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Abstract

Multi-objective optimization problems arise frequently in applications, but can of-
ten only be solved approximately by heuristic approaches. Evolutionary algorithms
have been widely used to tackle multi-objective problems. These algorithms use
different measures to ensure diversity in the objective space but are not guided
by a formal notion of approximation. We present a framework for evolutionary
multi-objective optimization that allows to work with a formal notion of approxi-
mation. This approximation-guided evolutionary algorithm (AGE) has a worst-case
runtime linear in the number of objectives and works with an archive that is an
approximation of the non-dominated objective vectors seen during the run of the
algorithm. Our experimental results show that AGE finds competitive or better
solutions not only regarding the achieved approximation, but also regarding the
total hypervolume. For all considered test problems, even for many (i.e., more than
ten) dimensions, AGE discovers a good approximation of the Pareto front. This is
not the case for established algorithms such as NSGA-II, SPEA2, and SMS-EMOA.
In this paper we compare AGE with two additional algorithms that use very fast
hypervolume-approximations to guide their search. This significantly speeds up the
runtime of the hypervolume-based algorithms, which now allows a comparison of
the underlying selection schemes.

Keywords: Multi-objective optimization, approximation, comparative study

1. Introduction

Real-world optimization problems are usually very complex and hard to solve
due to different circumstances such as constraints, complex function evaluations
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that can only be done by simulations, or multiple objectives. Most real-world opti-
mization problems are characterized by multiple objectives. As these objectives are
often in conflict with each other, the goal of solving a multi-objective optimization
(MOO) problem is to find a (not too large) set of compromise solutions. The so-
called Pareto front of a MOO problem consists of the function values representing
the different trade-offs with respect to the given objective functions. The set of
compromise solutions that is the outcome of a MOO run is an approximation of
this Pareto front, and the idea of this posteriori approach is that afterwards the
decision maker selects an efficient solution from this set. Multi-objective optimiza-
tion is regarded to be more (or at least as) difficult as single-objective optimization
due to the task of computing several solutions. From a computational complexity
point of view even simple single-objective problems on weighted graphs like short-
est paths or minimum spanning trees become NP-hard when they encounter at
least two weight functions [16]. In addition, the size of the Pareto front is often
exponential for discrete problems and even infinite for continuous ones.

Due to the hardness of almost all interesting multi-objective problems, different
heuristic approaches have been used to tackle them. Among these methods, evo-
lutionary algorithms are frequently used. They work at each time step with a set
of solutions called population. The population of an evolutionary algorithm for a
MOO is used to store desired trade-off solutions for the given problem.

As the size of the Pareto front is often very large, evolutionary algorithms and all
other algorithms for MOO have to restrict themselves to a smaller set of solutions.
This set of solutions should be a good approximation of the Pareto front. The
main question is now how to define approximation. The literature (see e.g. [11])
on evolutionary multi-objective optimization (EMO) just states that the set of
compromise solutions (i) should be close to the true Pareto front, (ii) should cover
the complete Pareto front, and (iii) should be uniformly distributed. There are
different evolutionary algorithms for multi-objective optimization such as NSGA-
II [12], SPEA2 [31], or IBEA [29], which try to achieve these goals by preferring
diverse sets of non-dominated solutions.

However, the above notion of approximation is not a formal definition. Having
no formal definition of approximation makes it hard to evaluate and compare algo-
rithms for MOO problems. Therefore, we think that it is necessary to use a formal
definition of approximation in this context and evaluate algorithms with respect to
this definition.

Different formal notions of approximation have been used to evaluate the qual-
ity of algorithms for multi-objective problems from a theoretical point of view.
The most common ones are the multiplicative and additive approximations (see
[9, 10, 14, 24–26]). Laumanns et al. [22] have incorporated this notion of approxi-
mation in an evolutionary algorithm for MOO. However, this algorithm is mainly
of theoretical interest as the desired approximation is determined by a parameter of
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the algorithm and is not improved over time. Another approach related to a formal
notion of approximation is the popular hypervolume indicator [30] that measures
the volume of the dominated portion of the objective space. Hypervolume-based
algorithms such as MO-CMA-ES [20] or SMS-EMOA [2] are well-established for
solving MOO problems. They do not use a formal notion of approximation but it
has recently been shown that the worst-case approximation obtained by optimal
hypervolume distributions is asymptotically equivalent to the best worst-case ap-
proximation achievable by all sets of the same size [4, 5]. The major drawback of
the hypervolume approach is that it cannot be computed in time polynomial in the
number of objectives unless P = NP [3]. It is even NP-hard to determine which
individual gives approximately the least contribution to the total hypervolume [6].

We introduce an efficient framework of an evolutionary algorithm for MOO
that works with a formal notion of approximation and improves the approximation
quality during its iterative process. The algorithm can be applied to a wide range
of notions of approximation that are formally defined. As the algorithm does not
have complete knowledge about the true Pareto front, it uses the best knowledge
obtained so far during the optimization process.

The intuition for our algorithm is as follows. During the optimization process,
the current best set of compromise solutions (usually called “population”) gets
closer and closer to the Pareto front. Similarly, the set of all non-dominated points
seen so far in the objective space (we call this “archive”) is getting closer to the
Pareto front. Additionally, the archive is getting larger and larger and becoming an
increasingly good approximation of the true Pareto front. Assuming that the archive
approximates the Pareto front, we then measure the quality of the population by
its approximation with respect to the archive. In our algorithm

• any set of feasible solutions constitutes an (potentially bad) approximation of
the true Pareto front, and

• we optimize the approximation with respect to all solutions seen so far.

We introduce a basic approximation guided evolutionary algorithm which al-
ready performs very well for problems with many objectives. One drawback of the
basic approach is that the archive size might grow tremendously during the run of
the algorithm. In order to deal with this, we propose to work with an approxima-
tive archive which keeps at each time step only an ε-approximation of all solutions
seen so far. We do this by incorporating the ε-dominance approach of Laumanns et
al. [22] into the algorithm. Furthermore, we introduce a powerful parent selection
scheme which especially increases the performance of our algorithm for problems
with just a few objectives by given the algorithm a stronger focus on the extreme
points on the Pareto front.

We show on a set of well established benchmark problems that our approach is
highly successful in obtaining high quality approximations according to the formal
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definition. Comparing our results to state of the art multi-objective algorithms
such as NSGA-II, SPEA2, IBEA, and SMS-EMOA, we show that our algorithm
typically gives better results, especially for high dimensional problems.

In our experimental study, we measure the quality of the results obtained not
only in terms of the approximation quality but also with respect to the achieved
hypervolume. Our experiments show that the examined hypervolume-based algo-
rithms can sometimes achieve a larger hypervolume than our algorithm AGE, but
AGE is the only one considered that finds a competitive hypervolume for all func-
tions. Hence our algorithm not only performs better regarding our formal definition
of approximation on problems with many objectives, but it is also competitive (or
better, depending on the function) regarding the hypervolume.

This article is based on its previous conference publications. The basic AGE
algorithms has been introduced in [7]. The archive approximation has been pre-
sented in [28] and different parent selection schemes for AGE have been examined
and discussed in [27].

The outline of this paper is as follows. We introduce some basic definitions in
Section 2. The main idea of approximation guided evolution and the basic AGE
algorithm are presented in Section 3. In Section 6 we show how to speed up the
approach by using an approximative archive and discuss different parent selection
schemes in Section 5. We present our experimental results in Section 8 and finish
with a summary and some concluding remarks.

2. Preliminaries

Multi-objective optimization deals with the optimization of several (often con-
flicting) objective functions. The different objective functions usually constitute a
minimization or maximization problem on their own. Optimizing with respect to
all given objective functions, there is usually no single optimal objective function
vector, but a set of vectors representing the different trade-offs that are imposed by
the objective functions.

Without loss of generality, we consider minimization problems with d objective
functions, where d > 2 holds. Each objective function fi : S 7→ R, 1 6 i 6 d, maps
from the considered search space S into the real values. In order to simplify the
presentation we only work with the dominance relation on the objective space and
mention that this relation transfers to the corresponding elements of S.

For two points x = (x1, . . . , xd) and y = (y1, . . . , yd), with x, y ∈ Rd we define
the following dominance relation:

x � y :⇔ xi 6 yi for all 1 6 i 6 d,

x ≺ y :⇔ x � y and x 6= y.

The typical notions of approximation used in theoretical computer science are
multiplicative and additive approximation. We use the following definition
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Subroutine 1: Measure approximation quality of a population

input : Archive A, Population P
output: Indicator Sα(A,P )

1 S ← ∅;
2 foreach a ∈ A do
3 δ ←∞;
4 foreach p ∈ P do
5 ρ← −∞;
6 for i← 1 to d do
7 ρ← max{ρ, ai − pi};
8 δ ← min{δ, ρ};
9 S ← S ∪ {δ};

10 sort S decreasingly;
11 return S;

Definition 1. For finite sets S, T ⊂ Rd, the additive approximation of T with
respect to S is defined as

α(S, T ) := max
s∈S

min
t∈T

max
16i6d

(si − ti).

In this paper, we only consider additive approximations. However, our approach
can be easily adapted to multiplicative approximations. This this case, the term
si − ti in Definition 1 has to be replaced by si/ti.

3. Basic Algorithm

Our aim is to minimize the additive approximation value of the population P
we output with respect to the archive A of all points seen so far, i.e., we want to
minimize α(A,P ). The problem is that α(A,P ) is not sensitive to local changes
of P . As its definition is based on maximum and miminum values, α(A,P ) only
measures the approximation of points that are worst approximated. Consequently,
it does not take into account approximation values for points that are not “worst
approximated”. We will illustrate this with a very simple example. Let us consider
a two-dimensional space with an archive A = {(1, 2), (2, 1), (3, 0)} and a population
P = {(2, 1)}. Then, α(A,P ) = 1 due to archive points (1, 2) and (3, 0). Even if
points such as (3, 0) or (2.5, 0.5) are added to the population, the approximation
value will remain α(A,P ) = 1 because of the worst approximated archive point
(1, 2), even though the approximation of (3, 0) is significantly improved.
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Subroutine 2: Insert point into archive

input : Archive A, Point p ∈ Rd

output: Archive consisting of the Pareto optimal points of A ∪ {p}
1 dominated← false;
2 foreach a ∈ A do
3 if p ≺ a then delete a from A;
4 if a � p then dominated← true;

5 if not dominated then add p to A;
6 return A;

To get a sensitive indicator, which can be used to guide the search, we consider
instead the set {α({a}, P ) | a ∈ A} of all approximations of the points in A. We
sort this set decreasingly and call the resulting sequence

Sα(A,P ) := (α1, . . . , α|A|).

The first entry α1 is again α(A,P ). Our new goal it then to minimize Sα(A,P )
lexicographically, meaning that we take the lexicographically smallest sequence when
we face several sequences.1 Note that this is a refinement of the order induced by
α(A,P ): If we have α(A,P1) < α(A,P2) then we also have Sα(A,P1) <lex Sα(A,P2).
Moreover, this indicator is locally sensitive. Subroutine 1 states the pseudo-code
for computing Sα(A,P ) for a given archive A and a population P .

We are now ready to describe the basic AGE algorithm. It works with the
vector Sα(A,P ) and tries to minimize it with respect to the lexicographical order.
Depending on the optimization process the archive A changes and stores at each
point in time for each non-dominated objective vector one single solution.

The basic AGE algorithm shown in Algorithm 3 works with a parent population
of µ individuals and produces in each generation λ offspring.

A newly produced offspring p is added to the archive A if it is not dominated
by any other solution found so far. If it is added to the archive, all solutions
that are dominated by p are removed from A (see Subroutine 2). In order to
obtain the next parent population, the set consisting of the union of the parent and
offspring is considered. From this set, the individual p for which Sα(A,P \ {p})
is lexicographically smallest is removed iteratively until a population of size µ is
obtained. Note that in contrast to many other evolutionary algorithms (like [22]
or all hypervolume-based algorithms), the basic AGE algorithm needs no meta-
parameters besides the population sizes µ and λ.

1(a1, . . . , a|A|) <lex (b1, . . . , b|A|)⇔ (a1 < b1) or
(
(a1 = b1) and (a2, . . . , a|A|) <lex (b2, . . . , b|A|)

)
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Algorithm 3: Basic (µ+ λ)-Approximation Guided EA

1 Initialize population P with µ random individuals;
2 Set archive A← P ;
3 foreach generation do
4 Initialize offspring population O ← ∅;
5 for j ← 1 to λ do
6 Select two random individuals from P ;
7 Apply crossover and mutation;
8 Add new individual to O, if it is not dominated by any individual

from P ;

9 foreach p ∈ O do
10 Insert offspring p in archive A with Subroutine 2;

11 Add offspring to population, i.e., P ← P ∪O;
12 while |P | > µ do
13 foreach p ∈ P do
14 Compute Sα(A,P \ {p}) with Subroutine 1;

15 Remove p from P for which Sα(A,P \ {p}) is lexicographically
smallest;

We now analyze the runtime of the basic AGE algorithm in dependence of µ, λ,
the archive size A, and the number of function evaluations N of the algorithm. One
generation consists of producing and processing λ offspring. The main part of the
runtime is needed for the O(λ(µ+λ)) computations of Sα(A,P \{p}), each costing
O(d |A| (µ+λ)+ |A| log |A|). Hence, we get a runtime of O(λ(µ+λ) |A| (d (µ+λ)+
log |A|)) for generating an offspring population of λ individuals. This means for N
function evaluations, that is, N generated points overall, we get a total runtime of

O(N (µ+ λ) |A| (d (µ+ λ) + log |A|)) (1)

As we can see, this basic algorithm becomes very slow due to the (µ + λ)2 factor
when, e.g., µ+ λ = 200 is chosen. However, this algorithm works well (in the sense
of runtime) for very small population and offspring sizes.

The following three sections describe three successive improvements for this
basic framework of approximation guided evolution.

4. Improved Approximation Calculation

It can be observed that the selection phase is the most costly step in one iteration
of the basic AGE given in Algorithm 3 as it has to evaluate the points of the parent
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and offspring population against the archive. We can obtain a significant speed-up
for each generation of the algorithm by cleverly updating the approximation value
of the points in the archive that are affected by the removal of a point from the set
consisting of the parents and offspring.

Let us first assume that the approximations α({a}, {p}) are distinct for all a ∈ A
and p ∈ P . For all a ∈ A we denote the point p ∈ P that approximates it best
by p1(a) and the second best by p2(a). The respective approximations we denote
by αi(a) := α({a}, {pi(a)}) for i ∈ {1, 2}. Now, let p 6= q ∈ P and consider
Sp := Sα(A,P \ {p}) and Sq := Sα(A,P \ {q}). Significant for the comparison of
the two are only the positions a ∈ A where Sp or Sq differ from S := Sα(A,P ).
This is the case for all positions in B := {a ∈ A | p1(a) ∈ {p, q}}. Now, if we delete
p from the population P , then the worst approximation of one of the a ∈ B is the
maximum of max{α2(a) | p1(a) = p} and max{α1(a) | p1(a) = q}. Now observe
that if

β(p) := maxa∈A{α2(a) | p1(a) = p}
is smaller than the respective β(q), then also the larger term above is smaller, as
max{α1(a) | p1(a) = q} < max{α2(a) | p1(a) = q}. Hence, we end up with the fact
that we only have to compare β(p) and throw out the point p with minimal β(p).
This is shown in Subroutine 4, which replaces lines 12–15 of Algorithm 3.2

Recall that we assumed that all approximations α({a}, {p}) with a ∈ A, p ∈ P
are distinct. If this does not hold, we can simply change the indicator Sα(A,P )
slightly and insert symmetry breaking terms a · ε, where ε > 0 is an infinitesimal
small number. This means that we treat equal approximations as not being equal
and hence in some arbitrary order.

We now give an upper bound for the runtime of AGE with Subroutine 4. For
one generation, i.e., for producing and processing λ offspring with one run of Sub-
routine 4, AGE needs a runtime of O(d (µ + λ) |A|) for computing the values
p1(a), p2(a), α1(a), α2(a) and β(p) initially. Then we repeat λ times: We delete
the point p∗ ∈ P with β(p) minimal in O(µ+λ), after which we have to recompute
the values p1(a), p2(a), α1(a), α2(a), but only for a ∈ A with p1(a) = p∗. Observe
that we can store a list of these a’s during the initial computation and keep these
lists up to date with no increase of the asymptotic runtime. Also note that we
would expect to find O(|A|/|P |) points with p1(a) = p∗, while in the worst case
there may be up to O(|A|) such points. Summing up, we can estimate the expected
runtime for one generation by O(d (µ+ λ) |A|+ λ((µ+ λ) + d|P | · |A|/|P |)), which
simplifies to O(d(µ+λ)|A|) as |A| > µ+λ. In the worst case we replace O(|A|/|P |)
by O(|A|) and get a runtime for one generation of O(dλ(µ + λ)|A|). For N fit-
ness evaluations we, therefore, get a runtime of O(d(1 + µ/λ)|A|N) heuristically,
and O(d(µ + λ)|A|N) in the worst case. Note that |A| 6 N . For any λ = O(µ),

2AGE with this selection scheme was called “Fast AGE” in [7].
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Subroutine 4: Fast approximation-guided selection

input : Population P , Archive A, µ
output: µ individuals from P which (greedily) give best approximation of

archive A

1 foreach a ∈ A do
2 p1(a)← argminp∈P α({a}, {p});
3 p2(a)← argminp1(a) 6=p∈P α({a}, {p});
4 α1(a)← minp∈P α({a}, {p});
5 α2(a)← minp1(a)6=p∈P α({a}, {p});
6 foreach p ∈ P do
7 β(p)← maxa∈A{α2(a) | p1(a) = p};
8 while |P | > µ do
9 Remove p∗ from P with β(p) minimal;

10 foreach a ∈ A with p1(a) = p∗ do
11 Compute p1(a), p2(a), α1(a), α2(a) as done above in lines 2–5;
12 β(p1(a))← max{β(p1(a)), α2(a)};

e.g. λ = 1 or λ = µ, this can be simplified to O(dµ|A|N) in both cases, while
for λ = Ω(µ), e.g. λ = µ, we get a reduced estimate of the expected runtime of
O(d|A|N).

5. Improved parent selection

Quite interestingly, and despite the basic AGE’s good performance on problems
with many objectives (as shown in [7]), it is clearly outperformed by other algo-
rithms in several cases, when the problem has just two or three objectives. The
key discovery is that the random parent selection of the basic AGE is free of any
bias. For problems with many objectives, this is not a problem, and can even be
seen as its biggest advantage. For problems with just a few objectives, however, it
is well known that one can do better than random selection, such as selection based
on crowding distance, hypervolume contribution, etc. Such strategies then select
potential candidates based on their relative position in the current population. For
the basic AGE, the lack of this bias means that solutions can be picked for parents
that are not necessarily candidates with high potential. Consequently, it is not
surprising to see that the basic AGE is outperformed by algorithms that do well
with their parent selection strategy, if their strategy is effective in the respective
d-dimensional objective space.

We improve the basic AGE’s performance, subject to the following conditions:
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1. The introduced computation time required to select parents should be poly-
nomial in the number of objectives d.

2. The selection mechanism should significantly improve the performance on
problems with few objectives, while not influencing the performance on prob-
lems with many objectives.

3. The selection scheme should favour individuals that have the potential to
improve the approximation quality.

Note that most hypervolume-based algorithms, such as SMS-EMOA and MO-
CMA-ES, violate condition (1), as some of the computations that are associated
with the selection process take time exponential in d. However, we have to note
that it is possible to deal with this drawback by approximating the hypervolume,
as shown and demonstrated in [8]. Nevertheless, as the maximization of the hyper-
volume can interfere with our goal of improving the approximative quality, we do
not consider such approaches.

Also note that the exclusive use of domination based-criteria is problematic.
Assuming a general d-dimensional unbounded space (with d > 2), then a point in
this space dominates 1/2d of the volume. Obviously then, a pure dominance check
in high-dimensional spaces is extremely likely to fail. Or, when interpreted the
other way around, this means that a check of the dominance relation between two
solutions is extremely unlikely to bring up any additional information about the
relative quality between these two solutions.

It is relatively easy to design algorithms that easily discover points at the fringe
of the Pareto front. With these fringe points (or points that are very close to the
fringe), the decision maker can get an idea about the achievable ranges for each
objective. However, the problem of finding points “between” those fringe points
proves to be much more difficult. Selection mechanisms for the (fitness-based)
parent selection and the offspring selection tend to have different biases that result
in different preferences for fringe points or central points, depending on the “shape”
of the intermediate populations and on the shape of the true Pareto front. With
an increasing number of dimensions, this problem becomes even more apparent, as
solutions should evenly cover the front, while not concentrating only on extreme
points.

We choose the best-performing selection scheme from [27], which works as fol-
lows in each generation. In the first step, the population is “pre-processed” (see
Algorithm 5): the population is split into fronts of non-dominating solutions3, and
then solutions in the front i have a probability of 1/i of staying in the population.
Thus, we increase the selection pressure, and solutions that are dominated multiple
times are less likely to be selected as a potential parent. Additionally, we determine

3Iteratively, all non-dominated solutions are identified and then removed (as one front), which
results in potentially several fronts of dominating solutions—see NSGA & NSGA-II [12].
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Subroutine 5: Pre-processing of the population for the subsequent parent
selection

input : Population P
output: Pre-processed population Q

1 Q← ∅;
2 Split P into non-dominating fronts F1, . . . , Fi;
3 foreach front Fj, 1 6 j 6 i do
4 foreach p ∈ Fj do
5 Add p to Q with probability 1/j;

6 Split Q into non-dominating fronts G1, . . . , Gk;
7 foreach front Gj, 1 6 j 6 k do
8 Compute the crowding distances for the solutions in Gj;

9 return Q;

the crowding distances for the points in the reduced population. In the second
step of the selection scheme, a binary tournament is performed where solutions of
higher crowding distance are preferred. The crowding distance helps to pick diverse
parents when the number of objectives is low.

Note that the size of the pre-processed population is not deterministic. It is
only guaranteed to contain the entire first front (see Lin 5 of Algorithm 5).

6. Approximating the archive

The basic AGE algorithms stores all objective vectors into the archive that
are currently not dominated by any other objective vector produced so far. It is
common for multi-objective optimization problems that the number of such trade-
offs can be very large, i.e. exponential with respect to the given input size in the
case of discrete optimization or even infinite for continuous optimization problems.
As, in the worst case, the archive size |A| can grow linearly in the number of fitness
function evaluations, the runtime given in Equation (1) becomes quadratic in the
number of generated points N . We therefore want to work with an archive of
reduced size which can lead to a significant speed up of the algorithm.

In this section, we show how we adapt the ε-dominance approach Laumanns
et al. [22] in order to approximate the different points seen so far during the run of
the algorithm. This archive is significantly reduced and therefore leads to a faster
algorithm.
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Algorithm 6: (µ+ λ)-Approximation Guided EA (AGE)

1 Initialize population P with µ random individuals;
2 Set εgrid the resolution of the approximative archive Aεgrid ;

3 foreach p ∈ P do
4 Insert offspring floor(p) in the approximative archive Aεgrid such that only

non-dominated solutions remain;

5 foreach generation do
6 Initialize offspring population O ← ∅;
7 for j ← 1 to λ do
8 Select two individuals from the pre-processed P (see Section 5);
9 Apply crossover and mutation;

10 Add new individual to O;

11 foreach p ∈ O do
12 Insert offspring floor(p) in the approximative archive Aεgrid such that

only non-dominated solutions remain;
13 Discard offspring p if it is dominated by any point increment(a),

a ∈ A;

14 Add offspring to population, i.e., P ← P ∪O;
15 Apply fast approximation-guided selection of Subroutine 4 to P and

obtain population of size µ;

Subroutine 7: Function floor

input : d-dimensional objective vector x, archive parameter εgrid
output: Corresponding vector v on the ε-grid

1 for i = 1 to d do v[i]←
⌊
x[i]
εgrid

⌋
;

Subroutine 8: Function increment
input : d-dimensional vector x, archive parameter εgrid
output: Corresponding vector v that has each of its components increased

by 1

1 for i = 1 to d do v[i]← o[i] + 1 ;

6.1. Archive approximation

In order to approximate the archive, we are facing a problem that is similar to
the original problem of multi-objective optimisation, namely a set of solutions is
sought that nicely represents the true set of compromise solutions.
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We reuse AGE’s own main idea of maintaining a small set that approximates
the true Pareto front. By approximating the archive as well in a controlled manner,
we can guarantee a maximum size of the archive, which directly translates into a
bound with respect to the runtime of AGE when considering a fixed number of
iterations.

Our archive approximation is based on the idea of ε-dominance introduced
in Laumanns et al. [22]. Instead of using an archive At that stores at any point in
time t the whole set of non-dominated objective vectors, we are using an archive
A

(t)
εgrid that stores an additive ε-approximation of the non-dominated objective vec-

tors produced until time step t.
In order to maintain such an approximation during the run of the algorithm, a

grid on the objective space is used to pick a small set of representatives (based on
ε-dominance). We reuse the update-mechanism from [22], and thus can maintain

the ε-Pareto set A
(t)
εgrid of the set A(t) of all solutions seen so far. Due to [22], the

size is bounded by ∣∣∣A(t)
εgrid

∣∣∣ 6 d−1∏
j=1

⌊
K

εgrid

⌋
where

K =
d

max
i=1

(
max
s∈S

fi(s)

)
is the maximum function value attainable among all objective functions.

We parameterize our algorithm by the desired approximation quality εgrid > 0 of
the archive with respect to the seen objective vectors. AGE is shown in Algorithm 6,
and it uses the helper functions given in Subroutines 7 and 8. The latter is used to
perform a relaxed dominance check on the offspring p in Line 13. A strict dominance
check here would require an offspring to be not dominated by any point in the entire
archive. However, as the archive approximates all the solutions seen so far (via the
flooring), it might very unlikely, or even impossible, to find solutions that pass the
strict dominance test.

6.2. Impact of archive approximation on running times

The algorithm works at each time step t with an approximation A
(t)
εgrid of the

set of non-dominated points At seen until time step t. Note, that setting εgrid = 0
implies the basic AGE approach that stores every non-dominated objective vector.
We now investigate the effect of working with different archives sizes (determined
by the choice of εgrid) in AGE. Our goal is to understand the effect of the choice of
this parameter on the actual archive size used during the run of the algorithm as
well as on the approximation quality obtained by AGE.

Next, we outline the results of our experimental investigation of the influence
of approximative archives on the runtime and the solution qualities. Note, that
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Figure 1: The newly generated points P , Q, and R are shown with their corresponding
additive ε-approximations Pε, Qε, and Rε. Both objectives f1 and f2 are to be min-
imised, and the current approximative archive is represented by . Only Pε will be
added to the approximative archive, replacing A. Both P and Q will be candidates for
the selection process to form the next population.
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Figure 2: Influence of εgrid on the archive size, the runtime, and the final quality.
Shown are the means of the archive sizes, and their standard deviation is shown as
error bars. Additionally, the means of the runtime t in seconds and the achieved additive
approximation a of the true Pareto front are listed (smaller values are better). Note: the
archive can grow linearly with the number of solutions generated, even when problem
have just d = 3 objectives.

the computational complexity of AGE is linear in the number of objectives. The
algorithm was implemented in the jMetal framework [15] and is publicly available.4

The parameter setup of AGE is as follows. We use polynomial mutation and the
simulated binary crossover [1] in order to create new offspring. Both variation oper-
ators are widely used in MOO algorithms [12, 18, 31] and they are transformations
of bit-string operators to bounded real-valued domains. The distribution param-

4http://cs.adelaide.edu.au/~optlog/research/age.php
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eters associated with the operators are ηm = 20.0 and ηc = 20.0. The crossover
operator is biased towards the creation of offspring that are close to the parents,
and is applied with pc = 0.9. The mutation operator has a special explorative effect
for MOO problems, and is applied with pm = 1/(number of variables).5 Population
size is set to µ = 100 and λ = 100, and each run uses 100,000 fitness evaluations.
We assess the quality of the final population using the additive approximation mea-
sure ([7]). First, we draw one million points of the mathematically described true
Pareto front uniformly at random. Then we compute the additive approximation
that the final population achieved for this sample of the true Pareto front.

Exemplary, we show in Figure 2 the results averaged over 100 independent runs
for DTLZ 2 with d=3. Note that the archive grows very quickly in the case of
εgrid = 0, where every non-dominated point is stored. Without sacrificing solution
quality, a speed-up by a factor of 7.8 is achieved with εgrid = 0.01. Additional
speed-ups can be achieved, but it is then up to the decision maker to balance the
computation speed and the solution quality. More results can be found in [28]. For
example, for DTLZ 4 with 20 objectives: “a speed-up by a factor of over 250 can
be achieved, while achieving even better quality solutions as well.”

The choice of εgrid can have a significant impact on the final approximation,
which is why we consider several values in the final experiments. In particular, with
“coarser” archives, the number of points that represent a particular region decreases.
Since the fast approximation-guided selection will at first consider only the single
best approximating solution per cuboid, fewer points will actually represent that
region. If the cuboids end up very large with the choice of a larger value of εgrid,
then the remaining solutions of the population (that are not the best approximating
ones) are not necessarily distributed in way that results in a good approximation.

7. Discussion on impact of algorithm components

The AGE algorithm consists of different components that make the approach
successful. In this section, we would like to discuss them further in detail such that
practitioners become aware of the different contributions.

The framework of AGE has two components that speed up the computation.
The first one is the faster approximation calculation described in Section 4 which
gives a runtime speed-up compared to the basic approach without any impairment
in terms of quality, i.e., the same set of solutions is computed. This improvement
in terms of running time should always be incorporated as it does not come with
any disadvantage compared to the basic framework (as described in Section 3).

5Note that other setups can be used, including different recombination and exploration op-
erators. However, this is beyond the scope of this article as we focus on the comparison of the
algorithms.
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A further significant speed-up is obtained by working with an approximative
archive as outlined in Section 6. Here, the parameter εgrid determines the size of
the archive during the run of the algorithm. This component imposes a trade-off
in running time and approximation behavior as an increasing value of εgrid leads
to a speed-up of the approach at the expense of a worsening in the approximation.
Setting the parameter εgrid is crucial for the success of the algorithm and a good
choice is dependent on the given multi-objective problem. Our experimental studies
on εgrid have shown that the value can be chosen to gain very significant speed-ups
with almost no impairment in terms of quality.

While the faster approximation calculation and the approximative archive
mainly aim for a speed up of the algorithm, the improved parent selection in-
troduced in Section 5 aims for a better spread of the population in the objective
space. As the runtime of AGE is mainly determined by the size of its archive
different methods can be exploited without having a huge impact on the running
time. Different parent selection methods have been examined in [27] and the best
performing one is integrated into the final AGE algorithm.

8. Experimental investigations

In this section, we compare AGE to well-known evolutionary multi-objective
algorithms on commonly used benchmark functions. We first study low-dimensional
problems and later pay special attention to problems with many dimensions. We
judge the algorithms by the approximation quality and the hypervolume that they
achieve. AGE is investigated for different values of ε in order to study the effect of
working with an approximative archive on the quality of the results.

8.1. Low-dimensional problems

In our first study, we investigate the performance of AGE on problems with
few objectives. We use the jMetal framework [15] to compare AGE with the es-
tablished algorithms IBEA [29], NSGA-II [12], SMS-EMOA [17], and SPEA2 [31]
on the benchmark families WFG [19] and LZ [23], and DTLZ [13]. For each of the
problems, the objective values are within “roughly” the same ranges. When facing
a problem with significantly differing ranges, we recommend ()as we do for other
algorithms) to rescale the objectives for the algorithms into comparable ranges, as
mechanisms like hypervolume or density computations will not necessarily produce
“evenly spread” outcomes as intended by the respective algorithms’ authors.

It is important to note that we limit the calculations of the algorithms to a
maximum of 50,000/100,000/150,000 fitness evaluations for WFG/DTLZ/LZ and to
a maximum computation time of 4 hours per run, as the runtime of some algorithms
increases exponentially with respect to the size of the objective space. The further
parameter setup of the algorithms is as follows. Parents are selected through a
binary tournament. We will present our results for population sizes µ = 100 and
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λ = 100 and average the results over 100 independent runs. The AGE test setup
has been outlined in Section 6.2.

We assess the algorithms by examining their final populations. To measure
the quality of the final population, we consider the additive approximation and
the hypervolume [30]. The latter is very popular in the performance assessment
of evolutionary multi-objective algorithms and measures the volume of the domi-
nated portion of the objective space relative to a reference point r. For the quality
assessment on the WFG and LZ functions, we compute the achieved additive ap-
proximations and the hypervolumes with respect to the Pareto fronts given in the
jMetal package. For the DTLZ functions, we compute the additive approximations
as described in Section 6.2. For the hypervolume computations for DTLZ 1 we
choose r = 0.5d, and r = 1d for all other benchmark problems. We approximate the
achieved hypervolume with an FPRAS [3], which has a relative error of not more
than 2% with probability at 1/1000. The volumes shown for DTLZ 1 are normal-
ized by the factor 2d. As it is very hard to determine the minimum approximation
ratio achievable or the maximum hypervolume achievable for all populations of a
fixed size µ, we only plot the theoretical maximum hypervolume for µ → ∞ as a
reference.

Results. The benchmarking results for the different algorithms are shown in Fig-
ures 3 and 4 and are a clear evidence for AGE’s excellent performance. AGE ranks
among the best algorithms on the low-dimensional WFG and LZ functions (see Fig-
ure 3). This holds for the additive approximation quality as well as for the achieved
hypervolumes. Interestingly, NSGA-II ( ), which normally performs rather well
on such problems, is beaten in almost all cases. AGE performs very similarly for
the different used approximative archive settings (εgrid = 0: , εgrid = 0.1: ,
εgrid = 0.01: ). This confirms that working with an approximative archive usu-
ally leads to a significant speed-up without a detrimental effect on the solution
quality.

Our investigations on the DTLZ family (see Figure 4) prove to be more differ-
entiating between the different type of algorithms. The DTLZ family can be scaled
with the number of objectives and therefore enables us to investigate the impact for
problems with more than two objectives. With an increasing number of objectives,
the benefits and drawbacks of the algorithms’ underlying mechanisms become more
apparent. We can summarize the experimental results in the following way.

• AGE (εgrid = 0: , εgrid = 0.1: , εgrid = 0.01: ) shows a very good
performance on all DTLZ variants. It is either the best performing algorithm,
or in many cases, it shows at least competitive performance.

• It is interesting to see that even though AGE incorporates the crowding dis-
tance idea from NSGA-II ( ) for a fitness assignment, it is not influenced
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Figure 3: Comparison of the performance of our AGE (εgrid = 0: , εgrid =
0.1: , εgrid = 0.01: ) with IBEA ( ), NSGA-II ( ), SMS-EMOA ( ), and
SPEA2 ( ) on the test function classes WFG (2 and 3 dimensions) and LZ (2 dimen-
sions for LZ 1–5 and LZ 7–9; 3 dimensions for LZ 6). The figures show the average of
100 repetitions each. Only non-zero hypervolume values are shown.
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Figure 4: Comparison of the performance of AGE (εgrid = 0: , εgrid =
0.1: , εgrid = 0.01: ) with IBEA ( ), NSGA-II ( ), SMS-EMOA ( ), and
SPEA2 ( ) on DTLZ test functions with d 6 10 dimensions. The figures show the
average of 100 repetitions each. We limit the computations per repetition to a max-
imum of 100,000 evaluations and to a maximum computation time of 4 hours. Only
non-zero hypervolume values are shown. For reference, we also plot ( ) the maximum
hypervolume achievable for µ→∞.



by its detrimental effects in higher dimensional objective spaces. This is a
consequence of how the next generation is formed (i.e., based on contribution
to the approximation quality achieved with respect to the archive, see Line 16
of Algorithm 6).

• Remarkably, NSGA-II ( ), SMS-EMOA ( ), and SPEA2 ( ) are unable
to find the front of the higher-dimensional DTLZ 1 and DTLZ 3 variants.
This results in extremely large approximation values and zero hypervolume
values. In particular, the mechanisms used by NSGA-II ( ) and SPEA2 ( )
are inadequate for higher-dimensional spaces, and both algorithms push their
population too far out to the boundaries for high dimensions.

• For higher dimensions (d > 5) IBEA ( ) is AGE’s strongest competitor.
However, its performance is not consistent for all functions and its runtime
does not scale well with increasing dimension. The same holds for SMS-
EMOA ( ), which uses an exponential-time algorithm to internally deter-
mine the hypervolume. It did not finish a single generation for d > 8 and
only performs around 5, 000 iterations within four hours for d = 5.

8.2. High-dimensional problems

Encouraged by the good performance of AGE on lower-dimensional test prob-
lems, we also study high-dimensional problems with dimensions d > 10. It is
known that the classical algorithms SPEA2 and NSGA-II deteriorate with an in-
creasing number of objectives. Also for SMS-EMOA we observed runtime issues
for higher-dimensional spaces. For a meaningful comparison we therefore neglect
these algorithms for higher-dimensional test problems and instead compare AGE
with two recent EMOA specifically designed for high-dimensional problems. In
particular, we compare AGE with two hypervolume-based algorithms that use fast
approximations of the hypervolume to guide their search, namely MO-CMA-ES [20]
and SMS-EMOA [17], which are both implemented in the Shark Machine Learning
Library [21]. Note that we again include IBEA in this final comparison due to its
good performance on DTLZ 2 and 4 for lower number of objectives.

Among the studied test problems, only DTLZ [13] allows scaling to an arbitrary
number of objective space dimensions. We therefore study DTLZ1–4 for up to
20 dimensions. The test setup remains unchanged, with the difference that we limit
the calculations of the algorithms to a maximum of 250,000 fitness evaluations and
to a maximum computation time of 24 hours per run, due to the increased difficulty.
As this is our final test, we also compared the algorithms using the Wilcoxon-
Mann-Whitney two-sample rank-sum test. If we call a comparison “statistically
significant”, it is significant at the 99% confidence level. The results are shown in
Figure 5 and summarized as follows.
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Figure 5: Comparison of the performance of AGE (εgrid = 0: , εgrid = 0.1: ,
εgrid = 0.01: ) with IBEA ( ), SMS-EMOA ( ), and MO-CMA-ES ( ) on the
DTLZ test functions with varying dimension d = 2 . . . 20. The used implementations
of SMS-EMOA and MO-CMA-ES use very fast approximation algorithms to compute
the hypervolume to improve their running time. The figures show the averages of 100
repetitions each. We limit the computations per repetition to a maximum of 250,000
evaluations and to a maximum computation time of 24 hours. Only non-zero hyper-
volume values are shown. For reference, we also plot ( ) the maximum hypervolume
achievable for µ→∞.



• On all higher-dimensional (d > 6) test problems, AGE achieves (statistically
significantly) the best approximation. MO-CMA-ES ( ) and SMS-EMOA
( ) fail at achieving good approximations on DTLZ 1 and 3. On these,
IBEA ( ) performs relatively well, but we observed runtime issues for the
twenty-dimensional spaces.

• AGE achieves statistically significantly better approximations than IBEA on
all functions. Compared to MO-CMA-ES ( ), AGE achieves statistically
significantly better approximations on DTLZ1/3 (all dimensions), DTLZ2
(d > 6), DTLZ4 (d > 4). The best competitor in low dimensions (d 6 5)
is SMS-EMOA. However, in also in low dimensions AGE is either competitive
or still better than the other algorithms.

• The hypervolume-based algorithms, MO-CMA-ES ( ), SMS-EMOA ( )
and IBEA ( ), sometimes achieve slightly larger hypervolumes for DTLZ 2
and DTLZ 4, but fail completely on DTLZ 1 and DTLZ 3. AGE achieves
statistically significantly higher hypervolume than IBEA ( )and MO-CMA-
ES ( ) on DTLZ 1 and DTLZ 3 for all dimensions. The same holds compared
to SMS-EMOA ( ) for d > 6.

• All aformentioned observations hold for all three variants of AGE. The per-
formance of AGE is very similar for the different used approximative archive
settings (εgrid = 0: , εgrid = 0.1: , εgrid = 0.01: ). While the grid size
has a significant impact on the runtime of AGE (cf. Section 6.2), it appar-
ently has little impact on the approximation quality. Counting the number of
test functions where the achieved approximation of one variant statistically
significantly outperforms another variant, we can still derive a total order-
ing: εgrid = 0.01 performed 75× better (48× worse, 21× insignificant) than
εgrid = 0, which performed 72× better (51× worse, 21× insignificant) than
εgrid = 0.1.

8.3. Distribution of the obtained solutions

In the following, we show and comment about the distribution of the obtained
solutions, in variable and objective space.

First, we investigate the diversity in the variable space. For the DTLZ functions,
the variables x1...x30 ∈ [0, 1] of these problems are divided in diversity related
variables (x1, ..., xm−1), and convergence related variables (xm, ..., x30). In Figure 6
we show the distributions of several such variables on four DTLZ functions are
shown. The data is based on 100 independent runs, from which we take from the
populations the means and standard deviations of different variables. We then show
the respective means and standard deviations of that data.

For all problems we can see that a wide range of values for the diversity related
variables is achieved and maintained. For example, the standard deviations of x1
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Figure 6: Distribution of different variables. We show the means and standard deviation
(stdev) of the ‘means of a population’ for 100 independent runs of AGE with εgrid = 0.01.
The error bars show the standard deviation of the respective measure.
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Figure 7: Distribution of the obtained solutions (examples from the ZDT family, all
with d = 2).

within the individual populations is high (given the valid range x1 ∈ [0, 1]) and the
means of the populations are stable across multiple runs. During the runs, diversity
is achieved and maintained, which is expressed in stable statistics along the x-axis.

The analysis of the convergence related variables reveals an entirely different, but
expected, behaviour. The initial diversity of these variables collapses very quickly
and continues to decrease as optimisation progresses. This can be seen best in the
standard deviations that continue to plummet. Amongst different runs, there is
little variation, as the small standard deviation of the standard deviations reveals.

Next, we show in Figures 7 and 8 randomly picked final populations in the
objective space.

The solutions for the two-objective problems are very uniformly distributed.
Note that “uniformity” is with respect to the additive approximation used: for
example in the case of DTLZ 2, d=2 a single solution near the bottom right corner
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Figure 8: Distribution of the obtained solutions (examples from the DTLZ and WFG
family).



can additively approximate a larger part of the true Pareto front than a single
solution near the centre of the true Pareto front (near < 0.71, 0.71>). The same
effect can be observed for ZDT 3 and WFG 8.

Similarly, we can often observe quite uniform distributions of the solutions for
the three-objective problems. Note that we do not know what the optimal final
distributions for the different problems would be, given a fixed population size of
µ = 100.

9. Conclusions

Evolutionary algorithms are frequently used to solve multi-objective optimiza-
tion problems. Often, it is very hard to formally define the optimization goal that
current state-of-the-art approaches work with. We have presented an evolutionary
multi-objective algorithm that works with a formal notion of approximation. The
framework of our algorithm allows to work with various formal notions of approx-
imations. The basic framework of AGE works with an archive which stores every
non-dominated objective vector and uses this archive to judge the quality of newly
produced solutions. In order to increase performance of this basic variant, we in-
troduced an approximative archive and a parent selection scheme which increases
performance for low dimensional problems.

The experimental results show that AGE efficiently solves problems with few
and with many conflicting objectives.6 Its computation time increases only lin-
early with the number of objectives. Given a fixed time budget, AGE outper-
forms current state-of-the-art approaches (including those using fast hypervolume-
approximations) in terms of the desired additive approximation on standard bench-
mark functions for more than four objectives. On functions with two and three
objectives, it lies level with the best approaches. Additionally, it also performs
competitive or better regarding the covered hypervolume, depending on the func-
tion. This holds in particular for problems with many objectives, which most other
algorithms have difficulties dealing with. The choice of the approximative archive
(determined by the choice of ε) mainly determines the computational cost of the
algorithm but has no major effect on the quality of the outcome for the investi-
gated choices of ε. Thus we can observe runtime reductions by a factor of up to
250 without sacrificing the final solution quality.

In summary, AGE is an efficient approach to solve multi-objective problems
with few and many objectives. It enables practitioners now to add objectives with
only minor consequences, and to explore problems for even higher dimensions.

6The source code is available under http://cs.adelaide.edu.au/~optlog/research/age.

php
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