

Certifying Algorithms

Kurt Mehlhorn

MPI für Informatik Saarbrücken Germany

The Problem Statement

- a user knows *x* and *y*.
- how can he/she be sure that, indeed, y = f(x).
- he/she is at complete mercy of the program
- I do not like to depend on software in this way, not even for programs written by myself

Warning Examples

 Rhino3d (a CAD systems) fails to compute correct intersection of two cyclinders and two spheres

Warning Examples

- Rhino3d (a CAD systems) fails to compute correct intersection of two cyclinders and two spheres
- CPLEX (a linear programming solver) fails on benchmark problem *etamacro*.

Warning Examples

- Rhino3d (a CAD systems) fails to compute correct intersection of two cyclinders and two spheres
- CPLEX (a linear programming solver) fails on benchmark problem etamacro.
- Mathematica 4.2 (a mathematics systems) fails to solve a small integer linear program

In[1] := ConstrainedMin[x , {x==1,x==2} , {x}] Out[1] = {2, {x->2}}

In[1] := ConstrainedMax[x , {x==1,x==2} , {x}]
ConstrainedMax::lpsub": The problem is
unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}

The Problem Statement

programs should justify (prove) their answers in a way that is easily checked by their users.

Certifying Algorithms

- a certifying program returns
 - the function value *y* and
 - a certificate (witness) w.
- w proves the equality y = f(x).
- if $y \neq f(x)$, there should be no w such that (x, y, w) passes checking.
- formalization in second half of talk

name introduced in Kratsch/McConnell/Mehlhorn/Spinrad: SODA 2003

Outline of Talk

- problem definition and certifying algorithms
- examples of certifying algorithms
 - linear system solving
 - testing bipartiteness
 - matchings in graphs
 - planarity testing
 - convex hulls
 - dictionaries and priority queues
 - linear programming
- advantages of certifying algorithms
- do certifying algorithms always exist?
- verification of checkers
- collaboration of checking and verification

Linear System Solving

- does the linear system $A \cdot x = b$ have a solution?
- answer yes/no
- a solution x_0 witnesses solvability (= the answer yes)
- a vector c with $c^T A = 0$ and $c^T \cdot b \neq 0$ witnesses non-solvability (= the answer no)
 - assume x_0 is a solution, i.e., $Ax_0 = b$.
 - multiply with c^T from the left and obtain $c^T A x_0 = c^T b$
 - thus $0 \neq 0$.
- Gaussian elimination computes solution *x*₀ or vector *c*
- checking is trivial

Bipartite Graphs

- is a given graph G bipartite?
- two-coloring witnesses bipartiteness
- odd cycle witnesses non-bipartiteness
- an algorithm
 - construct a spanning tree of *G*
 - use it to color the vertices with colors red and blue
 - check for all non-tree edges e whether the endpoints have different colors
 - if yes, the graph is bipartite and the coloring proves it
 - if no, let e = {u, v} be a non-tree edge whose endpoints have the same color;
 - *e* together with the tree path from *u* to *v* is an odd cycle
 - tree path from u to v has even length since u and v have the same color

Bipartite Matching

- given a bipartite graph, compute a maximum matching
- a matching *M* is a set of edges no two of which share an endpoint
- a node cover *C* is a set of nodes such that every edge of *G* is incident to some node in *C*.
- $|M| \leq |C|$ for any matching M and any node cover C.
 - map $(u, v) \in M$ to an endpoint in *C*, this is possible and injective

- a certifying alg returns M and C with |M| = |C|
- no need to understand that such a *C* exists (!!!)
- it suffices to understand the inequality $|M| \le |C|$
- demo for general graphs

Planarity Testing

- given a graph G, decide whether it is planar
- Tarjan (76): planarity can be tested in linear time
- a story and a demo
- combinatorial planar embedding is a witness for planarity
- Chiba et al (85): planar embedding of a planar *G* in linear time
- Kuratowski subgraph is a witness for non-planarity
- Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear time
 LEDAbook, Chapter 9

*K*_{3,3}

Planarity Testing: Checking the Witness I

 combinatorial embedding: graph + cyclic order on the edges incident to any vertex

 combinatorial planar embedding: combinatorial embedding such that there is a plane drawing conforming to the ordering

Planarity Testing: Checking the Witness II

- face cycles are defined for combinatorial embeddings.
- **Theorem 0 (Euler, Poincaré)** A combinatorial embedding of a connected graph is a combinatorial planar embedding iff

$$f - e + n = 2$$

 theorem = easy check whether a combinatorial embedding is planar.

Kurt Mehlhorn, MPI für Informatik

Convex Hulls

MNSSSS

Given a simplicial, piecewise linear closed hyper-surface F in d-space decide whether F is the surface of a convex polytope.

FACT: *F* is convex iff it passes the following three tests

- 1. check local convexity at every ridge
- 2. 0 = center of gravity of all vertices check whether 0 is on the negative side of all facets
- 3. p = center of gravity of vertices of some facet fcheck whether ray $\vec{0p}$ intersects closure of facet different from f

Sufficiency of Test is a Non-Trivial Claim

• ray for third test cannot be chosen arbitrarily, since in R^d , $d \ge 3$, ray may "escape" through lower-dimensional feature.

Monitoring Priority Queues I

a PQ maintains a set S (of real numbers) under the operations insert and delete_min

insert(5), insert(2), insert(4), delete_min, insert(7), delete_min must return 2 must return 4 returns 2 return 5

Monitoring Priority Queues I

a PQ maintains a set S (of real numbers) under the operations insert and delete_min

A checker wraps around any priority queue PQ and monitors its behavior.

- It offers the functionality of a priority queue
- It complains if PQ does not behave like a priority queue.
 - immediately
 - ultimately

Monitoring Priority Queues II

Fact: Priority queue implementations with logarithmic running time per operation exist.

Fact:

- There is a checker with additional constant amortized running time per operation.
 It catches errors ultimately, namely with linear delay
- Immediate error catching requires Ω(log n) additional time per operation.

Finkler/Mehlhorn, SODA 99

Linear Programming

maximize $c^T x$ subject to $Ax \le b$ $x \ge 0$

- linear programming is a most powerful algorithmic paradigm
- there is no linear programming solver that is guaranteed to solve large-scale linear programs to optimality. Every existing solver may return suboptimal or infeasible solutions.

Problem				CPLEX				Exact Verification
Name	С	R	NZ	Т	V	Res	RelObjErr	Т
degen3	1504	1818	26230	8.08	0	opt	6.91e-16	8.79
etamacro	401	688	2489	0.13	10	dfeas	1.50e-16	1.11
fffff800	525	854	6235	0.09	0	opt	0.00e+00	4.41
pilot.we	737	2789	9218	3.8	0	opt	2.93e-11	1654.64
scsd6	148	1350	5666	0.1	13	dfeas	0.00e+00	0.52

Dhiflaoui/Funke/Kwappik/M/Seel/Schömer/Schulte/Weber: SODA 03

The Advantages of Certifying Algorithms

- certifying algs can be tested on
 - every input
 - and not just on inputs for which the result is known.
- certifying programs are reliable
 - either give the correct answer
 - or notice that they have erred
- there is no need to understand the program, understanding the witness property and the checking program suffices.
- formal verification of checkers is feasible
- one may even keep the program secret and only publish the checker
- most programs in LEDA are certifying

Does every Function have a Certifying Alg?

- $W: X \times Y \times W \mapsto \{0, 1\}$ is a witness predicate for $f: X \mapsto Y$ if
 - 1. W deserves is name:

 $\forall x, y \quad (\exists w \ W(x, y, w)) \quad \text{iff} \quad (y = f(x)).$

- 2. given x, y, and w, it is trivial to decide whether W(x, y, w) holds.
 - a program for W is called a checker
 - checker has linear running time and simple structure
 - correctness of checker is obvious or can be established by an elementary proof
- 3. witness property is easily verified, i.e., the implication

$$W(x, y, w) \to (y = f(x))$$

has an elementary proofs.

no assumption about difficulty of proving $(y = f(x)) \rightarrow \exists w \ W(x, y, w)$

Certifying Algorithms – p.19/25

Kurt Mehlhorn, MPI für Informatik

Does every Function have a Certifying Alg?

- let P be a program and let f be the function computed by P
- does there exist a program Q and a predicate W such that
 - 1. W is a witness predicate for f.
 - 2. On input *x*, *Q* computes a triple (x, y, w) with W(x, y, w).
 - 3. the resource consumption (time, space) of Q on x is at most a constant factor larger than the resource consumption of P.

Thesis:

- Every deterministic algorithm can be made certifying
- Monte Carlo algorithms resist certification

Intuition:

- correctness proofs yield certifying algorithms
- a certifying Monte Carlo alg yields Las Vegas alg

Monte Carlo Algorithms resist Certification

- assume we have a Monte Carlo algorithm for a function f, i.e.,
 - on input x it outputs f(x) with probability at least 3/4
 - the running time is bounded by T(|x|).
- assume Q is a certifying alg with the same complexity
 - on input x, Q outputs a witness triple (x, y, w) with probability at least 3/4.
 - it has running time O(T(|x|)).
- this gives rise to a Las Vegas alg for *f* with the same complexity
 - run Q and apply W to the triple (x, y, w) returned by Q
 - if W holds, we return y. Otherwise, we rerun Q.
 - this outputs f(x) in expected time O(T(|x|)).

Every Deterministic Algorithm has a Certifying Counterpar

- let P be a program computing f.
- certifying *Q* outputs f(x) and a witness $w = (w_1, w_2, w_3)$
 - w_1 is the program text P, w_2 is a proof (in some formal system) that P computes f, and w_3 is the computation of P on input x
 - W(x, y, w) holds if $w = (w_1, w_2, w_3)$, where w_1 is the program text of some program P, w_2 is a proof (in some formal system) that Pcomputes f, w_3 is the computation of P on input x, and y is the output of w_3 .
- we have
 - 1. *W* is clearly a witness predicate
 - 2. W is trivial to decide
 - 3. the proof of $W(x, y, w) \rightarrow (y = f(x))$ is elementary
 - 4. *Q* has same space/time complexity as *P*.
- construction is artificial, but assuring:
- the challenge is to find natural certifying algs

Kurt Mehlhorn, MPI für Informatik

certifying algs exist

Verification of Checkers

- the checker should be so simple that its correctness is "obvious".
- we may hope to formally verify the correctness of the implementation of the checker
 - this is a much simpler task than verifying the solution algorithm
 - the mathematics required for the checker is usually much simpler that the one underlying the algorithm for finding solutions and witnesses
 - checkers are simple programs
 - algorithmicists may be willing to code the checkers in languages which ease verification
 - logicians may be willing to verify the checkers
- Remark: for a correct program, verification of the checker is as good as verification of the program itself
- Harald Ganzinger and I are exploring the idea

Cooperation of Verification and Checking

- a sorting routine working on a set *S*
 - (a) must not change S and
 - (b) must produce a sorted output.
- I learned the example from Gerhard Goos
- the first property is hard to check (provably as hard as sorting)
- but usually trivial to prove, e.g., if the sorting algorithm uses a *swap*-subroutine to exchange items.
- the second property is easy to check by a linear scan over the output, but hard to prove (if the sorting algorithm is complex).
- give other examples where a combination of verification and checking does the job

Summary

- certifying algs have many advantages over standard algs
 - can be tested on every input
 - can assumed to be reliable
 - can be relied on without knowing code

• . . .

- they exist: every deterministic alg has a certifying counterpart
- they are non-trivial to find
- most programs in the LEDA system are certifying
- Monte Carlo algs resist certification

Summary

- certifying algs have many advantages over standard algs
 - can be tested on every input
 - can assumed to be reliable
 - can be relied on without knowing code

• . . .

- they exist: every deterministic alg has a certifying counterpart
- they are non-trivial to find
- most programs in the LEDA system are certifying
- Monte Carlo algs resist certification

When you design your next algorithm, make it certifying