(τj) for j = 1, . . . , q. The
contribution of Pi is

∑q
j=1 w(τj) ≤

3
2

∑q
j=1 u(τj) ≤

3
2 .

Case τ1 large: We add {τ1, τ2} to the matching. We may do so since both tasks are
RM-schedulable, the weight of the edge is positive because τ1 is large, and hence
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{τ1, τ2} ∈ E. The contribution is

1 +

q∑
j=3

w(τj) ≤ 1 +

q∑
j=3

u(τj)︸ ︷︷ ︸
≤1−u({τ1,τ2})

· 1

1− u(τj)︸ ︷︷ ︸
≤u(τ2)

≤ 1 +
1− u(τ1)− u(τ2)

1− u(τ2)
(2)

≤ 1 +
1
2 + 1

12k − u(τ2)
1− u(τ2)

≤ 3

2
+

1

12k

using that τ3, . . . , τq are small and a−x
1−x is monotone decreasing if a < 1.

If q = 1, then we do not cover τ1. The contribution is at most 1. Moreover, the above
construction guarantees that no edge in MP crosses a processor Pi. ut

If we compute a maximum weight matching in our algorithm (say in running time
in O(n3)), by simply combining Theorems 1 and 2, we can already obtain a bound of(3

2
+

1

12k

)
·
(
1 +

1

2k

)
·OPT + 9k ≤

(3
2
+

1

k

)
OPT + 9k

on the number of used processor. However, we do not want to fall short of the running
time of O(n2) of the 7/4-approximation algorithm of Liebeherr et al. [8]. Hence, we
use a greedy matching instead, which can be computed in O(n2). Observe that in the
previous proof, in particular for the second case, we left some slack to the approxima-
tion ratio. This will become useful in the proof of the next theorem, saying that for any
feasible partition it is sufficient to consider a greedy maximal matching.

Theorem 3. If P = {P1, . . . , P`} be a feasible partition, then we have for a greedy
matching M that

price(M) ≤
(3
2
+

1

6k

)
|P|.

Proof. This proof is based on a comparison of M with the matching MP, constructed
in Theorem 2. To this end, we consider the symmetric difference of the two matchings,
i.e. let E′ := M∆MP. Note that E′ is a collection of disjoint paths and cycles, i.e. for
all v ∈ V , we have |{e ∈ E′ : v ∈ e}| ≤ 2. First, we consider a cycle C ⊆ E′. Observe
that |C ∩M | = |C ∩MP| by the fundamentals of matching theory. Let q := |C ∩M |
and let P1, . . . , Pq be the processors that contain edges from C ∩MP. Note that each
edge in MP is contained in exactly one processor and moreover that M matches all
nodes in P1 ∪ · · · ∪ Pq that MP does. Hence, we have

|C ∩M |+
q∑
i=1

w(Pi ∩M) = |C ∩MP|+
q∑
i=1

w(Pi ∩MP) ≤
(1
2
+

1

12k

)
q.

Next, we consider a path Q ⊆ E′. Again let P1, . . . , Pq be the processors containing
edges from MP ∩ Q. We distinguish the three cases, when both, one, or none of the
end-nodes of the path Q are matched in M as illustrated below. The solid edges belong
to M and the dashed ones belong to MP. The boxes represent the processors of
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(a) (b) (c)

τ τ
′

τ τ
′′

τ
′

τ τ
′

Case (a). If both ends of Q are matched in M , then |M ∩ Q| − 1 = |MP ∩ Q| = q.
Hence,

|M ∩Q|+
q∑
i=1

w(Pi ∩M) ≤ |MP ∩Q|+
q∑
i=1

w(Pi ∩MP) + 1− w(τ)− w(τ ′)

where τ, τ ′ are the both ends of Q. If one of τ, τ ′ is large, then there is nothing to show.
Suppose that none of them is large. Then there is at least one processor that contains
two large tasks, since Q has an odd number of edges and since by definition each edge
contains at least one large task. Furthermore by the greedy selection, there is at least one
large neighboring task in this path, and by the same parity argument, there is a further
processor with two large tasks. Note that q ≥ 2 if neither τ nor τ ′ is large. If q = 2 like
in the above example, then all unmatched tasks on the two processors have a smaller
weight than τ or τ ′, respectively. Since this yields the claim, we suppose that q > 2 in
the following.

|M ∩Q|+
q∑
i=1

w(Pi ∩M) ≤ q + 1 +
(1
2
+

1

12k

)
(q − 2) +

2

6k − 1
≤
(3
2
+

1

6k

)
q

Case (b). If exactly one of the endpoints of Q is matched in M , say τ , and the other
endpoint, say τ ′ is matched on processor Pq , then

|M ∩Q|+
q∑
i=1

w(Pi ∩M) ≤ |MP ∩Q| − w(τ) + w(τ ′) +

q∑
i=1

w(Pi ∩M).

If q = 1, then the greedy selection implies that w(τ) ≥ w(τ ′). Hence, we assume that
q ≥ 2. Let τ ′′ be as in the illustration. By the greedy selection, we have u(τ ′′) ≥ u(τ ′).
If τ ′′ is small, then

w(Pq−1 ∩M) + w(Pq ∩M) ≤
1
2 + 1

12k − u(τ
′′)

1− u(τ ′′)
+

1
2 + 1

12k

1− u(τ ′)
≤ 1 +

1

4k

as in Ineq. (2) in the proof of Theorem 2. By a similar argument, the same bound holds
if τ ′′ is medium. If τ ′′ is large, then either τ is large itself or there is a processor Pj
with j ∈ {1, . . . , q−1} with two large tasks, since each edge contains at least one large
task. In the former case, there is nothing to show, whereas in the latter case, we may
assume w.l.o.g. that j = q − 1 and hence the bound of 1 + 1

4k also holds. Note that if
w(τ ′) = 1, then no further unmatched task can be on Pq , and hence w(Pq ∩M) = 1,
because they would have been matched by the algorithm. Altogether, this yields

|M ∩Q|+
q∑
i=1

w(Pi ∩M) ≤ q +
(1
2
+

1

12k

)
(q − 2) + 1 +

1

4k
≤
(3
2
+

1

6k

)
q.
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Case (c). If none of the endpoints of Q are matched in M , then

|M ∩Q|+
q∑
i=1

w(Pi ∩M) ≤ |M ∩Q|+
q∑
i=1

w(Pi ∩MP)− 1 + w(τ) + w(τ ′)

where τ, τ ′ are the both ends of Q. If neither τ nor τ ′ is large, then there is nothing to
show. Hence, we assume w.l.o.g. that w(τ) = 1. Since τ is not matched in M , there is
no further task on the same processor that is also unmatched in M . Hence,

|M ∩Q|+
q∑
i=1

w(Pi ∩M) ≤
(3
2
+

1

12k

)
(q − 1) + w(τ ′) ≤

(3
2
+

1

12k

)
q.

ut

Corollary 1. Algorithm 2 produces a solution of cost ( 32+
1
k )OPT+9k in timeO(n2).

Proof. Note that for each set {τ1, τ2} RM-schedulability can be tested in constant time
using condition (1). Sorting the tasks by decreasing utilization takes O(n log n) time
and is subsumed by the time necessary to create G, which is O(n2). In fact, it is only
necessary to scan each large task and check with every other task with smaller utiliza-
tion whether they can be scheduled together. If so both tasks are marked as matched
provided that none of them has been matched before. However, this procedure still
requires quadratic running time since all tasks might be large in the worst case. The
running time of FFMP is O(n′ log n′) for scheduling n′ tasks, thus the total running
time is O(n2).

The approximation guarantee follows from Theorem 3 and Theorem 1, since we
may combine them to show that the number of processors produced does not exceed(

1 +
1

2k

)
·
(3
2
+

1

6k

)
OPT + 9k ≤

(3
2
+

1

k

)
·OPT + 9k.

ut

5 Experimental results

We have implemented and compared our k-RMM algorithm experimentally with the
ones, which are known from the literature and have already been mentioned in Sect. 1.1.
To this end, we have randomly generated instances with the number of tasks n ranging
from 10 to 105. That is, for each given n, we have generated 100 samples, where inte-
ger periods have been chosen out of (0, 500) uniformly at random and independently
utilizations from (0, 1) u.a.r. All algorithms have been tested on the same instances to
allow also a direct comparison. With a choice of k = b

√
nc, our new algorithm has

outperformed the others on almost all instances (in fact it has been 1 processor worse
on only 4 instances). For n = 10 and n = 20, we have also computed the optimum
solutions by a configuration-based ILP solved with CPLEX. For 82% of the instances
with 10 tasks and 76% of the instances with n = 20, our k-RMM has found the opti-
mum solution, and in the remaining cases it only fell short by one processor. Looking at
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Figure 1. A comparison of our algorithm with the ones known from the literature w.r.t. the aver-
age processor load.

the average processor load, i.e. the total utilization divided by the number of allocated
processors, in Fig. 1, one can see that our k-RMM algorithm uses the processor much
more efficiently than the other approximation algorithms.

Figure 1 suggests that the average load for k-RMM converges to 1 as n goes to infin-
ity. In fact, it is not hard to prove that the waste of k-RMM, i.e. the difference between
the allocated processors and the total utilization, scales sub-linearly with the number
of tasks on random instances. More precisely, the same bound of O(n3/4 log3/8 n) for
the waste of FFMP, which has been shown in [19], also holds for our new algorithm.
However, experiments suggest that this bound for k-RMM might be something closer
to
√
n. A further interesting open question is whether there exists an asymptotic PTAS

for the rate-monotonic multiprocessor scheduling problem.
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