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Curve Reconstruction: An Example

probably, you see more than a set of points

reconstructed by algorithm described in
Ernst Althaus and Kurt Mehlhorn: Traveling Salesman-Based Curve Reconstruction in Polynomial Time,

SIAM Journal on Computing, 31, pages 27–66, 2002
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Surface Reconstruction: An Example

probably, you see more than a point cloud

reconstructed by algorithm described in

G. Tewari, C. Gotsman, and S. Gortler, Meshing Genus-1 Point Clouds using Discrete One-Forms, Harvard

Technical Report 2005

Kurt Mehlhorn, MPI für Informatik Curve and Surface Reconstruction – p.3/25



Surface Reconstruction: An Example

reconstructed by algorithm described in

G. Tewari, C. Gotsman, and S. Gortler, Meshing Genus-1 Point Clouds using Discrete One-Forms, Harvard

Technical Report 2005

Kurt Mehlhorn, MPI für Informatik Curve and Surface Reconstruction – p.3/25



Problem Definition: Curve and Surface Reconstruction

Input: A finite sample P from an unknown curve γ ∈ IR2 or surface S ∈ IR3

Output (Curve): G(P,E) where xy ∈ E iff x and y are adjacent on γ .

Output (Surface): A triangulation of P topologically equivalent and
geometrically close to S

The Goal: Algorithms with guarantees (preferably, simple algorithms):
• reconstuction succeeds if

• γ ∈ Γ (= a class of curves) or S ∈ Γ (= a class of surfaces) and
• P satisfies a certain sampling condition.

• low asymptotic (as function of n = |P|) and practical complexity

Motivation:
• line drawings from raster images
• surface reconstruction
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State of the Art: Curve Reconstruction
• till 97, uniformly sampled smooth closed curves
• 97, non-uniformly sampled smooth closed curves, Amenta/Bern/Epstein,

Dey/Kumar

• 99, non-uniformly sampled smooth open and closed curves,
Dey/Mehlhorn/Ramos

• 99, TSP reconstructs uniformly sampled non-smooth curves, Giesen

• 00, TSP reconstructs non-uniformly sampled non-smooth curves in
polynomial time, Althaus/Mehlhorn

• 01, near-linear time reconstruction of non-uniformly sampled
non-smooth curves, Funke/Ramos

smooth curve: tangent everywhere
uniform sample: at least one sample from every curve segment of length ε .
non-uniform sample: sampling rate depends on local features of the curve.
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Surface Reconstruction
• till 97, only heuristics
• 98, non-uniformly sampled smooth closed surfaces, Amenta/Bern,

Boissonnat/Casals

• 00, non-uniformly sampled smooth closed surfaces, topological and
geometric guarantee, Amenta/Choi/Dey/Leekha

• 02, near-linear time, non-uniformly sampled smooth closed surfaces
Funke/Ramos

• 02 – , various attempts to generalize to non-smooth surfaces and
surfaces with boundary many
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The Cocone Algorithm I
• Amenta/Choi/Dey/Leekha

• Voronoi and Delaunay Diagram of P
• Voronoi region V (p) of p ∈ P consists of all points in the plane which

are closer to p than to any other point in P.
• Delaunay diagram of P: connect two points in P if their Voronoi regions

share an edge
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The Cocone Algorithm II

• Voronoi region V (p) of p ∈ P consists of all points in the plane which
are closer to p than to any other point in P.

• Pole of p ∈ P: direction to vertex of V (p) farthest from p
• Cocone idea: pole is a good estimate of curve normal
• select edges of Delaunay diagram which are (almost) perpendicular to

pole and then do a bit more
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The Cocone Algorithm III
• generalizes nicely to three dimensions
• algorithm reconstructs a triangulation which is topologically equivalent

and geometrically close to S if the following sampling condition holds:

for every x ∈ S there is a p ∈ P
with

dist(x, p) ≤ 0.1 f (x)

where f (x) is the distance of x
to the medial axis of S.

x

f(x)

• running time is quadratic O(n2), Funke/Ramos improved to O(n logn)

• algorithms work for large samples, n up to 106
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BUT

• open and closed curves
• sharp corners
• branching points

• branching points are open, open and closed curves and non-smooth
curves can be handled
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Open and Closed Curves

DMR (Compgeo 99): A variant reconstructs non-uniformly sampled open and
closed curves.

(a) (b) (c)

(d) (e) (f)

DK ABE DMR
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The Traveling Salesman Problem
• Problem Definition (Geometric TSP)

• given a set P of points in the plane
• find the shortest closed tour passing through all the points

• Graphic TSP
• given a graph G = (V,E) with integral edge weights
• find a shortest closed tour passing through all the vertices

• computationally very difficult
• no algorithm with polynomial running time is known
• smallest unsolved problems have only a few hundred points or nodes
• graphic TSP is NP-complete, geometric TSP is NP-hard

or
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Sharp Corners

semi-regular curve: left and right tangent exists and turning angle < π .

YES
NO

Giesen (Compgeo99): TSP reconstructs uniformly-sampled semi-regular
curves, i.e.,
for every semi-regular curve γ there is an ε > 0:
if P contains at least one point from every curve segment of length ε then
TSP(P) reconstructs γ .

• exact TSP is required, approximate TSP will not do
• result is structural, not algorithmic
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TSP does not work for turning angle equal to zero

(0.,0

(a,a^2)

(2a,0)

(x,x^2)

• O = origin, x-axis, parabola y = x2

• let x be such that dist(O,(x,x2)) = dist(O,(2a,0))

• order on curve = (2a,0)− (0,0)− (a,a2)− (x,x2)

• wrong order = (2a,0)− (a,a2)− (0,0)− (x,x2)

wrong order gives shorter length than correct order for arbitrarily small a
since (a,a2) lies on the wrong side of the angular bisector
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An Integer Linear Program for TSP

xe variable for edge e = uv ce = Euclidean length of e = uv

minimize ∑e cexe subject to

∑
u

xuv = 2 for all v ∈ P

∑
{uv; u∈R,v6∈R}

xuv ≥ 2 for all R ⊂ P with /0 6= R 6= P

0 ≤ xe ≤ 1, integral

• subtour LP, remove integrality constraint
• subtour LP can be solved in polynomial time
• optimal solution of subtour LP is (in general) fractional
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Fractional Optimal Solution
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• left side: edges weights right side: optimal solution to LP
• optimal tour has cost 4 ·2+2 ·1 = 10.
• fractional solution has cost 6 ·0.5 ·2+3 ·1 ·1 = 9.
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A Cutting Plane Algorithm
• Solving the LP exponentially many constraints

• solve LP without subtour elimination constraints
• check for violated subtour elimination constraint

• let xe be the solution of the LP
• compute minimum cut in (P,E,xe)

• a cut of value < 2 yields
a violated constraint

• add and repeat

1

1/2

1

1/2

1/2

1/2

1 1

• runs in polynomial time with Ellipsoid method
• is practically efficient with simplex method

• Solving the ILP
• When LP has fractional solution, branch on fractional variable
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The Main Result in Althaus/Mehlhorn
Experimental observation: optimal solution of subtour LP is integral

Theorem(AM): Let γ be a semi-regular curve. If P is a sufficiently dense
sample of γ then

• optimal solution of subtour LP is integral (and hence a tour)
• can be found in polynomial time

Proof Idea

• exploit duality of subtour LP and Held-Karp bound
• show that Held-Karp bound yields a tour.
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How Dense is Sufficiently Dense?

1. for every corner (= discontinuity) p, let R(p) be largest such that
(a) legs of corner turn by at most 10◦ within B(p,R(p))

(b) curve is connected inside the disk

2. must have at least one sample point on each leg within B(p,R(p)/4))

3. break curve into smooth pieces by removing the disks B(p,R(p)/8))

4. for every p in one of the smooth parts, let R(p) be largest such that
(a) curve turns by at most 60◦) within B(p,R(p))

(b) curve is connected inside the disk

5. must have at least one sample point within B(p,R(p)/4))

p

p

p
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Beyond Smooth Surfaces: Cocone Reconstruction
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Beyond Smooth Surfaces: Genus Detection I

• genus g of a closed surface = sphere + g handles
• examples are genus one surfaces, i.e., homeomorphic to a torus
• genus detection: compute g and 2g cycles spanning the non-trivial

cycles
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Minimum Cycle Basis (MCB) in Graphs
• (generalized) cycle in a graph: a set of edges with respect to which

every node has even degree
• addition of two cycles = symmetric difference

• cycles form a vector space (over field of two elements) under addition
• minimal cycle basis (MCB) = a set of cycles spanning all cycles and

having minimal total length
• can be computed efficiently (Kavitha/Mehlhorn/Michail/Paluch, SODA 04,

O(m2n+mn2 logn))
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MCBs in Nearest Neighbor Graph
• Nearest Neighbor Graph Gk on P (k integer parameter)

• connect u and v is v is one the k points closest to u and vice versa

k = 4

• easy to construct

• Theorem (Gotsman/Kaligossi/Mehlhorn/Michail/Pyrga 05): if S is smooth, P is
sufficiently dense, and k appropriately chosen: MCB of Gk(P) consists
of short (lenght at most 2k +3) and long (length at least 4k +6) cycles.
Moreover, the short cycles span the space of trivial cycles and the long
cycles form a homology basis.

• alg also provably works for some non-smooth surfaces (theorem to be
formulated)
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Beyond Smooth Surfaces: Reconstruction
• Tewari/Gotsman/Gortler have an algorithm to reconstruct genus-1

surfaces if a basis for the trivial cycles of Gk(P) is known.
• algorithm constructs a genus-1 triangulation of P
• no geometric guarantee

• our algorithm computes a basis for the trivial cycles of Gk(P)

• together the algorithms reconstruct genus-1 surfaces
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Summary
• curves

• efficient algs are known for open and closed, smooth and
non-smooth curves

• branching points are open problem
• noise is partially solved

• surfaces
• efficient algs are known for closed smooth surfaces
• noise is partially solved
• open

• surfaces with boundary
• non-smooth surfaces

Thank you for your attention
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