
Certifying Algorithms

Kurt Mehlhorn

MPI für Informatik

Saarbrücken

Germany

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.1/25

The Problem Statement

x yprogram
for f

� a user knows x and y.

� how can he/she be sure that, indeed, y � f

�

x

�

.

� he/she is at complete mercy of the program

� I do not like to depend on software in this way, not even for
programs written by myself

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.2/25

Warning Examples

� Rhino3d (a CAD systems) fails to compute correct intersection of
two cyclinders and two spheres

CPLEX (a linear programming solver) fails on benchmark problem
etamacro.

Mathematica 4.2 (a mathematics systems) fails to solve a small
integer linear program

In[1] := ConstrainedMin[x , x==1,x==2 , x]
Out[1] = 2, x->2

In[1] := ConstrainedMax[x , x==1,x==2 , x]
ConstrainedMax::lpsub": The problem is
unbounded."
Out[2] = Infinity, x -> Indeterminate

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.3/25

Warning Examples

� Rhino3d (a CAD systems) fails to compute correct intersection of
two cyclinders and two spheres

� CPLEX (a linear programming solver) fails on benchmark problem
etamacro.

Mathematica 4.2 (a mathematics systems) fails to solve a small
integer linear program

In[1] := ConstrainedMin[x , x==1,x==2 , x]
Out[1] = 2, x->2

In[1] := ConstrainedMax[x , x==1,x==2 , x]
ConstrainedMax::lpsub": The problem is
unbounded."
Out[2] = Infinity, x -> Indeterminate

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.3/25

Warning Examples

� Rhino3d (a CAD systems) fails to compute correct intersection of
two cyclinders and two spheres

� CPLEX (a linear programming solver) fails on benchmark problem
etamacro.

� Mathematica 4.2 (a mathematics systems) fails to solve a small
integer linear program

In[1] := ConstrainedMin[x ,
�

x==1,x==2

�

,

�

x

�

]
Out[1] =

�

2,

�

x->2

� �

In[1] := ConstrainedMax[x ,

�

x==1,x==2

�

,

�

x

�

]
ConstrainedMax::lpsub": The problem is
unbounded."
Out[2] =

�

Infinity,
�

x -> Indeterminate

� �

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.3/25

The Problem Statement

x yprogram
for f

programs should justify (prove) their
answers in a way that is easily

checked by their users.

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.4/25

Certifying Algorithms

x
for f

y

w

certifying prog

� a certifying program returns

� the function value y and

� a certificate (witness) w.

� w proves the equality y � f

�

x
�
.

� if y

� � f

�

x

�

, there should be no w such that

�

x � y �w

�

passes checking.

� formalization in second half of talk

�

name introduced in Kratsch/McConnell/Mehlhorn/Spinrad: SODA 2003

�

related work: Blum et al.: Programs that check their work
Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.5/25

Outline of Talk

� problem definition and certifying algorithms

� examples of certifying algorithms

� linear system solving

� testing bipartiteness

� matchings in graphs

� planarity testing

� convex hulls

� dictionaries and priority queues

� linear programming

� advantages of certifying algorithms

� do certifying algorithms always exist?

� verification of checkers

� collaboration of checking and verification

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.6/25

Linear System Solving

� does the linear system A � x � b have a solution?

� answer yes/no

� a solution x0 witnesses solvability (= the answer yes)

� a vector c with cT A � 0 and cT � b

� � 0 witnesses non-solvability (= the
answer no)

� assume x0 is a solution, i.e., Ax0

� b.

� multiply with cT from the left and obtain cT Ax0

� cT b

� thus 0

� � 0.

� Gaussian elimination computes solution x0 or vector c

� checking is trivial

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.7/25

Bipartite Graphs

� is a given graph G bipartite?

� two-coloring witnesses bipartiteness

� odd cycle witnesses non-bipartiteness

� an algorithm

� construct a spanning tree of G

� use it to color the vertices with colors red and blue

� check for all non-tree edges e whether the endpoints have
different colors

� if yes, the graph is bipartite and the coloring proves it

� if no, let e � 	u � v

be a non-tree edge whose endpoints have the
same color;

� e together with the tree path from u to v is an odd cycle

� tree path from u to v has even length since u and v have the
same color

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.8/25

Bipartite Matching

� given a bipartite graph, compute a maximum matching

� a matching M is a set of edges no two of which share an endpoint

� a node cover C is a set of nodes such that every edge of G is
incident to some node in C.

� �M

� � �

C

�

for any matching M and any node cover C.

� map

�

u � v

� M to an endpoint in C, this is possible and injective

� a certifying alg returns M and
C with

�

M

� � �C

�

� no need to understand that
such a C exists (!!!)

� it suffices to understand the
inequality

�

M

� � �

C

�

� demo for general graphs

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.9/25

Planarity Testing

� given a graph G, decide whether it is planar

� Tarjan (76): planarity can be tested in linear time

� a story and a demo

� combinatorial planar embedding is a witness for planarity

� Chiba et al (85): planar embedding of a planar G in linear time

� Kuratowski subgraph is a witness for non-planarity

� Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in
linear time LEDAbook, Chapter 9

K5 K3 �3
Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.10/25

Planarity Testing: Checking the Witness I

� combinatorial embedding: graph + cyclic order on the edges
incident to any vertex

v3

eR
1

v4

e3

v1

v3

v4

v1

e3

e2

e1

e1

eR
2

e4 e4

eR
4 eR

4

eR
3 eR

3 eR
1

eR
2

e2

v2v2

� combinatorial planar embedding: combinatorial embedding such
that there is a plane drawing conforming to the ordering

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.11/25

Planarity Testing: Checking the Witness II

� face cycles

e0

e1

e2

e3

e4

� face cycles are defined for combinatorial embeddings.

� Theorem 0 (Euler, Poincaré) A combinatorial embedding of a
connected graph is a combinatorial planar embedding iff

f � e �

n � 2

� theorem = easy check whether a combinatorial embedding is
planar.

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.12/25

Convex Hulls

Given a simplicial, piecewise linear closed hyper-surface F in d-space
decide whether F is the surface of a convex polytope.

o

p

FACT: F is convex iff it passes the following three tests MNSSSS

1. check local convexity at every ridge

2. 0 � center of gravity of all vertices

check whether 0 is on the negative side of all facets

3. p � center of gravity of vertices of some facet f

check whether ray

�

0p intersects closure of facet different from f

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.13/25

Sufficiency of Test is a Non-Trivial Claim

� ray for third test cannot be chosen arbitrarily, since in Rd , d
�

3, ray
may “escape” through lower-dimensional feature.

o

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.14/25

Monitoring Priority Queues I

a PQ maintains a set S (of real numbers) under the operations insert and
delete_min

insert

�

5

�
� insert

�

2

�
� insert

�

4

�
� delete_min � insert

�

7
�
� delete_min

must return 2 must return 4
returns 2 return 5

PQ

checked p queue

A checker wraps around any priori-
ty queue PQ and monitors its beha-
vior.

It offers the functionality of a
priority queue

It complains if PQ does not
behave like a priority queue.

immediately
ultimately

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.15/25

Monitoring Priority Queues I

a PQ maintains a set S (of real numbers) under the operations insert and
delete_min

insert

�

5

�
� insert

�

2

�
� insert

�

4

�
� delete_min � insert

�

7
�
� delete_min

must return 2 must return 4
returns 2 return 5

PQ

checked p queue

A checker wraps around any priori-
ty queue PQ and monitors its beha-
vior.

� It offers the functionality of a
priority queue

� It complains if PQ does not
behave like a priority queue.

� immediately

� ultimately
Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.15/25

Monitoring Priority Queues II

Fact: Priority queue implementations with logarithmic running time per
operation exist.

Fact:

� There is a checker with additional constant amortized running time
per operation.
It catches errors ultimately, namely with linear delay

� Immediate error catching requires Ω
�

logn
�

additional time per
operation.

Finkler/Mehlhorn, SODA 99

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.16/25

Linear Programming

maximize cT x subject to Ax

�

b x

�

0

� linear programming is a most powerful algorithmic paradigm

� there is no linear programming solver that is guaranteed to solve
large-scale linear programs to optimality. Every existing solver may
return suboptimal or infeasible solutions.

Problem CPLEX Exact Verification

Name C R NZ T V Res RelObjErr T

degen3 1504 1818 26230 8.08 0 opt 6.91e-16 8.79

etamacro 401 688 2489 0.13 10 dfeas 1.50e-16 1.11

fffff800 525 854 6235 0.09 0 opt 0.00e+00 4.41

pilot.we 737 2789 9218 3.8 0 opt 2.93e-11 1654.64

scsd6 148 1350 5666 0.1 13 dfeas 0.00e+00 0.52

Dhiflaoui/Funke/Kwappik/M/Seel/Schömer/Schulte/Weber: SODA 03

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.17/25

The Advantages of Certifying Algorithms

� certifying algs can be tested on

� every input

� and not just on inputs for which the result is known.

� certifying programs are reliable

� either give the correct answer

� or notice that they have erred

� there is no need to understand the program, understanding the
witness property and the checking program suffices.

� formal verification of checkers is feasible

� one may even keep the program secret and only publish the checker

� most programs in LEDA are certifying

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.18/25

Does every Function have a Certifying Alg?

W : X � Y � W � � 	0 � 1

is a witness predicate for f : X � � Y if

1. W deserves is name:

�

x � y

��

w W

�

x � y �w

� �

iff

�

y � f
�

x
���
�

2. given x, y, and w, it is trivial to decide whether W
�

x � y �w

�

holds.

� a program for W is called a checker

� checker has linear running time and simple structure

� correctness of checker is obvious or can be established by an
elementary proof

3. witness property is easily verified, i.e., the implication

W
�

x � y �w

� � �y � f

�

x

� �

has an elementary proofs.

no assumption about difficulty of proving

�

y � f

�

x

� � � � w W

�

x � y �w

�

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.19/25

Does every Function have a Certifying Alg?

� let P be a program and let f be the function computed by P

� does there exist a program Q and a predicate W such that

1. W is a witness predicate for f .

2. On input x, Q computes a triple

�

x � y �w

�

with W
�

x � y �w

�

.

3. the resource consumption (time, space) of Q on x is at most a
constant factor larger than the resource consumption of P.

Thesis:

� Every deterministic algorithm can be made certifying

� Monte Carlo algorithms resist certification

Intuition:

� correctness proofs yield certifying algorithms

� a certifying Monte Carlo alg yields Las Vegas alg
Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.20/25

Monte Carlo Algorithms resist Certification

� assume we have a Monte Carlo algorithm for a function f , i.e.,

� on input x it outputs f

�

x

�

with probability at least 3
�

4

� the running time is bounded by T

� �

x

� �

.

� assume Q is a certifying alg with the same complexity

� on input x, Q outputs a witness triple

�

x � y �w
�

with probability at
least 3

�

4.

� it has running time O

�

T

� �

x

� � �

.

� this gives rise to a Las Vegas alg for f with the same complexity

� run Q and apply W to the triple
�

x � y �w

�

returned by Q

� if W holds, we return y. Otherwise, we rerun Q.

� this outputs f

�

x

�

in expected time O

�

T

� �

x

� � �

.

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.21/25

Every Deterministic Algorithm has a Certifying Counterpart

� let P be a program computing f .

� certifying Q outputs f

�

x

�

and a witness w � �w1 �w2 �w3

�

� w1 is the program text P, w2 is a proof (in some formal system)
that P computes f , and w3 is the computation of P on input x

� W

�

x � y �w

�

holds if w � �w1 �w2 �w3

�

, where w1 is the program text
of some program P, w2 is a proof (in some formal system) that P
computes f , w3 is the computation of P on input x, and y is the
output of w3.

� we have
1. W is clearly a witness predicate
2. W is trivial to decide
3. the proof of W

�

x � y �w
� � �y � f

�

x

� �

is elementary
4. Q has same space/time complexity as P.

� construction is artificial, but assuring: certifying algs exist

� the challenge is to find natural certifying algs
Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.22/25

Verification of Checkers

� the checker should be so simple that its correctness is “obvious”.

� we may hope to formally verify the correctness of the
implementation of the checker

this is a much simpler task than verifying the solution algorithm

� the mathematics required for the checker is usually much
simpler that the one underlying the algorithm for finding
solutions and witnesses

� checkers are simple programs

� algorithmicists may be willing to code the checkers in
languages which ease verification

� logicians may be willing to verify the checkers

� Remark: for a correct program, verification of the checker is as good
as verification of the program itself

� Harald Ganzinger and I are exploring the idea

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.23/25

Cooperation of Verification and Checking

� a sorting routine working on a set S

(a) must not change S and
(b) must produce a sorted output.

� I learned the example from Gerhard Goos

� the first property is hard to check (provably as hard as sorting)

� but usually trivial to prove, e.g.,
if the sorting algorithm uses a swap-subroutine to exchange items.

� the second property is easy to check by a linear scan over the
output, but hard to prove (if the sorting algorithm is complex).

� give other examples where a combination of verification and
checking does the job

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.24/25

Summary

� certifying algs have many advantages over standard algs

� can be tested on every input

� can assumed to be reliable

� can be relied on without knowing code

� . . .

� they exist: every deterministic alg has a certifying counterpart

� they are non-trivial to find

� most programs in the LEDA system are certifying

� Monte Carlo algs resist certification

When you design your next algorithm,

make it certifying

Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.25/25

Summary

� certifying algs have many advantages over standard algs

� can be tested on every input

� can assumed to be reliable

� can be relied on without knowing code

� . . .

� they exist: every deterministic alg has a certifying counterpart

� they are non-trivial to find

� most programs in the LEDA system are certifying

� Monte Carlo algs resist certification

When you design your next algorithm,

make it certifying
Kurt Mehlhorn, MPI für Informatik Certifying Algorithms – p.25/25

	The Problem Statement
	Warning Examples
	The Problem Statement
	Certifying Algorithms
	Outline of Talk
	Linear System Solving
	Bipartite Graphs
	Bipartite Matching
	Planarity Testing
	Planarity Testing: Checking the Witness I
	Planarity Testing: Checking the Witness II
	Convex Hulls
	Sufficiency of Test is a Non-Trivial Claim
	Monitoring Priority Queues I
	Monitoring Priority Queues II
	Linear Programming
	The Advantages of Certifying Algorithms
	Does every Function have a Certifying Alg?
	Does every Function have a Certifying Alg?
	Monte Carlo Algorithms resist Certification
	Every Deterministic Algorithm has a Certifying Counterpart
	Verification of Checkers
	Cooperation of Verification and Checking
	Summary

