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Walras’ Model of an Economy (Léon Walras 1875)

each market participant (agent) owns some goods and

has preferences over goods, i.e.,

at a given set of prices, certain bundles of goods will give
maximum pleasure (utility).

Agents are only willing to buy bundles that give maximum utility.

Question: are there prices such that all goods can be
completely sold and agents spend all their income,i.e.

can a perfect exchange be organized through appropriate
prices?
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Linear Utilities: A Special Case

twice as much is twice as good

marginal utilities do no decrease

utilities from different goods add up

Example: suppose a bottle of champagne gives me three times
the pleasure of a bottle of wine. If the price of champagne is
more than three times the price of wine, I am only willing to buy
champagne, if the price is exactly three times the price of wine,
I am willing to buy champagne and wine and any combination
is equally fine, . . .
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Example
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first agent values second good 12
times as much as first good, . . .

assume i-th agent owns i-th
good, one unit of each good.
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first agent values second good 12
times as much as first good, . . .

assume i-th agent owns i-th
good, one unit of each good.

if prices are as shown in blue,
money will only flow along blue
edges.

if goods are completely sold, the
red budgets will be available to
the agents,

but the second good will certainly
not be completely sold, because
nobody is interested in it.
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Example (A Solution)
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The Linear Exhange Economy (Walras 1875)
n buyers, n divisible goods one unit of each good

buyer i owns good i

uij = utility for i if all of good j is allocated to him, uij ≥ 0

additive linear utitlities: if fraction xij of good j is allocated to
buyer i , the total utility for i is∑

j

uijxij .

pj = price of good j to be determined

uij/pj utility of good j for i per Euro

Buyers are selfish and spend money only on goods that give
them maximum utility per Euro (maximum bang per buck)

bang per buck for buyer i : αi = maxj uij/pj
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The Linear Exchange Economy
Input: Utilities uij ≥ 0, uij ≤ U, integral

Are there prices pj ≥ 0, 1 ≤ j ≤ n, and allocations xij ≥ 0 such
that

all goods are completely sold:
∑

i xij = 1

all money is spent:
∑

j xijpj = pi

only bang per buck items are bought:

xij > 0 ⇒
uij

pj
= αi , where αi = max

`

ui`

p`
?
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The Network Gp

Vertices: buyers bi and goods cj , source s and sink t

E

s t

i

j

buyers goods

pi pj

Edges:

(s,bi) with capacity pi

(bi , cj) iff uij/pj = αi ,
unlimited capacity

(cj , t) with capacity pj

flow on edge (bi , cj) = money paid by buyer bi
for his fraction of good cj

p is an equilbrium iff a maximum flow saturates all edges out of s
(and hence into t).

Kurt Mehlhorn 9/25



Problem Statement Questions History and Context The Algorithm Analysis Open Problems

Questions

do equilibria exist?

properties of equilibria: is there a rational equilibrium? do
equilibria form a convex set?
algorithms:

– approximation, exact
– efficient
– combinatorial or do we need ellipsoid and/or interior point
– global knowledge versus local knowledge
– natural updates (tatonnement)
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History
Walras introduces the model in 1875 (more general utilities) and
argues existence of equilibrium (iterative adaption of prices).
Fisher (1891), simpler model (buy-
ers have budgets), alg for three buy-
ers/goods
Wald (36) shows existence of
equ. under strong assumptions
Arrow/Debreu (54) show existence
for a much more general model un-
der mild assumptions
Existence proofs are non-
constructive (use fixed point
theorems)
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Algorithm Development: Approximation Algo-
rithms

algorithm development starts in the 60s: Scarf, Smale, Kuhn,
Todd, Eaves.

early algorithms are inspired by fixed-point proofs or are
Newton-based and compute approximations, are exponential
time.
after 2000: poly-time approximation algorithms

– Jain/Madhian/Saberi: poly-time approximation scheme
– Devanur/Vazirani: strongly poly-time approximation scheme
– Garg/Kapoor: simplified approximation scheme
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Exact Algorithms
exact algorithms are based on a characterization of equilibria
as the solution set of a convex program

Nenakov/Primak (83): equilibria are precisely the solutions of

pi ≥ 0 xij ≥ 0
∑

j

uijxij ≥
uik

pk
pi forall i and k

after the substitution pi = eπi this becomes a convex program

Jain (07) rediscovered this convex program and showed how to
solve it with a nontrivial extension of the ellipsoid method, Ye
(06) with interior point method

Combinatorial algorithms are known for the Fisher market
(Devanur/Padimitriou/Saberi/Varzirani (08) and Orlin (10)); our
algorithm is inspired by their work.
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Our Result

Theorem (Ran Duan/KM: ICALP 2013, full paper to appear
in Algorithmica)
Can compute equilibrium prices in polynomial time by a simple
combinatorial algorithm.

alg learns about utilities by a bang-for-buck oracle.

works in rounds and needs to poll the surpluses of the buyers
in each round.

is centralized: a central agency adjusts the prices in each
round.
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Overview

intialize all prices to one: pj = 1 for all j

repeat
construct the network Gp for the current prices p and
compute a balanced flow f in it;

increase some prices and adjust flow;

until the total surplus is tiny (less than O( 1
4n4U3n ));

round the current prices to the equilibrium prices;

Details of final rounding: Let p be the current price vector;
let qi be the rational with denominator at most (nU)n closest to pi .
Then q = (q1, . . . ,qn) is a vector of equilibrium prices.
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The Flow Network Gp, Revisited

vertices bi , ci , 1 ≤ i ≤ n, s and t
edges E = {(bi , cj)|uij/pj = αi := max` ui`/p`}, capacity∞
let f be a maximum flow

E

s t

i

j

buyers goods

pi pj

– r(bi ) = pi −
∑

j fij , surplus of
buyer i

– r(cj ) = pj −
∑

i fij , “surplus” of
good j

– r(B) = (r(b1), . . . , r(bn)),
surplus vector

balanced flow = maxflow minimizing
||r(B)|| =

√
r(b1)2 + . . .+ r(bn)2;

intuiton: balancing means to make surpluses more equal
can be computed with n maxflow computations (Devanur et al)
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Intuition
Which prices should we increase?
only prices of goods whose demand exceeds supply, i.e.,
goods connected in Gp to a buyer with surplus
choose a surplus bound S, let B(S) = {b|r(b) ≥ S} and
increase the prices of the goods in C(S) = neighbors of B(S)
in Gp

How should we increase the prices?
we increase the prices of the goods in C(S) by a common
factor x > 1 and also the flows on the edges incident to the
nodes in B(S) ∪ C(S).

How to choose S and x?
need to know more about the effect of changing the prices in
C(S) by factor x .

Kurt Mehlhorn 17/25



Problem Statement Questions History and Context The Algorithm Analysis Open Problems

Price Update

let f be a balanced flow, order buyers
r(b1) ≥ r(b2) ≥ . . . ≥ r(bn) ≥ r(bn+1) := 0.
let ` be minimal such r(b`)/r(b`+1) ≥ 1 + 1/n, let
B(S) = {b1, . . . ,b`}, and C(S) = {cj |bi ∈ B(S) and (i , j) ∈ E}.

C(S)

B(S)

equality

edges

there is no edge carrying flow
from B \ B(S) to C(S)

goods in C(S) have surplus zero
increase prices of goods in C(S)
and flow into these vertices by a
factor x > 1.
surplus goes down, surplus
multiplied by x , surplus goes up,
surplus unchanged

Kurt Mehlhorn 18/25



Problem Statement Questions History and Context The Algorithm Analysis Open Problems

Price Update, Continued
let f be a balanced flow, let B(S) be the buyers with large
surplus, and C(S) be their neighbors

C(S)

B(S)

equality

edges

– goods in C(S) have surplus zero

– increase prices of goods in C(S) and
flow into these vertices by a factor x > 1.

– surplus goes down, surplus multiplied by
x , surplus goes up, surplus unchanged

– goods in C(S) keep surplus zero; goods
with non-zero surplus have price one

constraints on x
– a new equality edge arises; goods outside C(S) become more

attractive for buyers in B(S)
– a blue surplus becomes equal to a green or magenta surplus.
– x ≤ 1 + 1

Kn3 technical reasons
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The Complete Algorithm
intialize prices: pj = 1 for all j
repeat

construct the network G for the current prices and compute a
balanced flow f in it;
order buyers by surplus and let ` be minimal such that r(b`) >
(1 + 1/n)r(b`+1). Let B(S) = {b1, . . . ,b`}.
increase prices of goods in C(S) and flows into those goods
by gradually increasing factor x until

new equality edge or
surplus of a buyer in B(S) and a buyer in B \ B(S) becomes

equal or
x = xmax := 1 + 1

Kn3 bad iteration

until the total surplus is tiny (less than O( 1
4n4U3n ));

round the current prices to the equilibrium prices;
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Key Lemmas

Prices stay bounded by (nU)n−1.

Number of bad iterations is O(n5 log(nU)).

Norm of surplus vector decreases by factor 1 + Ω(1/n3) in good
iterations and increases by factor 1 + O(1/n3) in bad iterations.

Number of good iterations is O(n5 log(nU)).

It suffices to compute with number with O(n log(nU) bits.

Running time = O(n5 log(nU) · n · n3 · n log(nU)).
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Prices stay bounded by (nU)n−1.
order prices p1 ≥ p2 ≥ . . . ≥ pn = 1 and show pi ≤ (nU)pi+1

Let Ĉ = {c1, . . . , ci}, let B̂ = buyers connected to Ĉ by E-edges.

Case 1: ci has surplus. Then pi = 1.

Kurt Mehlhorn 22/25



Problem Statement Questions History and Context The Algorithm Analysis Open Problems

Prices stay bounded by (nU)n−1.
order prices p1 ≥ p2 ≥ . . . ≥ pn = 1 and show pi ≤ (nU)pi+1

Let Ĉ = {c1, . . . , ci}, let B̂ = buyers connected to Ĉ by E-edges.

bell

cj

ch
Chat

Bhat ci

Case 2: some b` ∈ B̂ likes some cj

outside Ĉ, i.e., uell,j > 0. Let ch ∈ Ĉ
be connected to b` by an equality edge.
Then

u`,h/ph = α` ≥ u`,j/pj

and hence
ph ≤ Upj
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Prices stay bounded by (nU)n−1.
order prices p1 ≥ p2 ≥ . . . ≥ pn = 1 and show pi ≤ (nU)pi+1

Let Ĉ = {c1, . . . , ci}, let B̂ = buyers connected to Ĉ by E-edges.

cj

ci

chbh
Ip

I

Ipp

Chat

Bhat

Case 3: B̂-buyers like only Ĉ-goods. B̂-
buyers must like a good which is not owned
by one of them. Thus I′ 6= ∅. Also, p(B̂) ≥
p(Ĉ), and hence

ph ≤ p(I′) = p(C)−p(I) ≤ p(B)−p(I) = p(I′′),

Consider j ∈ I′′ with maximal pj . Then

ph ≤ p(B′) ≤ npj .
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Prices stay bounded by (nU)n−1.

Number of bad iterations is O(n5 log(nU)).

In each bad iteration some price increases by factor 1 + K/n3.

Each price can increase by this factor at most
logxmax

(Un)n = n4 log(nU) times.
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The Norm of the Surplus Vector

Each bad iteration increase norm by at most a factor xmax.

Each good iteration decreases the norm by a factor of at
least xmax.

choice of i : i is minimal with r(bi+1) < r(bi)/(1 + 1/n).

Thus r(bi) ≥ r(b1)/e ≥ total surplus/(en)

Good iteration: (1) a decreasing surplus becomes equal to an
increasing or stationary surplus or (2) a new equality edge
arises.

in (2), we use new equality edge to also achieve (1)

in (1), a surplus ≥ r(bi+1) and a surplus ≤ r(bi) becomes
equal.
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The Norm of the Surplus Vector

Each bad iteration increase norm by at most a factor xmax.

Each good iteration decreases the norm by a factor of at
least xmax.

Number of good iterations is O(n5(log(nU)).
This many iterations to make up for the bad iterations.
Similar number of iterations to make the total surplus tiny.
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Summary

Prices stay bounded by (nU)n−1.

Number of bad iterations is O(n5 log(nU)).

Norm of surplus vector decreases by factor 1 + Ω(1/n3) in good
iterations and increases by factor 1 + O(1/n3) in bad iterations.

Number of good iterations is O(n5 log(nU)).

It suffices to compute with number with O(n log(nU) bits.

Running time = O(n5 log(nU) · n · n3 · n log(nU)).
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Open Problems

More complex utility functions
Huge amount of work on approximation algorithms by many: Vijai
Vazirani, Kamal Jain, Jugal Garg, Nikhil Devanur, Christos
Papadimitriou, Ruhta Mehta, . . .

Strongly polynomial algorithms
James Orlin (2011): strongly polynomial alg for Fischer model.

Ongoing markets and/or local algorithms
very interesting work by Yun Kuen Cheung, Richard Cole, Lisa
Fleischer, and Ashish Rastogi
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