Chapter 6. NP-Completeness

The Clique Problem is as follows: The input is an undirected graph G = (V, E)
with n nodes and an integer k. The question is to decide whether the complete
graph on k nodes is a subgraph of G, i.e., whether there is V! C V, |V'| = k
such that (u,v) € E for all u,v € V'. There is a trivial but inefficient algorithm
for solving the Clique Problem. Run through all subsets V' C V of cardinality k
and check whether V' induces a complete graph. There are (Z) sets V' with k
elements. Thus our simple algorithm checks (n%) > 2"/(n+ 1) subsets in the case

k = n/2. Tt is simple to check a subset V' for the clique property; time O(n?)
will certainly suffice, and one time unit is certainly required. We conclude that our
naive algorithm has running time at least 2" /(n + 1). Before we can state that this
is inefficient, we have to define the size of a problem.

Throughout this chapter, we assume that combinatorial objects, i.e., graphs,
integers, sets, etc., are coded over a finite alphabet in some “natural way”. More
precisely, we assume that graphs are coded by their adjacency matrix, i.e., a graph G
with n nodes is coded by a bitstring of length n?, the entries of the matrix in row
major order. Integers are always written in binary representation and sets are
specified by listing their elements in some order.

In this way a problem instance of the Clique Problem is a bitstring of length
n? + log(n/2) + 1, where we again assume k = n/2 for simplicity. Using this
convention our naive algorithm accepts the language

clique = {w#v; w,v € {0,1}*, |w| = n? for some n and the graph G
with adjacency matrix w has a clique of size k,

where v is the binary representation of k}

in time Q(2V™ //m), where m is the length of the input. When we wrote down this
chapter, no algorithm existed, which is considerably more efficient than the naive
algorithm described above, and we will see in this chapter, that it is very unlikely
that there will ever be one. We will also see that Clique shares this property with
many other combinatorial problems, e.g., the Traveling Salesman Problem and the
Satisfiability Problem of propositional logic.

Let us take a closer look at the Clique Problem. There are (Z) subsets V' CV
of cardinality &, i.e., for a clique of size k there are very many candidates. It is easy
to test whether a subset V' C V defines a clique, i.e., whether a candidate is indeed
a solution. However, the only known way of finding a solution is to exhaustively
search through all candidates.

This concept is best described by the notion of a nondeterministic algo-
rithm. The instruction set of nondeterministic RAM’s contains one more instruc-
tion, the nondeterministic choice instruction:

choice
labelq, label,.

Version: 19.10.99 Time: 11:14 -1-

2 Chapter 6. NP-Completeness

The execution of a choice instruction transfers control to either labely or labels.
There are no probabilities associated with the alternatives as in randomized algo-
rithms, rather the choice is made by a demon. In so far there is a large number
of possible computations on any fixed input depending on the sequence of nonde-
terministic choices made by the demon. A nondeterministic algorithm accepts an
input, if there is at least one accepting computation on that input (see Section 6.1
for an exact definition). The time complexity of a nondeterministic algorithm is
the length of the shortest accepting computation.

We illustrate the new concept of a nondeterministic algorithm by describing
a nondeterministic algorithm for Clique which runs in polynomial time. We use
nondeterministic choices to select a candidate set V' and then check deterministi-
cally whether it is indeed a solution. More precisely, the algorithm works in three
stages. In the first stage the input string w#uv is parsed and n = |w|'/? and k, the
number represented by bitstring v, are computed. If the input is not of the form
w#v or if |w| is not a square then the input is rejected. Stage 1 can certainly be
done in polynomial time. In stage 2, Program 1 nondeterministically selects a sub-
set V' C V of size k by nondeterministically generating a bitvector A[l..n] which
contains exactly k ones, ie., Ali]]=1iff i € V.

for i from 1 to n
do choice mq, mo;
my: Ali] - 0;
goto m;
ma: Ali] < 1,
k+—k—1;
m:
od;
if k # 0 then stop and reject fi.

Program 1

The (successful) execution of Program 1 generates one of the (Z) subsets V' C
V, |V'| = k. Stage 2 takes time O(n). Stage 3 checks V' for the clique property.
This can certainly be done in polynomial time also. If V' is a clique then the input
is accepted, otherwise it is rejected. The algorithm described has time complexity
polynomial in n and hence polynomial in m, the length of the input. Also, it accepts
the language clique, as we now show. If the graph G = (V, E) does not have a clique
of size k, then the subset V' C V generated in stage 2 does not form a clique and
hence there is no accepting computation on input G. Conversely, if G has a clique of
size k, say V', then there is a computation which generates that very V' in stage 2.
This computation is accepting.

We have thus shown that the Clique Problem can be solved in polynomial time
by a nondeterministic algorithm. Let NP be the class of problems which can be
solved in polynomial time on a nondeterministic machine and let P be the class of

Version: 19.10.99 Time: 11:14 —-2—

6.1. Turing Machines and Random Access Machines 3

problems which can be solved in polynomial time on a deterministic machine. One
of the major results of this chapter is:

P = NP iff Clique € P.

The class NP contains a large number of combinatorial problems (cf. Section 6.5)
for which many researchers have intensively been trying to find efficient algorithms
but none has been discovered so far. If Clique were in P then there would be efficient
deterministic algorithms for all these problems which is unlikely. Thus Clique ¢ P
is a safe conjecture.

In the sequel we will frequently come across the class of all algorithms of a
certain complexity. In principle, we could base the discussion on the RAM model.
However, the discussion will be easier if we use a simpler machine model: Turing
Machines (TM). The relation between TM’s and real computers is less direct than
between RAM’s and real computers and therefore complexity bounds derived for
TM’s are not directly applicable to real computers. However, the loss in efficiency
is bounded by a polynomial (Theorem 1 of Section 6.1) and therefore the classes P
and NP will be the same for both models.

6.1. Turing Machines and Random Access Machines

The TM is a very simple model of a universal computer. There are only two parts: a
control unit and a storage unit. The storage unit is a single semi-infinite (infinite to
the right) tape. The tape is divided into squares which can store a single character
of a finite alphabet each. The control unit has a finite number of states, it scans
the tape by a single read/write-head which is one square in size.

Finite
Control

Figure 1. Visualization of a Turing Machine

We program TM’s by Turing tables. For each state of the finite control and
each letter of the tape alphabet the Turing table specifies a set of possible actions
(in the case of a nondeterministic machine) or a single action (in the case of a
deterministic machine). An action consists of three parts: changing the state of
the finite control, printing a new symbol on the square under the read/write-head

Version: 19.10.99 Time: 11:14 -3-

4 Chapter 6. NP-Completeness

and moving the head by at most one square to the left or to the right. A TM is
started by writing the input string of length n onto the first n squares of the tape,
placing the head over the first (leftmost) symbol of the input string and putting the
machine into a special state, the initial state. All other squares are initially empty,
i.e., contain the symbol § of the tape alphabet. The TM proceeds as specified
by the Turing table until it reaches a pair of state and character scanned by the
read/write-head for which no action is specified in the Turing table. At this point
the machine stops. The output of the computation is the non-empty part of the
tape. In this way we can use TM’s to compute functions.

Often we use TMs to recognize languages. In this connection two definitions are
possible: a TM recognizes a language if it computes the characteristic function, or
we designate a subset of the states as accepting and call a computation accepting if
it ends in an accepting state. Both definitions are equivalent; the second one allows
for a more natural treatment of nondeterminism. The details are as follows.

Definition: A nondeterministic TM is a 4-tuple M = (Z,T',6,F). Here Z =
{Z1,...,Zs} is a finite set of states, I' = {Ay,...,A,} is a finite tape alphabet,
Z; the initial state, F C Z a set of accepting states and § : Z xI' — 2ZxTx{-1,0,+1}
a transition function. We assume §(z,a) = 0 for all z € F and a € . The TM M
is deterministic if |§(z,a)| < 1 for every state z and alphabet symbol a. Then § is
equivalent to a partial function § : Z xI' - Z x I’ x {—1,0,+1} in a natural way.

We use A; to denote the empty tape square and write alternately A; or §.
A configuration C is a string in I'*(Z x I')I'™ and describes a snapshot of a
computation. If w(z,a)v is a configuration then wav is the tape content, z is the
state of the finite control and the head scans symbol a. Let Cy = w;(21,a1)v1 and
Cy = wa(z2,a2)v2 be configurations. C5 is a successor configuration of Cy, in
symbols C; - Cs, if:

a) (z2,b,—1) € §(21,a1) and wy = weay and vy = bvy; or
b) (z2,a2,0) € 6(z1,a1) and wy; = wy and vy = vs or

c) (z2,b,+1) € 6(z1,a1) and wa = w1b and (v1 = azv2 or v1 = v2 = € and az = §).

F* denotes the reflexive, transitive closure of relation F. A configuration C' =
w(z,a)v is a halting configuration, if §(z,a) = 0, it is an accepting con-
figuration, if z € F, and it is an initial configuration with respect to string
T=a1as...ap,ifz2=2Z1,w=¢,a=a;and v =as...a,.

A computation on input z € I'* is a sequence Cy, Cy, ... Cy of configurations
with C; F C;41 for 0 < i < k and Cj an initial configuration with respect to x.
A computation is accepting (halting), if Cj is an accepting (halting) configuration.
The length of the computation is k.]

We are now ready to define the language accepted by a TM and the time complexity
of the machine.

Version: 19.10.99 Time: 11:14 —4—

6.1. Turing Machines and Random Access Machines 5

Definition: Let M = (Z,T',6,F) be a TM.

a) L(M) = {x € I'*; there is an accepting computation of M on input z}
is the language accepted by M.

b) Let M be deterministic and total, i.e., there is a halting computation of M
on every x € I'*. Then M computes function fp; : I — I'* if for every
x € I'* the tape content of the halting configuration of the computation of M
on input z is fas(x).

c) The time complexity Ty, of M is

T = a in{k; k is the length
v (n) xeni(i\(/[) min{k; k i ng
lz|=n of an accepting computation on input z}

if M is nondeterministic, and

Tyv(n) = Iax {k; k is the length
z€el™

lz[=n of the halting computation on input =}

if M is deterministic. Furthermore, Ths(n) = oo if there is z € T'*, |z| = n,
such that M does not halt on input z. 1

One word of care is needed at this point. Note that in the definition of running
time of nondeterministic machines the maximum is only taken over the strings in
the accepted language. For each such string the shortest accepting computation is
considered. In the case of deterministic machines the maximum is taken over all
inputs of a certain length.

Example: A deterministic TM of time complexity T'(n) = O(n?) which accepts
L = {wéw; w € {0,1}*}. Let Z = {Z1,Z,...,Zy} be the set of states, let
I'={0,1,0,1,¢ ¥} be the tape alphabet and let F' = {Zo} be the set of final states.
The transition function § is defined by the table of Figure 2.
The accepting computation on input 01¢01 is
(Z1,0)1401 + 0(Z2,1)¢01 = 01(Z2,¢)01 + 01¢(Z4,0)1 + 01¢(Zg,0)1
F 01(Ze, ¢)01 = 0(Z7,1)¢01 + (Z7,0)1401 F 0(Z1,1)¢01
- 01(Zs,H)01 F* 0140(Zs,1) - 01401(Zs,¥) + 01401(Zs, B).

This machine compares the words before and after the ¢-sign character by character.
It reads a character of the first word in state Z;, stores the character in the finite
control by changing to either state Z, or Zs and marks the character by baring it.
It then moves to the right until it hits the ¢, records that fact in the finite control by
changing its state either to Z; (from Z;) or to Zs (from Z3). It continues moving
to the right until if finds an unbarred symbol. At this point the symbol under the
reading head is compared with the symbol stored in the finite control. In the case
of inequality, i.e., if a 1 is read in state Z4 or a 0 in state Zs the machine halts. In
the case of equality the machine moves the head back until an unbarred symbol in
the first word is met and enters a new cycle.]

Version: 19.10.99 Time: 11:14 —5—

6 Chapter 6. NP-Completeness

) 0 1 0 1 ¢ ¥
Z1| Z2,0,+1| Z3,1,+1 Zg,¢,+1

Zoy | Z9,0,+1| Z3,1,+1 Zy, ¢, +1

Z3 | Z3,0,+1| Z3,1,+1 Zs, ¢, +1

Zs| Z6,0,0 Z4,0, 41| Z4,1,+1

Zs Z6,1,0 | Zs,0,+1| Z5,1,+1

Zg Z6,0,—1| Zg,1,—1| Zy,¢,—1

Zi | Z72,0,—1| Z7,1,—1| Z1,0,+1| Z1,1,+1

Zg Zg,0,+1| Zg,1,+1 Z9, 4,0
Zy

Figure 2. Transition table for L = {wéw; w € {0,1}*}

We now come to the central definition of this chapter. We now come to the central
definition of this chapter.

Definition: (Classes P and NP)

P ={L; L CT* for some finite I and there is adeterministic TM M and a
polynomial p such that L = L(M) and Th(n) < p(n) for all n}

NP = {L; L CT"* for some finite I" and there is a nondeterministic TM M and a
polynomial p such that L = L(M) and Ty (n) < p(n) for all n} 1

Since every deterministic TM is a nondeterministic TM and since the definition of
running time is more strict in the deterministic case, we have the inclusion

P C NP.

The famous open problem is: “Is P equal to NP?” The answer to this problem is
open; however, there are many reasons for believing that P # NP:

a) There are many problems, e.g., the CliqueProblem, such that
P =NP iff Clique € P.

These problems arise from many different areas, e.g., graph theory, operations
research, game theory and number theory. In all these areas a lot of work went
into the development of efficient algorithms for these problems. No provable
good algorithm was found.

b) Even worse, many algorithms which were suggested for these problems are
known to have non-polynomial running time.

Version: 19.10.99 Time: 11:14 —6—

6.1. Turing Machines and Random Access Machines 7

We used Turing machines to define classes P and NP. Theorem 1 below shows
that we might have used RAM’s under the logarithmic cost measure just as well.
We will formally prove this only for languages over the binary alphabet {0,1}; a
generalization to non-binary alphabets is trivial and left to the reader. RAM’s were
defined in Section 1.1; in particular, the I/O-behaviour of RAM’s was defined at the
end of Section 1.1. Let R be a RAM and let z = aqa3...a, € {0,1}*, a; € {0,1}.
Then the i-th execution of the statement “a < input” places a; € {0,1} C N into
the accumulator. We say that RAM R accepts L C {0,1}* iff it computes the
characteristic function of L.

Theorem 1. Let R be a RAM with time complexity Tr(n) under the logarithmic
cost measure and let L be the language accepted by R. Then there is a TM M
which accepts L in time Tpr(n) = O((Tr(n))®).

Proof: (Sketch) We start with a description of the tape of TM M. The tape of M
is divided into 8 tracks, i.e., the tape alphabet is I'® for some alphabet I'. Each
single square can contain an element of I" on each track.

input ai az as a4 ...

memory address # content # # address # content # # ...

accumulator

index reg 1

index reg 2

index reg 3

address reg

scratch reg

The first track contains the input ajasas. ... Inputs which were read by the RAM
are marked. The second track contains the memory of the RAM, more precisely,
the second track contains a sequence of pairs (ad;, cont;), 1 < i < m; ad; and cont;
are integers written in binary. We maintain the following invariant. Let ad € N
be an address and let cont be the content of the memory cell of the RAM with
address ad. Then there is either no 7 with ad = ad; and then cont = 0 or there is
an ¢ with ad = ad; and then cont = cont; where j = max{i; ad = ad;}. Tracks 3
to 6 are used to store the accumulator and the index registers in binary. Finally
tracks 7 and 8 are used for intermediate calculations. The RAM-program is stored
in the finite control of TM M. We sketch the simulation in the case of instruction
“a—a+p(3+v2).

(1) Add 3 to the content of 5 (as stored on track 5) and store the result on track 7,
the address register.

Version: 19.10.99 Time: 11:14 —7-

8 Chapter 6. NP-Completeness

(2) Run through the pairs on track 2 and find the largest ¢ with ad; = ad, the
content of track 7. The search is performed by an algorithm similar to the one
described in the example above.

(3) If no i is found then place 0 onto the scratch register (track 8), otherwise copy
cont; onto the scratch register. The details are very similar to step 2).

(4) Add the content of the scratch register to the accumulator.

All other instructions are simulated analogously. In particular, whenever a store
instruction is executed, say cont is stored in cell ad, then a new pair (ad, cont) is
added to the list on track 2.

It is easy to program the arithmetic operations in steps (1) and (4) on a TM.
The running time is proportional to the length of the binary representation of the
operands. Since we use the logarithmic cost measure this is in turn bounded by the
cost of the simulated RAM-instruction.

Steps (2) and (3) are slightly more difficult to handle. The example above
shows that the cost of steps 2) and 3) is bounded by O((length of the inscription of
track 2)2) = O(((number of store instructions executed) - (log(maximal content of
any cell) + log(maximal address used)))?).

The number of store instruction is certainly bounded by Tr(n). The content
of any cell and hence the maximal address is also bounded by 27%(") gsince the
logarithmic cost measure charges one time unit for writing a bit. Hence the cost of
steps (2) and (3) is bounded by O((Tr(n))*).

Let us summarize: TM M can simulate a proper RAM-instruction (arithmetic
and test) in time O((Tg(n))?); the square is required for simulating divisions and
multiplications. Furthermore, O((Tr(n))*) steps are needed to simulate storage
access of the RAM. Thus O((Tr(n))®) steps suffice for the simulation of a Tg(n)
time bounded RAM. 1

The proof of the converse of Theorem 1 is much simpler and is left to the reader. If
L is accepted in time Ths(n) by a TM then L is accepted in time Th(n)log Tas(n)
by a RAM under the logarithmic cost measure. Thus the complexities of a problem
on a RAM and on a TM are polynomially related. A problem is solvable on a RAM
under the logarithmic cost measure in polynomial time iff it is solvable on a TM in
polynomial time. In other words, the definition of P is fairly robust with respect
to the particular definition of machine chosen.

We end this section by relating deterministic and nondeterministic complexity.
A fairly direct simulation yields an exponential loss in efficiency; no more efficient
simulation is known.

Definition: A function T': N — N is a step function, if there is a deterministic
TM M which stops after exactly T'(n) steps on every input of length n.]

Most common functions are step functions, e.g., T'(n) = n, T(n) = n|logn|, T(n) =
n?, T(n) = 2".

Version: 19.10.99 Time: 11:14 —8—

6.2. Problems, Languages and Optimization Problems 9

Theorem 2. (Deterministic Simulation of Nondeterministic Turing Machines) Let
T(n) be a step function, let L C T'* be a language and let N be a nondeterministic
TM which accepts L in time Ty(n) = O(T(n)). Then there is a deterministic
TM M with L(M) = L and Ty (n) = O(cT™) for some constant c.

Proof: For every € L there is an accepting computation of length < Tx(|z|).
Let k¥ = max{|6(z,a)|; z is a state of N and a € I'}. Then machine N has the
choice between at most k different actions in every step. Thus there are at most
kT~(zD) different computations of length < Tn(|z|) on input z. Also z € L iff
one of these computations is accepting. This suggests the following deterministic
simulation of N. Let m be such that Tx(n) < m - T(n) for every n. Count from
0 to k™ T() — 1 in base k. Every number [between 0 and k™ 7T(") — 1 represents
a possible computation. More precisely, the i-th digit in the k-nary representation
of [determines the action in the i-th move of N. It is easy to see that every fixed
computation of N may be simulated in time p(m-T'(|z|)) where p is some polynomial.
Thus the entire simulation takes time p(m - T'(|z|)) - k™ T(=D) = O(cT(12D) for some
constant c.]

6.2. Problems, Languages and Optimization Problems

Classes P and NP are sets of languages. However, problems are usually not de-
fined as language recognition problems. Let us for example consider the Traveling
Salesman Problem (TSP).

Name: Traveling Salesman Optimization Problem (T'SOP).
Input: A distance matrix dist : [0..n —1]2 - N.
Output: A permutation IT of [0..n — 1] which minimizes

”z_: dist(II(z), II(¢ + 1 mod n)),

i.e., a tour through n cities 0,1,...,n — 1 of minimal total length.]

The Traveling Salesman Optimization Problem is definitely not a language. It
rather requires the computation of a function from n by n matrices dist to permu-
tations of n elements. However, we can associate a language recognition problem
with the optimization problem in a somewhat artificial way.

Name: Traveling Salesman Recognition Problem (TSRP).

Input: A distance matrix dist : [0..n — 1]> — N and an integer D.
Question: Is there a tour of length at most D, i.e., is there a permutation II of
[0..n — 1] such that Y7~ dist(TI(i), TI(i + 1 mod n)) < D? "

Version: 19.10.99 Time: 11:14 -9—

10 Chapter 6. NP-Completeness

The Traveling Salesman Recognition Problem gives rise to a language in a natural
way; namely the language (set) of all problem instances I = (dist, D) of TSRP with
positive answer, i.e.,

Lrsp = {(dist, D); dist has a tour of length < D}.

Actually, we have to be more precise. A language is a subset of I'* for some finite
alphabet. Thus instead of talking about problem instances (dist, D) we should
rather talk about the encodings of distance matrices dist and integers D over some
finite alphabet 3. There are many possible encodings to choose from. We use the
following encodings:

1) Integers are written in binary representation.

2) Sequences (sets, matrices) are specified by listing the (encodings of their) ele-
ments separated by some special symbol.

3) Graphs are specified by their adjacency matrix; labelled graphs are specified
by the matrix of labellings.

What do we have achieved now? We associated a language with the Traveling
Salesman Recognition Problem and we can now ask the question whether this lan-
guage is in P. Even if it were, what would that mean for our original problem,
the Traveling Salesman Optimization Problem? In this section we show, that the
function which maps distance matrices to optimal solutions would be computable
in polynomial time also. So we have not really lost anything by moving from the
optimization problem to the recognition problem, at least as far as polynomial time
computability is concerned. This observation is not only true for the TSP but also
in a more general sense. We start with an alternative characterization of NP.

Theorem 1.

NP = {L; L CT* for some finite I' and there is a polynomial p and a polynomial
time computable predicate Q C I'* x I'* such that for allx €T : x € L

iff Iy e T : ly| < p(|z]) A Q(=,y)}

Proof: “D”: Let p be a polynomial and let) be a polynomial time computable
predicate, i.e., there is a deterministic TM M which computes Q(z,y) in time
q(|z|, ly|) for some polynomial q. The following nondeterministic algorithm ac-
cepts L.

(1) On input = generate nondeterministically a string y € I'*, |y| < p(|z|).

(2) Accept z if Q(z,y). Q(z,y) is computed using machine M.

The details of step (1) are very similar to the example given in the introduction to
this chapter and therefore step (1) takes time at most ¢ - p(|z|) for some constant ¢
on a RAM and hence by Theorem 1 of Section 6.1 time polynomial in |z| on a TM.

The cost of step (2) is also bounded by a polynomial in |z| and |y|, which is in turn
bounded by a polynomial in |z|. Thus L € NP.

Version: 19.10.99 Time: 11:14 -10-

6.2. Problems, Languages and Optimization Problems 11

“C”: Let L € NP, L CT*. Let N be a nondeterministic TM which accepts L in
time bounded by a polynomial p. As in the proof of Theorem 2 in Section 6.1 let &k
be the maximal number of actions N can choose from at any step. Then the proof of
that theorem shows that the strings of length < p(|z|) over a k-ary alphabet encode
all possible computations of N of length < p(|z|) on input z. Assume w.l.o.g. that
IT'| > k. Take

Q(z,y) = “y encodes an accepting computation of N on input z”.

Then (@ is certainly computable in polynomial time and L = {z; Jy : |y| < p(|z|) A
Q(z,y)}- I

The characterization of NP given in Theorem 1 is interesting as such. No explicit
mention is made of nondeterminism. Rather, nondeterminism is concealed in the
existential quantifier. More mathematically oriented readers may find it helpful to
use Theorem 1 as the definition of NP.

Definition: A minimization problem is given by a polynomial time computable
predicate Q@ C I'* xI'* and a polynomial time computable cost function ¢ : ['* xI'™* —
N. If Q(z,y) then y is a feasible solution for problem instance z with cost
c(z,y). If Q(z,y) and ¢(z,y) < ¢(z,y’) for all y’ with Q(z,y’) then y is an optimal
solution for x. The minimization problem is polynomially bounded if there is
a polynomial p such that Q(z,y) implies |y| < p(|z]). 1

We only deal with polynomially bounded optimization problems in this book. A
similar definition is possible for maximization problems. In the TSP example we
have: Q(z,y) if z is the encoding of a distance matrix dist : [0..n —1]2 — N and y
is the encoding of a permutation IT of [0..n — 1], and ¢(z,y) = > dist(II(z), II(¢ +
1 mod n)).

Definition: Let (Q,c) be a polynomially bounded minimization problem. We
define four versions of that problem.

a) Name: (@, ¢)-recognition problem.

Input: Instance z € I'*, integer C.

Question: Is there a y with Q(z,y) and c(z,y) < C?
b) Name: (@, ¢)-optimization problem.

Input: Instance z € I'*.

Output: An optimal solution optsol(z) € T'* for z.

c) Name: (Q, ¢)-optimal value problem.
Input: Instance z € T'*.
Output: optval(z) = c(z, optsol(z)).

d) Name: (@, ¢)-witness problem.
Input: Instance z € I'* and integer C.

Version: 19.10.99 Time: 11:14 -11-

12 Chapter 6. NP-Completeness
Output: witness(x,C) = y with Q(z,y) and c(z,y) < C, if there is any such y.1

We have already seen the first two versions in the case of TSP. The recognition
problem poses the question whether a tour of some given length exists and the
optimization problem requires that we produce an optimal tour. The optimal value
problem requires that we compute the length of the optimal tour and the witness
problem requires that we compute a tour of length at most C. We can now start
to relate the complexities of the four versions of a problem. It is obvious that
the recognition problem is not more difficult than either the optimal value or the
witness problem which in turn are both simpler than the optimization problem. We
can capture this fact in the following diagram:

< witness
recognition < optimization.
< optimal value

A precise formulation is

Lemma 1. Let (Q,c) be a polynomially bounded optimization problem. Then

a) If function optsol : T'* — T'* is computable in polynomial time, then so are
functions optval : T* — N* and witness : T'* x N — I'*.

b) If either function witness or optval is computable in polynomial time then
L@, ={(z,C); x € £*,C €N and optval(z) < C} € P.

Proof: Obvious.]
A partial converse of Lemma 1 is provided by

Lemma 2. Let (Q,c) be a polynomially bounded optimization problem.

a) If functions witness and optval are computable in polynomial time, then so is
optsol.

b) If the recognition problem is in P then optval is computable in polynomial
time.

Proof: a) We only have to observe that optsol(x) = witness(x, optval(x)) for all z.

b) We observe first that there is a polynomial ¢ such that optval(z) < 202D for all .
We can then use binary search on the interval [1..2%(%D] in order to determine the
exact value of optval(z). The details are given in Program 1.

It is easy to see that low < optval(z) < high is an invariant of the loop.
Hence Program 2 correctly computes the value of optval(z) in log(29(12D) = ¢(|z|)
iterations of the loop. In line (4) the polynomial time algorithm for the (Q,c)-
recognition problem is used. Thus each iteration of the loop has polynomial cost.
|

Version: 19.10.99 Time: 11:14 -12—

6.2. Problems, Languages and Optimization Problems 13

(1) low + 1; high « 24(=D);

(2) while high — low >1

(3) do middle < |(high + low)/2];

(4) if has a solution of cost < middle
(5) then high < middle

(6) else low + middle + 1

(7) fi

(8) od;

(9)

optval(z) + low.

Program 2

We still have to relate the complexity of the (@, ¢)-witness problem and the (Q, ¢)-
recognition problem. We treat TSP first and then comment on a general reduction.

Lemma 3. If the Traveling Salesman Recognition Problem is in P then the TSP
witness function can be computed in polynomial time.

Proof: Program 3 computes witnessysp(dist,C), i.e., computes a tour of length at
most C if there is any.

(1) define dist' : [0..n —1]> = N by dist’ = dist;

(2) if dist does not have a tour of length at most C
then halt “there is no tour of length < C” fi;

(3) for all pairs (4, 7), ¢ # J,

(4) do change dist'[i, j] to oo;

(5) if dist’ still has a tour of length at most C

(6) then do nothing

(7) else reverse the change made in line (4)

and include edge (i, j) into the tour
®) 6
(9) od.

Program 3

The set of edges selected in line (7) forms a tour of length at most C. The
polynomial time algorithm for the recognition problem of TSP is used in lines (2)
and (5). Note that all problem instances (dist'C) in line (5) are not more difficult
than the original problem (dist,C); in particular, the length of the encoding of
these instances does not (much) exceed the encoding of (dist,C'). The number of
iterations of the loop is clearly bounded by a polynomial in input length, the cost
of each iteration is also polynomially bounded. Thus witnessrsp can be computed
in polynomial time if TSP Recognition is in P.]

Version: 19.10.99 Time: 11:14 -13-

14 Chapter 6. NP-Completeness

The main component in the proof of Lemma 3 is selfreduction. In order to find
a witness (tour) for an instance of TSP we reduce the problem to a simpler (one
less edge with cost < oco) instance of TSP. We solve the simpler problem by the
recognition algorithm and thus construct a piece of the witness. A similar approach
works for all other problems treated in this book. We illustrate the technique by
one more example, the Satisfiability Problem.

Let V = {x1,22,...} be an infinite supply of propositional variables. If z; is
a variable then z; and Z; are literals. We will use Z; and —z; interchangeably. If
Y1,--.,Yg are literals then (y; Vy2 V --- V yg) is a clause of degree k. Finally if
€1, - ,Cm are clauses of degree at most k£ then ¢; Aca A ... A ¢y is a formula in
conjunctive normal form with at most k literals per clause. A truth assignment is
a mapping ¥ : V — {0,1}. We extend ® to literals, clauses and formulas by

and
Y(y1 Vyz2 V- Vyg) = max{y(y;); 1 <i <k},

Pleg Aeg A+ A e) = min{y(cj);1 < j <m}.

A formula « is satisfiable if there is an assignment 1 with ¥(a) = 1. The Satisfia-
bility Recognition Problem is given by:

Name: Satisfiability Problem (SAT).
Input: A formula « in conjunctive normal form.
Question: Is « satisfiable?

The SAT Witness Problem is to compute a function witness which maps to truth
assignments such that witnessgar(a) satisfies « if « is satisfiable.

Lemma 4. If SAT is in P then witnesssar can be computed in polynomial time.

Proof: Program 4 computes ¢ = witnesssar(a). It is clearly correct and has
polynomial running time.]

Again the main component of the proof of Lemma 4 is selfreduction. We
construct the witness (assignment) piecewise by reducing formula a to a simpler
formula (one variable less) and testing the simpler formula for satisfiability.

Version: 19.10.99 Time: 11:14 -14-

6.3. Reductions and NP-complete Problems 15

(1) o+ o

(2) for all z; occurring in «

(3) do let " be obtained from o' by substituting the constant 0
for all occurrences of z; in o;

(4) if " is satisfiable co use the algorithm for SAT here oc
(5) then ¢(z;) < 0; o/ + "
(6) else ¥(z;) + 1; & + the formula obtained from «
by substituting 1 for all occurrences of x;
(7) fi
(8) od

Program 4

6.3. Reductions and -complete Problems

Reductions are useful tools for classifying problems. We have seen the technique
already in the previous section and we will use it extensively throughout the chapter.
For example, we showed how to convert an algorithm for TSP Recognition into
an algorithm for TSP Witness, in this way reducing the witness problem to the
recognition problem. More generally, reductions allow us to transform solutions to
one problem into solutions to other problems.

Definition:

a) Let ¥ and I" be finite alphabets. A mapping f : £¥* — I'* is a (polynomial time
computable) transformation, if f can be computed on a TM in polynomial
time.

b) Let Ly C ¥* and Ly C I'* be languages. L; is (polynomially, many-one)
reducible to L, if there is a polynomial time computable transformation f
such that z € Ly iff f(z) € L, for all z € ¥*. In this case we write L1 < L.

c) Language L is NP-complete, if

i) LeNP,
ii) L' < L for all L' € NP. 1

Theorem 1 shows the importance of this definition.

Theorem 1. Let Ly be NP-complete. Then
a) Lo € P iff P= NP.
b) If Ly X Ly and Ly € NP then L, is NP-complete.

Proof: a) If P = NP then certainly Ly € P. The converse remains to be proved.
Assume that Ly € P and let L € NP be arbitrary. Since Ly € P there is a
deterministic TM M which accepts Ly in time bounded by p for some polynomial p.
Since Lo is NP-complete and L € NP we have L = Ly. Thus a mapping f exists

Version: 19.10.99 Time: 11:14 -15—

16 Chapter 6. NP-Completeness

with L = f71(Lo). Let N be a deterministic TM which computes f in time bounded
by polynomial q. We construct a deterministic acceptor A for L from M and N. A
behaves as follows on input z.

(1) Compute f(z) using N in time g(|z|).
(2) Reset the read/write-head onto the first symbol of f(z) in time |f(x)|-

(3) Decide if f(z) € Lo using M in time p(|f(x)|). If f(z) € Ly then accept z,
otherwise reject .

The algorithm above clearly accepts L. It has running time g¢(|z|) + |f(z)| +
p(|f(z)]) < r(|z|) for some polynomial r. The last inequality follows from the
fact that |f(z)| < |z| + ¢(|z|) since a TM can write at most one square in one time
unit.

b) We have to show L < L; for every L € NP. Let L € NP be arbitrary. Since
Lg is NP-complete there is a transformation f such that L = f~1(Lg). Since
Lo =< L, there is a transformation g such that Ly = g~*(L1). Let h = go f. Then
L=f"YLo) = f g *(L1)) =(go f)~(L1) = h~1(Ly). It remains to be shown
that h is computable in polynomial time. This is easily done by an argument similar
to the one used in part a).]

Part a) of Theorem 1 states that NP-complete problems are the most difficult
problems in NP. If one of them is solvable in polynomial time, then all problems in
NP are solvable in polynomial time. Conversely, if P # NP (and this is generally
believed) then no NP-complete problem can be solved in polynomial time.

Part b) introduces a simple, but extremely useful technique for showing NP-
completeness. Show first that a particular language Lo is NP-complete. For lan-
guage Lo this must be done the complicated way, namely by demonstrating L < L
for all L € NP. Once we have established NP-completeness for Ly, there is a
simpler way of establishing NP-completeness of L;. Show L; € NP and Ly < Lj.

Version: 19.10.99 Time: 11:14 -16—-

6.4. The Satisfiability Problem is NP-complete 17
6.4. The Satisfiability Problem is -complete

In this section we establish the NP-completeness of the Satisfiability problem. SAT
was defined in Section VI.2.

Name: SAT.
Input: A formula « in conjunctive normal form (CNF).
Question: Is o satisfiable?

Theorem 1. SAT is NP-complete.

Proof: We show SAT € NP first. Let a be a formula in CNF, let V,, be the set
of variables occurring in «, and let |a| be the length of the encoding of a. Then
certainly |V,| < |a|. We describe a nondeterministic machine N which accepts
SAT. On input @, N nondeterministically chooses an assignment v : V,, — {0,1}
by writing down a bitstring of length |V,|. Then it evaluates o with respect to
assignment 1 by one of the well known methods, e.g., by the stack principle. Ma-
chine N accepts a iff ¥(a) = 1. N clearly operates in polynomial time and accepts
SAT.

Let L € NP be arbitrary. We have to show L < SAT. Since L € NP there is a
nondeterministic TM M which accepts L in time bounded by some polynomial p.
For every input z of M we will now construct a formula a(z) which describes the
behaviour of M on z. In particular, a(z) is satisfiable iff M accepts . The mapping
x — a(z) is the desired transformation.

Machine M has states Z1, ..., Z, and tape alphabet I" = {4, ..., 4,}. Symbol
A denotes the empty tape square, we use A; and § interchangeably. Z; is the initial
state of M and Z,., Z.11, ..., Z, are the accepting states. We change the transition
function § of M by defining §(z,a) = {(z,a,0)} whenever §(z,a) = 0. Then M never
stops and halting configurations (of the original machine) are endlessly repeated.
Thus: M accepts z iff there is a sequence Cy, C1, ..., Cpn) of configurations such
that C is the initial configuration for z, n = |z|, C; F C;41 for 0 < ¢ < p(n), and
the state in C}(,) is accepting. The transition function § of M defines a relation on
Z xT'x ZxT x{-1,0,+1}. We order the tuples of this relation in some way into
lines; let m be the number of tuples in relation 4.

Let z € T, |z| = n, be arbitrary. Formula a(z) is built from the following
variables. We also give the intended meaning of each variable.

Intended meaning;:
zip 0<t<p(n) z.4=1,if M isin state Z; at time ¢.

ari; 0<t<p(n) a;; =1,if A; is the content of the i-th tape square at
1<i<p(n) timet.

St 0<t<p(n) s:; =1,if M scans the i-th tape square at time ¢.

Version: 19.10.99 Time: 11:14 -17-

18 Chapter 6. NP-Completeness

1<i<p(n)

by,1 0<t<p(n) by =1,iflinel of § is used for the transition from time ¢
1<l<m to time ¢ + 1.

Variables z; ; represent the state of the finite control, the a;; ;’s encode the tape
content or more exactly, the content of the first p(n) tape squares, i.e., of the
relevant part of the tape, the s;;’s give the position of the tape head and the b;;’s
encode the transition behaviour. Since M is p(n) time bounded it can never use
more than the first p(n) tape squares. Thus the variables a;; ; are only needed for
i < p(n) and the variables s, ; are only needed for i < p(n) + 1.

We will next set up formulae which fix the intended meaning of the variables.
We have to ensure the

initial condition (M starts in state Z;, its head is on the first square, and xﬁp(")_"
is the tape content), the

boundary condition (at any time unit M is in exactly one state, each tape square
contains exactly one symbol, the tape head is at exactly one square, and exactly
one line of the Turing table is applied), and the

transition condition (the configurations at subsequent time units are compatible
with the Turing table).

Let I be a formula for the initial condition, B a formula for the boundary condition,
and T a formula for the transition condition. Then

a(r)=INBATA (zp(n),,, V Zpm)re1 VootV Zp(n)’s).

We still have to construct I, B and T in CNF. Formula I is easy to set up. Let
r = Alejz ... Ajn' Then

I'= (20,1 A 801 A@o,1,5; A@o2,js AN@03,js N A @onj, A Qon+1,1 A A Gopn)1)-

I is clearly in CNF; there are p(n) + 2 occurrences of variables in I. Formula B
is more difficult to set up. In B we want to express facts like: machine M is in
exactly one state at time ¢. Thus we need a short formula which expresses the fact
that exactly one out of a set of variables is true. Let x1,...,z, be variables. Then

Ezactly-One(zy,...,xp) = At-Least-One(zy,...,zn) A
At-Most-One(xy,. .., zp),
and
At-Least-One(zq, ... ,zp) = (x1 VX2 V-V 2p),

and

Version: 19.10.99 Time: 11:14 -18-

6.4. The Satisfiability Problem is NP-complete 19

At-Most-One(xq, ..., xn) = —At-Least-Two(z1, - . ., xp)

== \/ (IE, /\.’Ej)

1<i<j<h
= AN @ivz)).
1<i<j<h

Formula Ezactly-One(zy,...,zp) is in CNF; there are exactly h + 2h(h — 1)/2 =

h? occurrences of variables in it. A truth assignment 3 of zi,...,z, satisfies
Ezactly-One(xy,...,zy) iff (x;) = 1 for exactly one i, 1 < i < h.
We define
B = /\ (Bstate (t) A Bposition (t) A Btape content (t) A Btransition (t))
0<t<p(n)
where

Bitate(t) = Ezactly-One(zy1,-- -, 2t,5)
Bposition (t) = Ezactly-One(ss1, -, 8¢ p(n)+1)
Biape content(t) = /\ Ezactly-One(atiq,--.,0t50) and

1<i<p(n)
Biransition(t) = Ezactly-One(by1,...,bt.m)-

B is clearly in CNF; there are (p(n)+1)-(s2+(p(n)+1)%2+p(n)-v?+m?) occurrences
of variables in B. An assignment v to the variables of a(x) satisfies B iff for every

t there is exactly one j with 1(z; ;) = 1, exactly one h with ¥(s;p) =1, Next
we define
T= N\ T@),
0<t<p(n)

where T'(t) expresses the fact that the transition from time ¢ to ¢t 4+ 1 is compatible
with the line of the Turing table selected by variables by 1, ..., bs m. Let

Zhys Ajy, Ziyy As Ry

IR

be the [-th line of the Turing table, 1 <1 < m, i.e., if M is in state Z;, and reads
symbol Aj,, then it can (M is nondeterministic) change its state to an’ print Ai;
and move the head by R; € {—1,0,+1} squares. Using this notation we define

()= N\ { N (566 V@iV asig) A

1<i<p(n) 1<j<v

/\ [(82, VgV 2o) A (863 Vb Va
B 1<i<m _
(8, Vb V zt+1’,~w) A (8t Vb V am,i’;l) A

(84, Vbey V sti1,i4m,)] ¢-

Version: 19.10.99 Time: 11:14 -19-

20 Chapter 6. NP-Completeness

Formula T'(t) needs some explanation. When is (s4; V @t,i,j V @t41,4,;5) true? It is
true if either s;; is true, i.e., M scans cell 7 at time ¢, or a;;; is false, i.e., the
content of that cell at ¢ is not A;, or a;41,;,; is true, i.e., the content of that cell
at t +1is A;. In other words, if s;; is false and ay; ; is true then a;;;; ; must be
true, i.e., if M does not scan the i-th tape square at time ¢ then the content of that
cell does not change. Similarly, when is (5;; V Et,l Voag;j,) true? Well, if s, ; is true
and by ; is true then a;; ;, must also be true, i.e., if M scans cell 7 at time ¢t and we
want to apply the /-th transition, then cell ; must contain 4;,, etc.

Formula T'(¢) is clearly in CNF, there are p(n) - (3v + 15m) occurrences of
variables in T'(¢). This completes the construction of formula a(z).

Lemma 1. Formula a(x) can be constructed in polynomial time given z, i.e., the
mapping © — a(z) is a polynomial time computable transformation.

Proof : Formula a(z) is clearly in CNF. There are p(n)+2+ (p(n)+1)- (s +(p(n)+
1)2 4+ p(n) - v2 + m?) + p(n)? - (3v + 15m) + s — r + 1 = O(p(n)*®) occurrences of
variables in a(z). If we write indices of variables in binary representation, i.e., a
single variable consumes space O(log p(n)), then the natural encoding of a(x) over
the alphabet {(,), A, V, =, s, 2,a,b,0,1} has length O(p(n)3-log p(n)). The structure
of formula a(z) is very simple; expression I depends on z in a very simple way, the
other parts B and T only depend on n = |z|. Thus a(z) can be constructed by a
TM in polynomial time.]

Next we have to formally relate z € L and the satisfiability of a(z).
Lemma 2. Ifx € L then a(x) is satisfiable.

Proof: If x € L then there is a sequence Cy,C1,...,Cpy,) of configurations such
that Co is the initial configuration of M for z, C; F C;41 for 0 < i < p(n), and the
state in Cp(,) is accepting. Define truth assignment 1 by

|1 if z is the state in Cy;
Y(zen) = {O otherwise,

Do) 1 if A; is the symbol on the i-th tape square of Cy;
atii) =3 o otherwise,

W(ses) = 1 if the i-th square is scanned in Cy;
b 0 otherwise,

1 if the I-th line of the Turing table of M is used
P(bs1) = in the transition from C; to Cii1;
0 otherwise.

It is a simple exercise to check that ¥ indeed satisfies a.]

Version: 19.10.99 Time: 11:14 -20-

6.4. The Satisfiability Problem is NP-complete 21
Lemma 3. If a(z) is satisfiable then « € L.

Proof: Let 1 be a truth assignment which satisfies a(x). Then ¢(B) = 1, also, and
hence for example ¥(Bitqate(t)) = (Ezactly-One(zt1,...,2t,5)) = 1 for all ¢. Thus
for every t there is exactly one k, say k(t), such that 1(z;) = 1. Similarly, for every
t there is exactly one ¢, say i(t), such that 9(s;;) = 1 and one [, say [(t), such that
(b)) = 1. Finally, for every ¢ and i there is exactly one j, say j(¢,7), such that
¥(at,,;) = 1. We conclude that the true variables define a configuration C; for every
t 1 2 is the state, Aj,1)Aj,2)--- Aj(tp(n)) 15 the tape content, and i(t) is the
position of the read/write-head. Assignment v also satisfies subformula I. Hence
k(0) =1, i(0) =1, j(0,1) = j1, 5(0,2) = jo, etc., where x = A;, A;,... . Thus Cy is
the initial configuration of M on input x. Next observe that 1 (zp(n),rV***V2p(n),s) =
1 and hence r < k(p(n)) < s. Thus the state in Cp(,) is accepting. We still have to
show C; F Ciy1 for 0 <t < p(n).

We also have 9(T'(t)) = 1. Thus 9 (ss,; V @44, V @s41,4,;) = 1 for all ¢ and j. In
particular for ¢ # i(t) and hence ¥(s;;) = 0 and j = j(¢,4) and hence 9(at;, ;) = 1,
we infer 9(as41,:,;) = 1. Thus the content of the i-th tape square is the same in
C; and Cyyq for ¢ # i(t), i.e., Cy and Cyyq differ at most in the vicinity of the tape
head. We also have for all 7 and [

V(81 Vb Vzg) A Voo YA A(-+-Vseq1,i+r,)) = 1.

Thus k(t) = ki, §(t,i(t)) = jiy, k(E+1) = ki), §(t + 1,i(t + 1)) = Gy, and
i(t +1) = i(t) + Ry). In other words: line I(t) of M’s Turing table is applicable to
C; and yields Cyy; when applied to C;. Thus Cyy; is a successor configuration of
C.

In summary, we have shown that there is an accepting computation of M on
input z, i.e., x € L. 1

Lemmata 1, 2 and 3 establish that L < SAT. Since L is arbitrary, we conclude
L < SAT for every L € NP.]

SAT is our first NP-complete problem. We will use it to show NP-completeness
of many other problems in the next section. Before doing so, we show that SAT
remains NP-complete if we confine ourselves to formulae having at most three
literals per clause.

Name: SAT(3).
Input: A formula « in CNF with at most three literals per clause.
Question: Is « satisfiable?

Theorem 2. SAT(3) is NP-complete.

Proof: SAT(3) € NP is trivial; we only have to show SAT < SAT(3); In order to
reduce SAT to SAT(3) we have to replace clauses of arbitrary degree by clauses

Version: 19.10.99 Time: 11:14 -21-

22 Chapter 6. NP-Completeness

having degree 3. Let 1 Vx2V---V &, be a clause. Let y1,...,y, be new variables.
Consider

a=@ V)N VT2 Vi) A A(Yno1 VTr V Fn) A Yn.

Claim: Let ¢ : {zy...2,} — {0,1} be a truth assignment. There is an extension
¢: XUY — {0,1} of ¢ with ¢(a) =1 iff p(z1 V---Vz,) =1

Proof: “<”: Assume ¢(xz1V---Vz,) = 1. Let ip be the least ¢ such that ¢ (z;) = 1.
Define

Y(z;) if z = z; for some j;
¢(z) =40 if z = y; for some j < ig;
1 otherwise.

Then ¢(a) =1 as the reader can check easily.

“=”: Let ¢ : X UY — {0,1} be a truth assignment with ¢(a) = 1. We have to
show ¢(z1 Vza V- -V x,) = 1. Assume otherwise. Then ¢(z;) = 0 for all 5. We
show ¢(y;) = 0 for all ¢ by induction on i. Since ¢(z1 V 1) = 1 we must have
¢(y1) = 0. Next, we infer from ¢(y; V 22 V §2) = 1 that ¢(y2) = 0. Similarly, we
conclude ¢(y3) = --- = ¢(yn) = 0 and hence ¢(a) = 0, a contradiction. 1

The reduction of SAT to SAT(3) is easy now. Replace any clause with more than
three literals by a set of clauses as described above.]

How about SAT(2)? Is it still NP-complete? No, SAT(2) is in P (Exercise 6).

6.5. More -complete Problems

We extend our list of NP-complete problems and show NP-completeness of Clique,
(0,1)-Integer Programming, Vertex Cover, Hamiltonian Cycle, Traveling Salesman,
3-dimensional Matching, Knapsack, Scheduling Independent Tasks and Precedence
Constrained Scheduling.

Name: Clique.

Input: Undirected graph G = (V, E) and integer k.

Question: Is there a clique of size k in G, i.e., is there V! C V with |V’| = k and
(v,w) € E for all v,w € V'?

Theorem 1. Clique is NP-complete.

Proof: Clique € NP was shown in the introduction. We complete the proof by

showing SAT(3) < Clique. Let a = ¢; A--- A ¢y be a formula in CNF with at most
three literals per clause. Let ¢; = xf”ll V xﬁ’zz V wﬁ’gs where §; 5, € {0,1} and 2!

denotes = and z° denotes Z. We construct an undirected graph G = (V, E) with
V:{v,,h,lgzgk,lghgi’)}
and (vip,vj,m) € E iff i # j and (2in # Tjm o Bih = Bjm), L€, if v; and vj

are not complements of each other.

Version: 19.10.99 Time: 11:14 —-22-

6.5. More NP-complete Problems 23

Claim: « is satisfiable iff G has a clique of size k.

Proof: “=”: Let % be truth assignment with ¢¥(a) = 1 and hence ¥(c;) = 1 for
all 4, 1 <4 < k. For every i there must be h, say h(i), such that ¢(z; B, h(”) 1.
Let V' = {v; n5); 1 <4 <k}. Then V' is a clique of size k.

“<": Let V! C V be a clique of size k. Since (v;p,vjm) € E implies i # j
we conclude that V' = {v; 5¢;); 1 < ¢ < k} for some function h. Define truth
assignment 1 by

1 if £ = x; p(;) for some i and B; p(;) = 1,
P(x) = { 0 if 2 = x; p(;) for some i and f; ;) = 0,
arbitrary otherwise.

¥ is well-defined. If (z) were not well-defined then there would have to be 7 and
J, @ # j, such that * = x; ;) = ;) and Bi @) # Bj,n(j)- However, this implies
(vini), v5,n()) ¢ E, contradlctlon Thus 1 is well defined. Also ¢(zﬂ’h’(‘;”) =1 for
all ¢ and hence ¥(a) = 1

It is easy to construct G from « in polynomial time. Thus SAT(3) < Clique. 1

Name: (0, 1)-Integer Programming (IP).
Input: Integer matrix C and integer vector d.
Question: Is there a (0, 1)-vector ¢ such that C-¢>d?

Theorem 2. (0,1)-Integer Programming is NP-complete.

Proof: TP € NP is obvious; guess vector ¢ nondeterministically and check C-c¢ > d.
We show SAT < IP. Let a = 21 A--- A z; be a formula in CNF and let z4,...,2,
be the variables occurring in a. Define C and d as follows: C = (Cjj)1<i<k,1<j<n
and d = (d;)1<i<r where

1 if Z; occurs in z;;

1 if z; occurs in z;;
Crj=14—
0 otherwise,

and
d; = 1 — 4 of variables z; with Z; occurs in z;.

Claim: « is satisfiable iff there is a (0, 1)-vector ¢ such that C - ¢ > d.
Proof: “=”: Let 1 be an assignment with (a) = 1. Define ¢; = 9(z;) for all j.

Then n
_ ZC” ¢j = Z P(zj) — Z P(z;)
j=1 T;€2; Zj€2;
Tj€EZ;

since there is either z; € z; with ¢(z;) =1 or Z; € z; with ¢(z;) = 0.

Version: 19.10.99 Time: 11:14 —-23-

24 Chapter 6. NP-Completeness

“<”: Let ¢ be a (0,1)-vector with C - ¢ > d. Define the truth assignment i by
YP(z;) = c;. We claim 9(a) = 1. Assume otherwise. Then there must be an ¢ such
that 9(z;) = 0; in particular ¢(z;) = ¢; = 0ifz; € z; and Y(z;) = ¢; = 1if Z; € 2;.

Hence
d; <(C-c)i = ch_ ch:_ Z 1 <d;,

T;E€EZ; Tj€E2; Zj€EZ;

contradiction. Thus ¢(a) = 1. 1

The observation that C' and d can be computed in polynomial time finishes the
proof that SAT < IP.]

Name: Vertex Cover (VC).

Input: Undirected graph G = (V, E) and integer k.

Question: Is there V! C V| |V'| = k such that for every edge (v,w) € E at least
one fo v and w belongs to V'?

Theorem 3. Vertex Cover is NP-complete.

Proof: VC € NP is obvious. We show Clique < VC. Let G = (V,E) be an
undirected graph and let k be an integer. Let G = (V, V xV —E) be the complement
of G and let k = |V| — k. Then V' is a clique in G iff V — V"' is a vertex cover
of G. Thus G has a clique of size k iff G has a vertex cover of size k. The mapping
G — @ is clearly computable in polynomial time.]

Name: Directed Hamiltonian Cycle (DHC).

Input: Directed graph G = (V, E).

Question: Is there a simple cycle in G which goes through all vertices, i.e., is there
a sequence vy, - - ., V1 With v; # v; for i # j and (v, V(i+1) moan) € E
for0<i<mn,n=|V|?

Theorem 4. Directed Hamiltonian Cycle is NP-complete.

Proof: Throughout this proof we will write undirected edges as sets of their end-
points in order to distinguish them from directed edges. DHC € NP is obvious. We
show VC < DHC. Let G = (V, E) be an undirected graph and let k£ be an integer.
For every node v; let e;1,€;2,...,e;n, be the edges incident to v;. We construct a
directed graph G' = (V', E’) by

V' ={a1,...,a} U{(3,j,a); 1 <i<n,1<j<h;,ac{0,1}}

Version: 19.10.99 Time: 11:14 —-24-

6.5. More NP-complete Problems 25

and
={(a,,(3,1,0)); 1 <r <k,1<i<n}U

{((5,4,0), (4,4,1)); 1 <i<n,1<j<hju
{((,5,1),(5,7 +1,0)); 1 <i<n,1<j <h}U
{((3, h,,l) r); 1<i<n,1<r<k}u
{((G,
{((

,0),(#',7',0)); eij = {vi,vir} and ey = {vir, v; yeup
,j 1) (Z,j, 1)); €ij = {Ui,’l}il} and €irgr = {’U,’I,Ui}CT‘

(110) — (111)

[

(210) — (211) — (220) — (221)

I

(310) — (311) — (320) — (321)

I

(410) —> (411)

Figure 3. Example for proof of Theorem 4

Figure 3 illustrates the construction for v = {v1,v2,vs,v4}, E = {{v1,v2}va, v2}vs,v4}}}
and k = 2. We have ey1 = {va, v1}, €2z = {v2,v3}, es1 = {vs,v2} and e3a = {v3,v4}.
Nodes a; and a3 are not drawn. Vertex cover {vy,v3} of G corresponds to the Hamil-
tonian path a1, (110), (210), (211), (111), az, (310), (220), (221), (311), (320), (410),
(411), (321), a1 in G'.

Claim: G has a vertex cover V C V of size k iff G' has a Hamiltonian cycle.

Proof: “=": Let V = {v;,vi,,-..,v;,} be a vertex cover of G of size k. We
construct a Hamiltonian cycle in G’ inductively. We start in vertex a; and go to
(1,1,0) first. Suppose now, that we reached vertex (i1, j,0).

Case 1: e;,; = (vi,,vir) and vy ¢ V.
Then we proceed (il,j, 0) N (i',j',O) N (i',jl, 1) N (il,j, 1), Here €irjl = €j,j-

Case 2: e;,; = (v;,vyr) and vy € V.
Then we proceed directly to (i1, j,1).

We have reached vertex (iq,j,1) by now. If j + 1 < h;, then we proceed to (i1, +
1,0), otherwise we proceed to az. From ay we go to (i2,1,0), In this way we
construct a Hamiltonian cycle in G’.

Version: 19.10.99 Time: 11:14 —25—

26 Chapter 6. NP-Completeness

“<”: Suppose that G’ has a Hamiltonian cycle C. We note some properties of C
first.

— (44,0) ——> (,5,1) ——>

ol

—>(i,7j170)—)(ilaj’71) >
Figure 4. Fundamental square of G’

Consider one of the squares as depicted in Figure 4and assume that C enters
the square through the left upper corner, i.e., through vertex (i,7,0). Then it
leaves the square through one of the right corners. If C' leaves the square through
the right lower corner, vertex (¢’,j’, 1), then either (¢, 4,1) or (¢/,',0) is not on C,
a contradiction. Hence C leaves the square through vertex (i,7,1). Thus the four
corners of the square are traversed in one of the two following ways.

—(O—(O—

—(O—(O—

Figure 5. The 2 possibilities to traverse a square

C goes through vertices ai,...,a;. The edges emanating from a,, 1 < r < k,
end in vertices (%,1,0), 1 <i < n. Let (4,,1,0) be the node following a, in cycle C.
We show that V = {vi,; 1 <r <k} is a vertex cover of G.

C goes from a, to (i,,1,0). The argument above shows that the subsequent
vertices on C are essentially the vertices (i, j,0), (¢,4,1), 1 < j < h;,. However,
between (i,,7,0) and (i,4,1) there is possibly a detour to nodes (i’,j’,0) and
(¢',7',1) for some #', 5.

It is now easy to show that V is a vertex cover. Let e € E be arbitrary, say
e = (v;,vi). Consider the square corresponding to e. It is traversed in one of the
two possible ways described above. In the first case vertex v; is in 17, in the second
case v; and vy are in V. 1

Of course, it is easy to construct from a given undirected graph G = (V, E) the
directed graph G’ = (V’, E') in polynomial time, and hence VC < DHC. |

Name: Undirected Hamiltonian Cycle (UHC).

Input: Undirected graph G = (V, E).

Question: Is there a simple cycle going through every node, i.e., is there a sequence
V0, ---,Vp_1 such that v; # v; for i # j and (vi,v(i4+1) moa n) € E for
0<i<n,n=|V|?

Version: 19.10.99 Time: 11:14 —26—

6.5. More NP-complete Problems 27

Theorem 5. UHC is NP-complete.

Proof: We show DHC < UHC. Let G = (V,E) be a directed graph. Construct
undirected graph G’ from G by replacing every vertex v as shown in Figure 6.

>;v/' ~- -

— V1 V2 V3

Figure 6. Transformation of DHC into UHC

There is a one-to-one correspondence between Hamiltonian cycles of G and G’
because in G’ a cycle must enter through v; (or v3) then go to vy and then continue
to vs (or v1). this transformation is computable in polynomial time. 1

Name: Symmetric Traveling Salesman Problem with Triangle Inequality (ATSP)J

Input: A matrix dist : [0...n—1]2 — N and integer D. Matrix dist is symmetric
and satisfies the triangle inequality, i.e., dist(z, j) + dist(j, k) > dist(i, k)
for all ¢, j and k.

Question: Is there a tour of length at most D, i.e., a permutation IT of [0..n — 1]
such that

nE_: dist(I1(2),TI((+ 1) mod n)) < D ?
i=0

Theorem 6. ATSP is NP-complete.

Proof: We show UHC < ATSP. Let G = (V,E) be an undirected graph with
V =1[0..n—1]. We define

dist(, 7) = {

and D = n. Then G has a Hamiltonian cycle iff dist has a tour which uses only
edges of length 1 iff dist has a tour of length n. Also matrix dist can be computed
in polynomial time.]

1 if (i,j) € E;
2 otherwise

Name: 3-dimensional Matching (3DM).

Input: Sets X, Y, Z of equal cardinality and a relation U C X x Y x Z.

Question: Is there U’ C U, |U'| = |X|, which covers all elements of X UY U Z,
ie,Vwe XUY UZ Ju € U’ such that u = (w, ,)oru = (,w,) or
u=(, ,w)?

One can think of X as boys, Y as girls, Z as houses and U as the compatibility
relation between boys, girls and houses. The question is to find a complete (or per-
fect) matching. The corresponding 2-dimensional problem is equivalent to finding
complete matchings in bipartite graphs. It can be solved in polynomial time, see
Chapter 4.

Version: 19.10.99 Time: 11:14 —27-

28 Chapter 6. NP-Completeness
Theorem 7. 3DM is NP-complete.

Proof: 3DM is obviously in NP. We show SAT(3) < 3DM to prove completeness
of 3DM. Let @ = Cy A Cy A --- A Cg—1 be an instance of SAT(3) in variables
Z1,...,Z,. We will construct an instance I of 3DM such that « is satisfiable iff T
has a solution. The set U of triples is logically divided into three groups which we
will now specify. The tiles in the first group are used to select a truth assignment,
the tiles in the second group are used to check for satisfaction and the tiles in the
third group perform garbage collection.

Group 1: Selecting a truth assignment.
For every variable z;, 1 < i < n, we have 2k triples

{(aij, iz, bi5), (@i (j+1) mod k> Tij» bij); 0 <7 < k}.

There will be no other triples containing points a;; and b;;, 1 <i<n, 0<j <k.
The triples in group 1 can be visualized as in Figure 7.

i1

Figure 7. Triples or group 1 for z;, where k = 3

There are exactly two ways of covering points a;j, b;;, 0 < j < k, using the
triples in group 1. One leaves all points z;; exposed and covers all points Z;;,
0 <j <k, ie., x; is assigned true, and the other one leaves all points Z;; exposed
and covers all points z;;, 0 < j <k, i.e., x; is assigned false. In this way, the triples
in group 1 fix a truth assignment.

Group 2: Checking for satisfaction.

For every clause C;, 0 < j < k, we have triples (C’},lj,C]?) for every literal [
appearing in clause Cj, i.e., we have either one, two or three triples for clause Cj.
There are no other triples containing points C’} and C]?. Suppose now that the tiles

Version: 19.10.99 Time: 11:14 —28—

6.5. More NP-complete Problems 29

in group 1 have already been placed. Then points Cj and C} can be covered iff
there is some ¢ such that z;; (or Z;;) appears in C; and is left exposed by the tiles
in group 1. Thus points C}, C’f, 0 < j < k can be covered iff the truth assignment
specified by the triples in group 1 satisfies a.

Group 3: Garbage collection.

At this point we construct an instance I of 3DM from «a having the following
property. If a is unsatisfiable then there can be no complete matching in I. If « is
satisfiable then there is a way to select the triples in groups 1 and 2 so that points
aij, bij, C; and C7 are all covered and that exactly n-k —k = (n — 1) - k of the
points x;;, T;; are uncovered. Thus in group 3 we add triples

{(hes2ijy ar), (B, Tijygr); 1<7 < (n—1)-k,1<i<n,0<j <k}
which allow us to complete the covering.

It is now easy to see that the instances I(a) of 3DM defined above can be indeed
constructed in polynomial time given a and that « is satisfiable iff I(«) allows for

a complete matching. This shows SAT(3) < 3DM. 1
Name: Knapsack.
Input: A set ay,...,a,,b of integers.

Question: Is there a J C {1,...,n} such that >, ;a; = b7
Theorem 8. Knapsack is NP-complete.

Proof: Knapsack is apparently in NP. We show 3DM = Knapsack to prove
completeness. Let X = {x1,...,24}, ¥ = {y1,-..,y4}, Z = {#1,...,%,} and
UCX XY xZ, |U|l =m, be an instance of 3DM. We construct an instance of
Knapsack from it. For every triple u; = (z;,y;,2x) € U define integer a; by

a; = 25(2q+i—1) + 2s(q+j—1) + 23("7_1)

where s = [1 4 logm], i.e., the binary representation of a; consists of 3¢ blocks,
the first g blocks representing points in X, the second ¢ blocks representing points
in Y and the last g blocks representing points in Z. A block is s = 1+ [logm]| bits
long and either contains (the binary representation of) integer 0 or 1 depending on
whether the corresponding point belongs to the triple or not. Finally let

3q
b= Z 2s(—1)
j=1

i.e., every block of b contains integer 1. Next note that if U’ C U is a solution
of 3DM then b = ZuzGU’ a;. However, if U’ C U is not a solution of 3DM then
b# >, cvra This follows from the fact that |[U'| < [U| = m and hence the one’s
in any block can add up to at most m < 2°. Thus there can be no overflow from
one block to the next. Also, the transformation is computable in polynomial time.
|

Version: 19.10.99 Time: 11:14 —-29—

30 Chapter 6. NP-Completeness

It is worthwhile to take a closer look at the problem instances of Knapsack con-
structed in the proof of Theorem 8. We showed NP-completeness of Knapsack by
a two-step reduction:

SAT(3) < 3DM =< Knapsack.

Suppose that we start out with a formula including & clauses in n variables. From
this we construct instances of 3DM with ¢ = |X| =1|Y| = |Z| =2n-k and m =
U < 2n-k+3k+2-(n-k)? < g% The reduction of 3DM to Knapsack then
yields m + 1 = O(q?) numbers of length at most 3¢ - (1 + [logm]) = O(qlogq).
Thus a problem instance obtained in this way has length L = O(¢> log q). However,
b= (2237 —1)/(2¢ — 1) = Q(291°89) = Q(2L1/3), i.e., the numerical value of b is
exponential in the size of the problem instance. The very large value of b is intrinsic
to NP-completeness as we will see in the next section on dynamic programming.
We will show there that Knapsack can be solved in time O(n - b).

Name: Scheduling Independent Tasks (SIT).

Input: A sequence (t4,...,t,) of time requirements for n jobs, t; € N, a number
m € N of machines and a deadline T

Question: Is there a schedule S : [1..n] — [1..m] such that for every j € [1..m]
Zies—l(j) t; < T, ie., is it possible to distribute the jobs onto the ma-
chines such that all jobs are finished before time 7'7

Theorem 9. Scheduling Independent Tasks (SIT) is NP-complete.

Proof: SIT € NP is obvious. We show Knapsack < SIT. Let ay,...,a,,b be an
instance of Knapsack and let ¢ = a1 + a2 + --- + a,. We may assume w.l.o.g. that
¢ > 2b. Consider the following instance of SIT: ai,as,...,a,,c — 2b are the time
requirements on 1 + 1 jobs, m = 2 and T' = ¢ — b. If the instance of Knapsack has
a solution J, then the assignment of the jobs in J and of the jobs with cost ¢ — 2b
to machine 1 and of all other jobs to machine 2 is a solution to the instance of SIT.
Conversely, let S : [1..n+ 1] — {1,2} be a solution of SIT. Assume w.l.o.g. that
S(n+1) =1 Let J=S"1(1)N[1..n]. Thenc—b=T =c—2b+ ;s and
hence J solves the instance of Knapsack.]

The proof of Theorem 9 actually shows a stronger result than claimed. Scheduling
Independent Tasks remains NP-complete for any fixed number m > 2 machines.

Name: Precedence Constrained Scheduling (PCS).

Input: A number n € N of unit-cost jobs, a number m € IN of machines, a
deadline 7' € N and a precedence relation R on the jobs, i.e., ([1..n], R)
is an acyclic digraph.

Question: Is there a schedule S : [1..n] — [1..T] such that |S™1(t)] < m for all ¢
and (i,j) € R= S(i) < S(j) for all 4,5 ?

Version: 19.10.99 Time: 11:14 -30—-

6.5. More NP-complete Problems 31

Theorem 10. Precedence Constrained Scheduling (PCS) is NP-complete.

Proof: PCS € NP is obvious. We show Clique < PCS. Let G = (V,E) be an
undirected graph without isolated vertices and let k& € N be an instance of Clique.
We construct an instance I of PCS from it with deadline 7' = 3 such that there is a
feasible schedule iff G has a clique of size k. The jobs in I consist of 5 groups: the
vertices V of G, the edges E of G, and three non-empty sets of fill-in jobs F}, F5, F3,
ie., n=|V|+ |E|+ |Fi| + |F2| + |F3|. Furthermore

R=F X FUF, x F3UV x F3U{(v,e); v € V,e € E and v is incident to e}.

In a feasible schedule all jobs in F; are executed at time 7, 1 < 7 < 3. Also only
vertices and no edges are executed at time one and all vertices must be executed
before time three. We complete the construction by choosing |F;|, 1 < i < 3, and
m appropriately:

|F1| Z 1, |F2| Z 1, |F3| Z 1, and
m=k+|Fl=n—k+k (k—1)/2+|F| =|E|— k- (k—1)/2 + |F].

It is easy to see that |F}|, |F>| and |F3| exist. We still have to relate the existence
of a clique of size k in G with the existence of a schedule of length 3. Note first that
there are exactly 3m jobs, i.e., in a schedule of length 3 all machines must be busy
at all times. Next note that a feasible schedule has to schedule exactly k vertices,
say V' C V, at time one and the remaining n — k vertices at time two. Hence a
schedule of length three exists iff exactly k- (k — 1)/2 edges can be scheduled at
time two. However, only edges between nodes of V' can be scheduled at time two
and there are at most |V'|-(|V'|—1)/2 = k- (k —1)/2 of them. The equality holds
iff V' is a clique of size k. |

Again the proof of Theorem 10 actually shows a somewhat stronger result. PCS
remains NP-complete if only instances with deadline T' = 3 are considered.

Version: 19.10.99 Time: 11:14 -31-

32 Chapter 6. NP-Completeness
6.6. Solving NP-complete Problems

We have seen that NP-complete problems are probably very difficult to solve. Nev-
ertheless, they occur frequently and have to be solved in practice. What can we
do? There are several useful approachs.

a) Special cases: Reexamine the problems at hand. Do you really want to solve
the NP-complete problem in its full generality, or is it (good) enough to solve
a special case? The special case might have a polynomial time solution. Prece-
dence Constrained Scheduling is a good example. At least the following special
cases of PCS are in P: The case of only two processors and the case of the
precedence relation being a forest.

b) Dynamic Programming and Branch-and-Bound are two problem solving tech-
niques which can be applied to most NP-complete problems. In this section
we treat these techniques in detail. Both techniques are essentially clever vari-
ants of exhaustive search. Dynamic Programming yields surprisingly efficient
algorithms for some problems, e.g., Knapsack; Branch-and-Bound uses lower
bounds on the cost of optimal solutions to guide the search.

c) Probabilistic analysis can sometimes show that the complicated instances of
an NP-complete problem are quite rare. It is therefore possible to design
algorithms with good expected running time. Of course, the problem of justi-
fying the probability distribution postulated on the problem instances always
remains.

d) Approximation algorithms can sometimes yield very good solutions in little
time. Section 6.7 is devoted to approximation algorithms.

e) Heuristics: Finally there is still room for heuristics, i.e., for algorithms which
seem to work well in practice but for a reason nobody understands.

6.6.1. Dynamic Programming

Dynamic Programming is a clever form of exhaustive search. We illustrate the
method on two examples: TSP and Knapsack.

Consider an instance dist : [0...n — 1]> — N of TSP. Naive exhaustive search
has to test n! possibilities. Dynamic programming allows us to cut down that
number considerably, although it is still necessary to test an exponential number
of candidates. We construct iteratively optimal tours through k cities, k = 1,2, 3,
... . Since every tour has to go through city 0 we start our tours w.l.o.g. in city 0.
For SC[l..n—1] and ¢ € S let C(S,i) be the minimal length of any tour which
starts in city 0, goes through all cities in .S and ends in city 7. Then

C({i},i) = dist(0,i) for1<i<n-—1

Version: 19.10.99 Time: 11:14 -32—

6.6.1. Dynamic Programming 33

and
C(S,i) = kexgi_rii}[C(S —{i}, k) + dist(k,1)]

for |S| > 2. The length of the optimal tour is given by min{C([1..n — 1],i) +
dist(i,0), 1 < i < n — 1}. The optimal tour itself is also easily constructed. One
only has to store the value of k& which defines C(S, i) together with C(S,¢). Then
the optimal tour can be constructed in a second pass over the matrix of C(S,1)’s.
The total cost of this algorithm is

0(n—1+j§:—;1 (”;1>-l Coa-1)

N——r

~————"_ . Number of k’s
Number of C(S, 1)

with |S| =1

= 0((n—1)(n—2)-2"% + (n—1)).

Thus dynamic programming reduces the number of candidates to be tested from
N!to n? -2, a drastic improvement.

Another illustrative example is Knapsack. Let aq,...,a,,b be an instance of
Knapsack. Define bitvector BJ0.. b] by:

B[s] = { 1 ifs= 2?21 a; - x; for some (z1,...,x,) € {0,1}";
0 otherwise.

Vector B can be computed in time O(n - b) by Program 5.

B[0] < true; BJ[s] + false for 1 < s < b;

for alli € [1..n]

do co B[s]=1iff s = Z;;ll aj - x; for some (z1,...,z;—1) € {0,1}*~! oc
for s from b step -1 to z;
do if B[s — z;] then B([s] < true od;

od.

Program 5

Theorem 1. Knapsack can be solved in time O(n - b).
Proof: The algorithm given above solves Knapsack in time O(n - b). |

What happened? The simple algorithm above solves Knapsack in polynomial time
hence establishes P = NP. Is the entire chapter a fraud? No! Running time is
polynomial in the value of b but not in the length of the binary representation
of b. At this point the reader should go back to the remark following Theorem 6
of Section 6.5. There we argued that the reduction of 3DM to Knapsack generates

Version: 19.10.99 Time: 11:14 -33-

34 Chapter 6. NP-Completeness

problem instances of Knapsack where b is exponential in the size of the instance.
Hence the dynamic programming algorithm for Knapsack has running time expo-
nential in the size of the input. Nevertheless, Theorem 1 is interesting from a
practical point of view, because it seems to be the case that in “realistic” instances
of Knapsack the a;’s and b are bounded by a polynomial in n. The special case of
such instances can be solved in polynomial time by dynamic programming. This
phenomenon is so interesting that it deserves its own name.

Definition:

a) Let I be an instance of some algorithmic problem, typically I is a set of graphs,
integers, sets, Then number(I) is the largest integer occurring in I.

b) An algorithm for a combinatorial problem is pseudo-polynomial if its running
time on instance I is polynomial in size(I) and number(I). 1

We can now rephrase Theorem 1. Knapsack has a pseudo-polynomial algorithm. So
have weighted Knapsack and Scheduling Independent Tasks for every fixed number
of machines (Exercises 15 and 16). A pseudo-polynomial algorithm is very useful.
Whenever the problem instances contain only small numbers, i.e., number(l) <
p(size(I)) for some polynomial p, then a pseudo-polynomial algorithm is indeed an
algorithm with polynomial running time. Does every NP-complete problem have a
pseudo-polynomial algorithm? The answer is “No” provided that P # NP.

Definition: An NP-complete problem is strongly NP-complete iff it remains
NP-complete when integers are coded in unary form.]

When we introduced NP-complete problems we were not very specific about encod-
ings. However we put forth one principle: Integers are coded in binary (or decimal)
notation, i.e., the representation of integer n has length logn. If we code integer
n in unary representation, i.e., as a sequence of n ones, then the representation of
n has length n. A strongly NP-complete problem is NP-complete even when we
use this very redundant encoding of integers. Most of the problems in Section 6.5
are strongly NP-complete because these problems do not involve numbers at all or
only in an inessential way. Examples are SAT, 3DM, Clique (note that we may as-
sume k < |V| w.lo.g.), VC, DHC, UHC, PCS and ATSP (note that all edges have
length one or two in the problem instances constructed in the NP-completeness
of ATSP). Strongly NP-complete problems do not have pseudo-polynomial algo-
rithms provided that P # NP.

Theorem 2. If a strongly NP-complete problem has a pseudo-polynomial algo-
rithm, then P = NP.

Proof : If integers are coded in unary form then number(I) < size(I) for all in-
stances I. Hence a pseudo-polynomial algorithm is a polynomial algorithm in the

usual sense.]

Version: 19.10.99 Time: 11:14 -34-

6.6.2. Branch and Bound 35

SAT, 3DM and Clique are not very interesting strongly NP-complete problems
because numbers do not play a crucial role in these problems. A more interesting
example is provided by:

Name: 3-Partition.

Input: Integers cy, ..., c3, such that B/4 < ¢; < B/2 for all i,
where B = (¢1 + -+ - + ¢3p) /1.

Question: Is there a partition T1,...,T, of {1,...,3n} such that > 5. ¢; = B for
all 47]

Theorem 3. 3-Partition is strongly NP-complete.

Proof: The proof is by a lengthy reduction from 3DM and can be found in M.R.
Garey/D.S. Johnson: Complexity Results for Multiprocessor Scheduling under Re-
source Constraints, SICOMP 4 (1975), 397-341. 1

Note that in any solution of the 3-Partition problem all sets T; must have cardinality
exactly three. Hence finding a solution to Scheduling Independent Tasks with 3n
jobs of time requirements ci,...,cs,, deadline T = 3 and m = n machines is
equivalent to 3-Partition. Thus SIT is strongly NP-complete.

6.6.2. Branch and Bound

Branch and Bound is another variant of exhaustive search. The branch step corre-
sponds to exhaustive search. However, the feasible solutions generated in the branch
step are not searched in arbitrary order. Rather, easily computable bounds on the
cost of an optimal solution are used to direct the search for an optimal solution.
More concretely, let Iy be an instance of a minimization problem. In a branch step
we generate from I simpler instances Iy, ..., Iy of the same problem such that:

1) Every feasible solution L of I;, 1 < i < k, corresponds to a feasible solution g;(L)
of Iy and {g;(L); 1 <i < k and L is a feasible solution of I;} is the set of all feasible
solutions of Iy. The g;’s are very often the identity function. The branch step splits
problem I into subproblems Iy, ..., Ix.

2) For every I;, 1 <i < k, one computes a lower bound C; on the cost of solutions
gi(L) of Iy where L is a feasible solution of I; (bound). Then the cost of an optimal
solution of Ij is at least max{C;; 1 < i < k}. The next branch step is applied to
the node with the least C-value.

Branch and Bound steps are iterated until an instance I is obtained such that the
feasible solutions for I can be computed directly in little time and such that I has
a feasible solution L for which the cost of g(L) is not larger than the C-values of all
unexpanded subproblems. Then L is an optimal solution. Branch and Bound is very

Version: 19.10.99 Time: 11:14 -35—-

36 Chapter 6. NP-Completeness

similar to finding least cost paths in directed graphs. This relation is formulated in
Exercise 17.

We take the Traveling Salesman Problem as a concrete example. We need a
lower bound on the cost of an optimal tour first. Since every city has to be entered
and left on an optimal tour

n—1
min dist(z,) + min dist(j,1))/2
;(#0 (i,) + min dist (j,)/

is a lower bound on the cost of an optimal tour. Consider the following instance on
four cities A, B, C, D. Function dist is given by matrix

n—tl—lﬂkg o

D
7
6
3

00

QW
o8 w
o8 wn Q

City A has to be left somehow. It is either left on the road to C (the city closer
to A) or it is not left on the road to C. We can thus generate the following
subproblems I; and I, from I;. In I; we make sure that road AC is taken by
setting AB < AD < oo. Since C cannot be entered twice on an optimal tour we
can also change BC and BD to infinity. In I, we make sure that road AC is not
taken by changing its length to co. We obtain

o o0 2 o
7 4 o0 oo 6
17l o 1 o 3
1 6 oo oo
bound =(2+4+1+1+14+14+2+3)/2=75
and
oo 3 oo 7
I — 4 oo 3 6
2711 1 oo 3
1 6 6 o
bound = (3+3+1+1+14+1+3+3)/2=38

Subproblem I; has the smaller bound. Thus I; is branched in the next step. We
can continue from city C to either B or to another city. This step generates the
subproblems I3, where we make sure that CB is taken (and hence CD, AB and
DB cannot be taken) and I, where we make sure that C'B is not taken.

Version: 19.10.99 Time: 11:14 -36—

6.6.2. Branch and Bound 37

oo 0o 2 o
o oo oo b6
I =
o 1 oo o
1 oo oo o©
bound = (2+6+14+14+1+1+12+6)/2=10
and
oo 00 2 o
4 oo 3 6
I, =
oo oo oo 3
1 6 6 oo

bound = (2+3+3+1+1+6+2+3)/2=105.

At this point we know that all solutions of I3 (I;) have length at least 10 (10.5) and
hence all solutions of I; have length at least 10. Thus I is branched in the next
step. If we continue in this way we generate the following tree of subproblems. The
edges labels in this tree indicate the edge which was either chosen or excluded and
the node labels indicate the bound (cf. Figure 8).

Iy
/ 24e
I1(7.5) L(8)
o8 N an s N
I3(10) I,(7.5) I5(11.5) I5(9)

Figure 8. Branch-and-Bound tree

Subproblems I and I3 allow only one tour each, namely A - C —- B — D —
Aand A - B - C — D — A of cost 10 each. Any feasible solution to the other
subproblems has cost larger than 10. Thus the two tours given above are the only
optimal tours. Qur simple branch and bound algorithm can be improved in at least
two ways:

a) Better lower bounds direct the search more directly towards optimal solutions.
So far we only made use of the fact, that every city has to be entered and left at
least once. The additional requirement that every city is entered and left exactly
once considerably improves the lower bound in many cases. A solution to that
problem (called weighted matching) can be found in polynomial time (cf. 6.7.3); it
consists of a set of cycles in the graph.

Version: 19.10.99 Time: 11:14 -37-

38 Chapter 6. NP-Completeness

b) Improving the branch step. So far we included or excluded an arbitrary edge in
the branch step. The improved lower bound suggests an improved strategy. Take a
cycle of minimum length given in the solution to the matching problem and generate
subproblems by excluding one of the edges of the cycle.

Branch and bound techniques are very often a drastic improvement on pure ex-
haustive search. Nevertheless, it is easy to show that our simple approach still has
exponential running time (Exercise 18). Even branching by itself can sometimes
yield reasonable algorithms.

Theorem 4. Let G = (V, E) be an undirected graph and let sopt be the size of
an optimal vertex cover. Then a vertex cover of size sopt can be found in time

O(2*°7*| B).

Proof: Note first that at least one of the two endpoints of any edge is in any optimal
cover. This suggests the following simple algorithm. Take any edge (v, w) of G and
generate two subproblems. In the first subproblem node v is added to the cover
and all edges incident to v are deleted from the graph; in the second subproblem
node w is added to the cover and all edges incident to w are deleted from the graph.
Generate the tree of subproblems breadth-first. Then a tree of depth sopt with 2°P¢
nodes is generated. In every node we spend time at most O(|E|). 1

Theorem 4 describes an algorithm whose running time is polynomial in problem
size and exponential only in the size of the solution. Hence such an algorithm is
very useful if we know in advance that the problem instance at hand has a small
solution. A similar phenomenon holds true for cycle cover (Exercise 19).

Version: 19.10.99 Time: 11:14 -38—

6.7. Approximation Algorithms 39

6.7. Approximation Algorithms

Many NP-complete problems are naturally formulated as optimization problems. In
fact, the Traveling Salesman Problem had to be artificially formulated as a language
recognition problem. Similarly, Scheduling Independent Tasks can be formulated as
an optimization problem, and this even in two ways. Given a set tq,...,%, of time
requirements of n jobs we can either fix the number m of machines and ask for the
minimal deadline or we can fix the deadline and ask for the minimal number of ma-
chines. The latter problem is usually called bin packing. In the preceding section we
studied dynamic programming and branch-and-bound algorithms for finding opti-
mal solutions. Although these algorithms were more efficient than pure exhaustive
search their running time was still exponential. It is then natural to search for
approximation algorithms which yield nearly optimal solutions in little time. In
Section ITI.4 we described linear time algorithms for finding nearly optimal binary
search trees; in contrast, the best known algorithm for optimum trees had quadratic
running time. The savings are even more substantial in the case of NP-complete
problems. We describe approximation algorithms for various NP-complete prob-
lems. The first example is the Traveling Salesman problem with triangle inequality
(ATSP). A very simple algorithm always produces a tour of length at most twice
the length of the optimum tour. It has running time O(n?). An improved algorithm
with running time O(n?*) always finds a tour of length at most 3/2 the length of
the optimum tour. No better approximation algorithm for ATSP is known. It is
useful to introduce some additional terminology at this point.

Definition: Let (Q,C) be a polynomial bounded minimization problem, in par-
ticular @ C £* x ¥* and ¢ : £¥* x ¥* — N (cf. 6.2). An algorithm A, which
computes a mapping f4 : ¥* — X* from problem instances to feasible solutions, is
a g-approximate algorithm if

(I, fall)) — eI, fopt(1))
(I, fopt(I))

< g(e(I, fopt(1)))

for every problem instance I. Here f,,; : ¥* — ¥* maps instances to optimal
solutions and g : N — R is some function.]

In this terminology, we described a g(z) = (2/z)-approximate algorithm for op-
timum search trees in Section ITI.4 and will describe a g(z) = 0.5-approximate
algorithm for ATSP in 6.7.1.

The situation is even better for Scheduling Independent Tasks when we want to
minimize the deadline. We describe an (1/3)-approximate algorithm with running
time O(nlogn) first and then improve it to an e-approximate algorithm for any
€ > 0. The running time of the e-approximate algorithm is O(n logn + m(m=1/¢),
a polynomial in n for any fixed e.

Version: 19.10.99 Time: 11:14 -39—

40 Chapter 6. NP-Completeness

Definition: A polynomial time approximation scheme for a minimization
problem (Q,c¢) takes problem instances I and performance guarantees ¢ > 0 and
returns e-approximate solutions. For any fixed € > 0 the running time is bounded
by a polynomial in instance size.]

The algorithm referred to above is a polynomial time approximation scheme for
SIT(m), Scheduling Independent Tasks on m machines. Unfortunately, the com-
plexity of the algorithm is not so good as a function of 1/e. In 6.7.3 we describe an
algorithm for the weighted Knapsack problem whose running time is polynomial in
instance size and 1/¢, a full polynomial approximation scheme.

Definition: A polynomial time approximation scheme is full if its running time is
bounded by p(n,1/¢), a polynomial in input size n and performance guarantee €. I

6.7.1. Approximation Algorithms for the TSP

We start with a simple and efficient 1-approximate algorithm for the Traveling
Salesman Problem with triangle inequality, the once-around-a-least-cost-spanning-
tree algorithm.

Let dist : [0...n — 1]> = R be an instance of ATSP, i.e., dist(i,j) = dist(j,1)
and dist(i,j) + dist(j, k) > dist(i, k) for all ¢,j and k. We use Copt to denote
the length of an optimal Traveling Salesman tour. We can define a network N =
(V,E,c) from dist in a natural way: V ={0,...,n— 1}, E=V x V and ¢(3,j) =
dist(i,j) for all 7,j. Let (V,T) be a least cost spanning tree of N; it can be found
by the methods of Section 4.8. Tree (V,T) gives rise to a tour (not necessarily a
Traveling Salesman tour) which uses every edge of T' twice. We only have to run
around the tree once. This tour can be shortened to a Traveling Salesman Tour
by introducing shortcuts. The shortcuts do not increase the cost because of the
triangle inequality.

Example: Network N of Figure 9 has an optimal Traveling Salesman tour of cost
Copt = 6. It is shown wiggled. The minimum cost spanning tree right of it has
cost 4.

Figure 9. Network and minimum spanning tree

Version: 19.10.99 Time: 11:14 —-40—-

6.7.1. Approzimation Algorithms for the TSP 41

It gives rise to a tour (once around the tree) A, B, A,C,D,C, A of length 8
which can be shortened to a Traveling Salesman Tour A, B,C, D, A of length 7 as
shown in Figure 10.

Now we describe the details of the approximation algorithm.

Lemma 1. Let dist be an instance of ATSP, let N = (V, E,c¢) be the associated
network, and let (V,T) be a least cost spanning tree of N. Then

C(T) = Z c(e) S Copta

eeT

where C,p: is the length of an optimal Traveling Salesman Tour.

Proof: An optimal Traveling Salesman tour minus any edge is a spanning tree and

has therefore cost at least C(T). 1
A sequence S = wvg,V1,...,Um—1,00 is a tour of N if (v;,v;41) € E for all
i and V = {vg,v1,...,Um_1}, i.€e., every node is visited. Its cost is C(S) =

i ¢(Vi, V(i41) mod m)- It is a Traveling Salesman tour if m = |V|.

Let (V,T) be a spanning tree of N. The once-around-the-tree tour S is defined
as follows. Let r € V be arbitrary. If V = {r} then S consists of node r only. If
|V| > 1 then let rq,...,7; be the neighbour of r in (V,T) and let S; be the once-
around-the-tree tours of the subtrees rooted at r;. Then S = rSirSer...rSyr. It
is easy to see that S can be constructed in time O(n) from (V,T) by depth first
search.

Lemma 2. Let (V,T) be a least cost spanning tree of N and let S be the once-
around-the-tree tour of T. Then C(S) <2 Cyp;.

Proof: C(S) < 2-C(T) since every edge of T is used twice in S and C(T) < Cypt
by Lemma 1.]

Lemma 3. Let S be a tour of N. Then there is a Traveling Salesman tour of N
of cost at most C(S).

Proof: Let S = vg,v1,...,Vm—1,v0. If m = |V| then there is nothing to be shown.
Otherwise there must be a least j, say jo, such that there is an 7 < j with v; = v;.
Consider S’ = vg,v1,...,Vj-1,Vj4+1,---,VUm—1,Vo. We have

C(8') = C(8) — e(vj-1,v5) — (vj, vjt1) + e(vj—1,v541) < C(S),
since dist and hence c satisfies the triangle inequality. Thus S’ has cost at most
C(S) and one node less than S. Repeated application off the construction produces

a Traveling Salesman tour.]

Version: 19.10.99 Time: 11:14 -41-

42 Chapter 6. NP-Completeness

We summarize:

Theorem 1. There is an 1-approximate O(n?) algorithm for ATSP; here n is the
number of cities.

Proof: A least cost spanning tree can be found in time O(n?) by the results of
Section 4.8. The rest of the construction takes time O(n). 1

In the Euclidian case we can do even better. The Euclidian Traveling Salesman
problem is as follows. n cities in the plane R? are given. The distance between two
cities is the Euclidian distance. In Chapter VII we will see that Euclidian least cost
spanning trees can be found in time O(nlogn).

Theorem 2. There is an 1-approximate O(nlogn) algorithm for the Euclidian
TSP.

Proof: Obvious from the discussion above.]

Can we improve Theorem 17 Lemma 2 is at the heart of the above construction.
It also suggests an improvement. There is another way of visualizing the once-
around-the-tree tour. Let (V,T) be a least cost spanning tree. If one draws every
edge of T twice then we obtain a Eulerian graph, i.e., a graph where every node
has even degree. Such a graph has a Eulerian tour, i.e., a tour which uses every
edge (of expanded graph) exactly once; cf. Exercise 14. Eulerian tours in Eulerian
graphs can be constructed in linear time. We turned (V,T) into a Eulerian graph
by doubling every edge and thus doubling the cost. Hence we will obtain a better
approximation algorithm for ATSP if we find a cheaper way of turning (V,T) into
a Eulerian graph. Let V,44 be the set of nodes of odd degree in (V,T'). One solution
is to give exactly the nodes in V, 44 an additional edge. This is possible since the
cardinality of V,44 is even. Therefore a least cost matching of V, 44 will turn (V,T)
into a Eulerian graph.

Example: In our previous example, V,q4 = {B, D}. Adding edge (B, D) turns the
spanning tree into a Eulerian graph. It gives rise to a tour A, B, D, C, A of cost 6,
the optimum.]

Definition: Let N = (V| E, ¢) be an undirected network. A complete matching
is a set M C E of edges such that |M| = |V|/2 and no two edges in M share a
common endpoint. The cost of M is C(m) = > _; c(e). 1

Version: 19.10.99 Time: 11:14 —-42—

6.7.1. Approzimation Algorithms for the TSP 43

Lemma 4. Let dist be an instance of ATSP and let N = (V, E, c¢) be the associated
network. Let (V,T) be a least cost spanning tree of N and let V,qq be the set of
nodes of odd degree in (V,T).

a) |Noad| is even.

b) The subnetwork of N induced by V,q; has a complete matching M of cost
Copt /2.

Proof: a) Let degy(v) be the degree of v in (V,T). Then

2T = Y degr(v) = 3 degr(v)+ Y degr(v).

veV vEV,44d veEV —V54a4a

Thus Y {deg;(v); v € V,44} is even and hence |V, 44| must be even.

b) Let vg, v1,...,Un—1,vp be a Traveling Salesman tour of cost C,,;. Furthermore,
let v, , Viy, - -, Vi, be the nodes in Vou4; [Voda| = 2k and ¢ < iz < ... <igx. Then
M1 = {(22] 1,22]) 1 < _] < k}} and M2 = {(22‘7,22‘74.1) 1 S] < k}} U {(ng,’ll)} are
two complete matchings of V,44. Also

2k—
C(My)+ C(M,) = Z (Vi s Vg) + C(Vigy v5,)

n—1
< E c vlav(l+1) mod n) = Copt-
=1

The inequality follows from the triangle inequality. Note that
C(Uijavij+1) < C(Uz',-) Uij+1) et c(viﬁ—l—l’ Uiﬁ—l)

by the triangle inequality. Hence min(C(M;), C(Ms3)) < Copt /2. 1

Theorem 3. There is a 0.5-approximate O(n3) algorithm for ATSP; n is the
number of cities.

Proof: A least cost spanning tree (V,T) can be found in time O(n?). Clearly V44
can then be extracted in time O(n). A least cost matching M of V,zq can be
found in time O(n3?) (cf. E. Lawler: “Combinatorial Optimization: Networks and
Matroids”). Then (V,T U M) is a Eulerian graph with C(T') + C(M) < 3C,pt/2.
Next we construct a Eulerian tour of (V,T U M) and shorten it to a Traveling
Salesman tour as described in Lemma 3. Altogether, we obtain a tour of length at
most 3 - Copt/2. |

Version: 19.10.99 Time: 11:14 —-43—

44 Chapter 6. NP-Completeness

The performance bounds given for the once-around-the-tree algorithm and the 0.5-
approximate algorithm are best possible in the following sense. One can find a class
of problem instances (Exercise 21) where the approximation algorithms produce
tours tours with length almost (1 + €) - Copt; here € = 1 or € = 0.5, respectively.

Can we find an e-approximate algorithm (with polynomial running time and
some € > 0) for every NP-complete problem or are there NP-complete problems
which resist even approximate solutions, provided that P # NP? Unfortunately,
the second possibility is true and TSP without triangle inequality provides us with
an example.

Theorem 4. Let € > 0 be arbitrary. If there is an algorithm A having the following
properties

a) A’s running time is polynomially bounded,
b) for every symmetric distance matrix dist : [0...n — 1]> — N, A constructs a

Traveling Salesman tour of length at most (1+¢€)-Copt, where Copy Is the length
of the optimal Traveling Salesman tour,

then P = NP.

Proof: Assume that A exists. Let p be a polynomial which bounds the running
time of A. We will show that UHC (Undirected Hamiltonian Cycle) is in P. Since
UHC is NP-complete this implies P = NP. Let G = (V, E) be an instance of UHC
with V = {vg,...,v,_1}. Define dist : [0...n —1]> = N by

o1 if (v;,v;) € E,
dist(i,5) = { [e-n] +2 otherwise.

Matrix dist is clearly symmetric. Furthermore, if G has a Hamiltonian cycle then
dist has a Traveling Salesman tour of length n and if G does not have a Hamiltonian
cycle then every Traveling Salesman tour has length at least (n — 1) 4+ [e-n] +2 >
(1 +€) - n with respect to dist. What does algorithm A do on instance dist? It
constructs a tour of length C. We distinguish two cases.

Case 1: C > (1+¢€)-n.
Since C' < (1 + €) - Copt by assumption b) on A, we conclude C,p; > n. Thus G
does not have a Hamiltonian cycle.

Case 2: C < (1+¢€)-n.
Then C' = n by the discussion above. Thus G has a Hamiltonian cycle.

This shows that we can use algorithm A for solving UHC. Matrix dist requires
O(n?log(n + 2)) = O(n?logn) bits to be written down. Since A’s running time is
bounded by polynomial p, we infer that UHC can be solved in time O(p(n?logn)).
Hence UHC € P and therefore P = NP. 1

Version: 19.10.99 Time: 11:14 —-44—

6.7.2. Approximation Schemes 45

Theorem 3 shows that NP-complete problems can behave dramatically different
with respect to approximation. We will see more of this in sections to come. It is
not known whether the existence of such an algorithm is excluded by the assumption
P # NP.

6.7.2. Approximation Schemes

With respect to the Scheduling Independent Tasks (SIT) optimization problem the
situation is better. We are given the time requirements ¢1,...,t, of a set of n jobs
and a number m of machines and are asked to find a schedule S : [1...n] = [1...m)]
which minimizes the finishing time 7" = max;) . S(i)=j ti- Throughout this section
we use Tppy to denote the finishing time of an optimal schedule. We describe an
(1/3)-approximate algorithm first and then refine it to an approximation scheme
for SIT(m). In SIT(m) the number of machines is not an input to the algorithm
but fixed in advance.

The (1/3)-approximate algorithm is based on a very simple idea: Schedule long
jobs first and always schedule a job on a machine which was used least so far. The
details are as follows.

Assume w.l.o.g. that ¢; > ty > --- > t,. In fact, reordering the jobs takes
time O(nlogn) and is the most time consuming part of the algorithm Construct
S:[1...n] — [1...m] formulated in Program 6.

(T1,..., T) < (0, .., 0);
co Tj; time units are used up on machine j so far oc
for i from 1 to n
do let j be such that T; = min(T1,...,Ty);

Sli] « Js

Tj — Tj + ti
od.
Program 6

We refer to the schedule constructed by this algorithm as the Longest Process-
ing Time (LPT) schedule Sppr. Its finishing time is denoted by Tppr. If the T;’s
are kept in a heap then one iteration of the loop takes time O(logm), for a total
running time of O(nlogm).

Theorem 5. The LPT algorithm is a 1/3 — 1/(3m) approximate algorithm for
Scheduling Independent Tasks.

Proof: (Indirect.) Assume otherwise. Let I be an instance of SIT with a minimal
number of jobs such that (T pr (1) — Topt(I))/Topt(I) > 1/3—1/(3m). Here Tppi (1)
is the finishing time of an optimal schedule S,p: : [1...7n] = [1...m] and Trpr(I)
is the finishing time of the LPT schedule Srpr.

Version: 19.10.99 Time: 11:14 —-45—

46 Chapter 6. NP-Completeness

Lemma 5. If Sppr(n) = j then } g, . —;ti = Tepr(l), ie., job n finishes at
time TLpT(I).

Proof: Assume otherwise. Then the LPT algorithm also constructs a schedule of
length T, pr(I) for jobs ty, . .. ,t,_1. Denote the problem instance with time require-
ments ¢y,...,t,_1. Denote the problem instance with requirements ¢q,...,%t,_1
by I'. Then Trpr(I') = Lrpr(I). Also Topi(I') < Tope(I) since I' is a “subin-
stance” of I. Hence
Trpr(I') = Tope(I') > Trpr(I) — Tope(1)
> [1/3 = 1/(3m)] - Tope ()
> [1/3 =1/(@3m)] - Tope(I').

Thus I’ is a counterexample containing one fewer job than I, a contradiction to the
choice of 1. 1

We will next show that the LPT algorithm constructs a bad schedule only if T, (1)
is small.

Lemma 6. Top(I) < 3-tp,.

Proof: Consider the state (17, ...,T,,) of the LPT algorithm just prior to schedul-
ing job t,. Let Ty = min(Th,...,T,,). Then ¢, is scheduled on machine k¥ and
Tk + t, = Trpr(I) by Lemma 1. Hence ¢ + -+ + tp—1 > m(Trpr(I) —t,) or

ti+- -+t >m-Trpr(I) — (m—1) - t,.

Next note that Typt(I) > (t1 + -+ +t,)/m, since every job has to be executed on
some machine and hence

((m = 1)/m) - tn = Tppr(I) = Topt(I) > [1/3 = 1/(3m)] - Top:(1)-

The last inequality follows from the fact that I is a counterexample. Thus 3 - ¢, >
Topt (I). 1

In Lemma 3 we complete the contradiction and show that the LPT algorithm indeed
constructs optimal schedules if T,p;(I) is small.

Lemma 7. If Tpp(I) < 3 - t, then Tppr(I) = Topt(I).

Proof: If S,py = Sppr then there is nothing to show. Assume otherwise. Since

ty > ty > -+ > t, no more than two jobs can be scheduled on any machine.
Hence n < 2m. We may assume n = 2m by adding jobs n + 1,...,2m with time
requirements t,41 = ... = tay, = 0. The LPT algorithm schedules jobs J and

2m + 1 — j on machine j, 1 < j < m. Let j be maximal such that Trpr(I) =

Version: 19.10.99 Time: 11:14 —-46—

6.7.2. Approximation Schemes 47

tj + tam+1—;. Construct a graph G with nodes v = [1..n] as follows. Draw a red
edge (i,k) if Sopt(i) = Sopt(k) and draw a green edge (i, k) if Sppr(i) = Sppr(k),
ie., ifi+k = 2m+1. Since every node has degree exactly two in graph G (recall that
exactly two jobs are scheduled on any machine by S,,: and Sz pr), the connected
components of G are simple cycles. Consider the component containing node j. It
contains nodes ji,...,75,2m +1—ji,...,2m + 1 — j; for some ji,...,j; € [1..m].
Since the red edges form a matching on these nodes there must be a red edge (i, k)
such that ¢ < j and k < 2m + 1 —j. Hence Tpp(I) > t; +tp > t; + tomy1—j =
LLPT(I)- |

Lemma 1, 2 and 3 imply that I does not exist.

In Exercise 25 it is shown that the worst case performance of the LPT algorithm is
indeed 1/3 —1/(3m). The LPT algorithm processes long jobs first. This principle
works quite well for a number of problems, cf. Exercise 22 on Bin Packing and
Exercise 26 on the Knapsack problem. This suggests that we can do even better if we
are very careful with the longest jobs, say if we schedule the longest k jobs optimally.
This leads to the LPT(k)-algorithm: Schedule the &k longest jobs optimally (in time
mF by branch and bound), then continue with LPT.

Theorem 6. The LPT(k) algorithm always produces an (m—1)/(k+1)-approximate}
schedule.

Proof: Let t; >ty > --- > t, be the time requirements of a set of n jobs and let
Trpr(k) TeSP. Topt be the finishing time of the LPT (k) resp. optimal schedule. We
have to show that

TLPT("’) - Topt < ((m - 1)/(k + 1))) Topt-

Let ¢ be the length of an optimal schedule for jobs 1,...,k. If Ty prx) = t then
the claim is obviously true. So assume otherwise. Let j > k be a job with finishing
time Trpr(x). Then all processors are busy up to time Tppr) — t; and hence
(tr 4+ +tj_1)/m > Tppr@) —tj. Also Tope > (t1 +--- +t;)/m and hence

Trprk) — Topt < ((m —1)/m) -t; < ((m —1)/m) - tgt1
< (1= 1/m)(m/(k +1)) - Tops < ((m = 1)/(k +1)) - Tops.
The third inequality follows from Ty, > (¢1 + ... tg41)/m > (k+1) - tgp1/m. 1

At this point we almost have an approximation scheme for SIT(m), Scheduling
Independent Tasks on m machines. Let € > 0 be arbitrary. Choose k such that
(m—1)/(k+1) <€ k = |(m —1)/e|] will certainly do. Then use the LPT(k)
algorithm to construct an e-approximate schedule. The running time of LPT (k)
is O(m*) for finding an optimal schedule for the k longest jobs plus O(nlogn)
for sorting and scheduling the n — k remaining jobs. Thus total running time is
O(nlogn + mF) = O(nlogn + m™/€). This is polynomial in n for every fixed e.

Version: 19.10.99 Time: 11:14 —-47—

48 Chapter 6. NP-Completeness

Theorem 7. There is a polynomial approximation scheme for SIT(m) which con-
structs e-approximate solutions in time O(nlogn + m™/€) for any € > 0.

Proof: By the preceding discussion.]

Can we always turn an e-approximate algorithm for some € into a polynomial ap-
proximation scheme as we did for SIT(m)? Note that ATSP is not a counterexam-
ple; there we just do not know how to do better than 0.5-approximate solutions.
There is no reason to believe that 0.5 is a boundary which will exist forever. How-
ever, our second NP-complete scheduling problem can serve as an example.

Theorem 8.

a) There is a l-approximate linear time algorithm for Precedence Constrained
Scheduling (PCS).

b) If there is an (1/4)-approximate polynomial time algorithm for PCS then P =
NP.

Proof: a) Consider any instance of PCS. Let n be the number of jobs, m the
number of machines and R be the precedence relation on jobs. Let T,,: be the
finishing time of an optimal schedule. For any job i € [1..n] define its depth
by depth(i) = 1+ max{depth(j); (j,i) € R}. As always, the maximum of the
empty set is defined to be zero. Then T,,; > LB := max([n/m|, mazdepth) where
mazdepth = max{depth(i); 1 < ¢ < n}. It remains to be shown that we can
always schedule all jobs in 2 - LB time units. For d, 1 < d < mazdepth, let
Lg = {i; depth(i) = d} be the jobs of depth d. We schedule the jobs in L, for time
units 37 4 f|Ls[/m] +1,...,3 7 4|L;|/m]. Then the maximal time unit used is

Z [Lj|/m] §Z(|Lj|/m+1) = n/m + mazdepth <2 - LB.
j<maxdepth J

b) Recall the NP-completeness proof of PCS (Theorem 6.5.7). The instance of
PCS constructed in the reduction Clique < PCS had either finishing time three or
four. More precisely, they had finishing time three iff we start with a graph which
has a clique and finishing time four otherwise. Suppose now that we have a (1/4)-
approximate algorithm for PCS. Then we can use it to solve Clique because the
approximation algorithm must be an exact algorithm on the instances constructed
by the reduction.]

6.7.3. Full Approximation Schemes

We will now turn to the ultimate in the field of approximation algorithms: full
approximation schemes. We will also get to know a very important technique for

Version: 19.10.99 Time: 11:14 —-48—

6.7.8. Full Approximation Schemes 49

approximation algorithms: scaling. Scaling is applicable to many problems; it is
particularly appropriate when we have a pseudo-polynomial algorithm available.

In Section 6.6.1 we described a pseudo-polynomial algorithm for the Knapsack
Problem. This was extended to the Weighted Knapsack Problem in Exercise 15. Let
Cly-«yCn,Wi,-.., Wy, K be instances I of the weighted Knapsack problem. Exer-
cise 15 shows how to compute C,pi(I) = max{) . c;-zs; z; € {0,1},> z;-w; < K}
in time O(n - C,pt) = O(n? maxc;).

Let S be any integer. We scale the costs by S and obtain a scaled instance
Is = (c1/S,...,¢n/S,w1,...,wy, K). What does scaling do for us? First of all,
the scaled instance can be solved by our pseudo-polynomial algorithm in time O(n -
Copt(Is)) = O(n - Copt(I)/S), which can be made arbitrarily small by choosing S
large enough. Secondly the optimal solution for the scaled instance is a very good
solution to the original problem. More precisely, let (z1,...,z,) € {0,1}" be such
that Copt(Is) = >, ;- [¢;/S] and Y, z; - w; < K and let (yq,...,yn) € {0,1}" be
such that Copt(I) = > y; - ¢; and > y; - w; < K. Then

> Z x;i ¢ , since (y1,...,Yn) is optimal for I

>8>y ai|eifS]

> SZyi - lei/S] , since (x1,...,2y,) is optimal for Ig

> 8 ui-(ci/S—1)
> Copt(I) —n- S.

Thus (Copt(I) — Y i -)/ Copt(I) < n - S/Copt(I). We summarize in

Lemma 8. Let S be any integer. Then in time O(n - Copt(I)/S) we can compute
an n - S/Copt(I)-approximate solution namely) xz; - ¢; where (z1,...,2y) is the
optimal solution vector for the scaled problem.

We still have to choose S appropriately. Let € > 0 arbitrary. Setting S = € -
Copt(I)/n we obtain an e-approximate algorithm with running time O(n?/¢). There
is a catch, however; we do not know C,,:(I). After all the purpose of the algorithm
is to approximate C,,:(I). The way out is to use a reasonable approximation for
Copt(I) in the definition of S.

In a first attempt we use S = [emax¢;/n] < €- Copi(L)/n. Then we obtain an
e-approximate algorithm with running time O(n-C,pt(I)/S) = O(n?-(max¢;)/S) =
O(n3/¢) which is definitely worse than what we would get if we chose S optimally.
The reason is of course that we used only very weak bounds on Copt(I), namely
max ¢; < Copt(I) < nmaxc;. A much better bound is provided by Exercise 26.
There it is shown that C with C,,:(I) > C > Cop(I)/2 can be computed in time
O(nlogn). Setting S = |e- C/n| we obtain an e-approximate algorithm with
running time O(n - Cypt/S) = O(n?/e).

Version: 19.10.99 Time: 11:14 —-49—

50 Chapter 6. NP-Completeness

Theorem 9. The Weighted Knapsack Problem has a full polynomial approxima-
tion scheme; more precisely, an e-approximate solution can be computed in time
O(n?/¢) for any € > 0.

Proof: By the discussion above.]

The technique described above is not only applicable to the weighted Knapsack
problem. We can rather state quite generally:

Scaling + Pseudo-polynomial algorithm = good approximation algorithm.

See Exercises 27 and 28. In fact, the connection between pseudo-polynomial al-
gorithms and full approximation schemes is even stronger. The existence of a full
approximation scheme implies the existence of a pseudo-polynomial algorithm.

Theorem 10. Let (Q,c) be a polynomially bounded minimization problem. For
instance z, let optval(xz) be the cost of an optimal solution for z. If (Q,c) has a
full polynomial approximation scheme and optval(x) is polynomially bounded in
the size(x) of and the largest integer number(x) appearing in z then (Q, c) has a
pseudo-polynomial algorithm.

Proof: Let A be a full approximation scheme for (@, ¢). Choose € = 1/(p(size(z), number(z))+jj
1) where polynomial p is such that optval(z) < p(size(z), number(z)) for all in-
stances x. Let y be the solution produced by A on inputs z and e¢. Then

0 < ¢(z,y) — optval(z) (by definition of optval(z))
< € optval(z) (since A is an approximation scheme)
<1 (by definition of €).

Thus ¢(z,y) = optval(z), y is an optimal solution for . Furthermore, the running
time of A on inputs z and e is bounded by a polynomial in size(x) and 1/e which in
turn is a polynomial in size(z) and number(x). So (@, c) has a pseudo-polynomial
algorithm.]

Theorem 9 has strong implications for strongly NP-complete problems. They can-
not have a full polynomial approximation scheme.

Theorem 11. SIT does not have a full polynomial approximation scheme (pro-
vided that P # NP).

Proof: SIT satisfies the assumption of Theorem 9. Note that the total time re-
quirement of all jobs is certainly an upper bound for the finishing time. Also SIT
is strongly NP-complete (Theorem 6.6.3) and therefore does not have a pseudo-
polynomial algorithm (provided that P # NP, Theorem 6.6.2). 1

Version: 19.10.99 Time: 11:14 -50—

6.8. The Landscape of Complexity Classes 51

6.8. The Landscape of Complexity Classes

The main concern of this chapter were NP-complete problems and how to cope with
them. In this section we go beyond NP-completeness and relate the complexity
classes P and NP to various other classes. Moreover, we list a number of problems
and give their status with respect to these classes.

The following diagram shows a relevant part of the landscape of complexity
classes where “A — B” means “A C B”.

RP — NP=%; =3y X33

/ NS N
P — LVP = RPNco— RP BPP PSPACE
pN 7N 7

co— RP — co— NP =11, - 1I, —»1I3 - 114y — ---

The classes P and NP were defined above. The class PSPACE is the set of languages
which can be recognized by polynomially space bounded Turing machines. For
class PSPACE it is irrelevant whether deterministic or nondeterministic machines
are considered (Savitch (70)). The classes 31, Y5, X3,... and II;,II,,II3, ... form
the polynomial hierarchy (Stockmeyer/Meyer (73)). These classes are defined as
follows:

¥; ={L; L CT* for some finite alphabet I" and there is some polynomial
time computable predicate p(x,y1,...,y;) and a polynomial ¢
such that for all z € I'*:
x € L iff 3y, VyoTJys ... :

(Jy1] < g(|z|) and ... (|lyi| < ¢(|z]) and p(z,y1,...,9:))}
H,’ = CO—E,'

where co — C = {I'"* — L; L € C and IT" a finite alphabet} for any class C of
languages. The languages in ; are defined by formulae with ¢ alternations of
quantifiers starting with an existential quantifier. The quantifiers range over all
strings whose length is polynomially bounded in the length of . Similarly, the
languages in II; are defined by formulae with ¢ alternations of quantifiers starting
with an universal quantifier. In Theorem 1 of Section 6.2 we proved NP = X;.
The inclusions ¥; C ¥;4;, ¥; CII;4q, II; C ¥;44, and ¥; C PSPACE for all i are
obvious. It is not known whether the polynomial hierarchy is infinite or whether it
collapses at some finite level.

The remaining classes are defined by probabilistic machines (cf. Section I.2).
We have

BPP = {L; L CT"* for some finite alphabet I" and there is a polynomial
computable predicate p(x,y) and a polynomial ¢ such that

z € L= |{y; ly| = q(|z|) and p(z,y)}| > 2|T[2=D
z ¢ L= |{y; |yl = q(|z|) and —p(z,y)}| > &|r|20=D}.

Version: 19.10.99 Time: 11:14 -51-

52 Chapter 6. NP-Completeness

Thus a language is in BPP (bounded probability of error) if it can be recognized
by a probabilistic machine whose worst-case running time is polynomially bounded
and whose answers are reliable with probability 3/4. Algorithms in this class are
also referred to as polynomially bounded Monte Carlo algorithms. In the definition
of RP (random P) we allow only one-sided error.

RP ={L; L CT* for some finite alphabet I" and there is a polynomial time
computable predicate p(x,y) and a polynomial ¢ such that

z € L= |{y; ly| = q(|z|) and p(z,y)}| > 3|T|2l=D
z ¢ L= |{y; |yl =q(|z|) and —p(z,y)}| = |T|21=D}.

Thus a language L is in RP if a string # € L is accepted with probability at least
3/4 and a string outside L is never accepted. In other words, there is a probabilistic
algorithm whose worst-case running time is bounded by a polynomial. Moreover,
its “yes-answers” are completely reliable but its “no-answers” are not, i.e., there is
a possibility that £ € L and the algorithm outputs “no”. However, the probability
that en element € L is declared to be outside of L is at most 1/4. The inclusions
RP C BPP,co—RP C BPP, RP C NP and co— RP C co— NP are obvious. Again
it is not known whether any of these inclusions are proper. Incidentally, the quantity
3/4 in the definition of RP and BPP is not the only choice possible. Any real a
with 1/2 < a < 1 could be taken instead of 3/4. This follows immediately from the
results of Section I.2. Also, we might require that only the expected running time
is bounded by a polynomial without any change in the language classes. Finally, in
the definition of class LVP (Las Vegas P) we allow no probability of error and we
just require that the expected running time is polynomially bounded.

LVP = {L; L C T for some finite alphabet I and the characteristic function

of L is computed by a Las Vegas algorithm (cf. Section 1.2)

whose running time is bounded by a polynomial}
The following theorem states the two non-trivial inclusions in the diagram above.

Theorem 1.
a) LVP = RPNco— RP.
b) BPP C %,.

Proof: a) We show LVP C RP, LVP C co— RP and RP Nco— RP C LVP.
Consider LVP C RP first. If L C LVP then we can recognize L by an algorithm A
whose expected running time is bounded by a polynomial, say ¢, and whose outputs
are completely reliable. Consider the following algorithm A’: On input z it runs
algorithm A for at most 10- g(|z|) steps. If A has terminated before that time (and
this occurs with probability exceeding 9/10) then A’ outputs whatever A outputs.

Version: 19.10.99 Time: 11:14 -52—

6.8. The Landscape of Complexity Classes 53

If A has not terminated within 10 - g(|x|) steps then A’ outputs no. In this way
the yes-answers of A’ are completely reliable but no-answers are not. However, the
probability of a no-answer for z € L is at most 1/10. Thus L € RP and hence
LVP C RP.

A similar argument shows LVP C co — RP. (A’ outputs yes if the clock is
exhausted).

Next we turn to the inclusion RP Nco — RP C LVP. Let L € RP Nco — RP.
Then we have probabilistic algorithms A; and As such that

1) the worst-case running time of A; and A, is bounded by a polynomial, say ¢,
2) the yes-answers of A; and the no-answers of A, are reliable;

3) the probability that A; gives a wrong answer is at most 1/4 and the probability
that A, gives a wrong answer is at most 1/4.

We show how to recognize L with zero probability of error and polynomial average
running time. Let be arbitrary. Consider the following experiment.

Choose a random y with |y| = ¢(|x|) and compute A;(z,y) and A2(z,y). This
takes time O(g(|z|)). If A1(z,y) = “yes” then x belongs to L and if Ax(z,y) = “no”
then z does not belong to L. (Note that it is impossible that A4;(z,y) = “yes” and
Ay(z,y) = “no” occur simultaneously.) In either case we have correctly decided
the membership of x with respect to L. The final case that is to be considered is
Aq(z,y) = “no” and As(z,y) = “yes”. Then z € L and « ¢ L are both conceivable.
If z € L then the answer A;(z,y) = “no” is wrong and this event has probability
at most 1/4 and if z ¢ L then the answer Ay(z,y) = “yes” is wrong and this event
has probability at most 1/4. In either case, we see that the probability that we
cannot decide the membership of z in L is at most 1/4. Hence the probability that
i experiments are needed to decide the membership is at most 1/4°~! and hence
the expected number of experiments needed is Y ;5 4/4°"" = O(1). This proves
Le LVP.

b) A proof can be found in Sipser (83) or Lautemann (84). 1

None of the inclusions in the diagram above are known to be proper. However, the
inclusions are not independent. For example, it is known that RP = NP implies
Yy = X3 = %4... (Karp/Lipton (80)). We will now turn to problems and give a
list of problems and their status with respect to these classes.

Name: Quantified Boolean Formulae (QBF).

Input: A quantified boolean formula of the form
Q121Q223 ... QurmE(21,...,Tm,Y1,Yn) where E is a boolean expres-
sion over operators and, or, not,
Z1,---3Tm,Y1,---,Yn are boolean variables, and Q; € {3,V} is a quanti-
fier.

Question: “Yes” if the formula is satisfiable, and “no”, otherwise.

Theorem 2. (Stockmeyer/Meyer (73)): QBF is PSPACE-complete.

Version: 19.10.99 Time: 11:14 -53—

54 Chapter 6. NP-Completeness

For the classes of the polynomial hierarchy, no complete problems are known except
for classes Xy (NP-complete) and X5.

Name: Uniquely Optimal Traveling Salesman Tour (UOTS).
Input: An instance of the traveling salesman problem.
Question: “Yes”, if there is a unique optimal tour, and “no”, otherwise

Theorem 3. (Papadimitriou (82)): UOTS is X-complete. 1

Another example of a Yp-complete problem is given in Huynh (82): the inequiva-
lence problem for context-free grammars with one letter terminal alphabet.

For the probabilistic classes LVP, RP, co — RP, BPP there are no known
complete problems. In fact, Adleman (78) gives strong reasons that these classes
cannot contain problems.

Name: PRIMES.
Input: An integer n in binary notation.
Question: Yes, if n is a prime, and no, otherwise.

Theorem 4.
a) PRIMES € co — NP;
b) PRIMES € NP;
c) PRIMES € co — RP.

Proof: a) is trivial, b) can be found in Pratt (75) and c) can be found in Solo-
vay /Strassen (77). We give a very brief sketch of part c). For integers p and ¢
which are relatively prime the Legendre symbol (¢/p) is defined by

(¢/p) = 1 if g is a quadratic residue mod p, i.e., ¢ = 2 mod p for some z;
—1 otherwise.

There is a well-known efficient algorithm for computing the Legendre symbol, it is
based on the law of reciprocity, namely (¢/p) = —(p/q) if p = ¢ = 3 mod 4 and
(¢/p) = (p/q) otherwise. Furthermore, when ¢ > p and hence ¢ = m - p+ r for some
r < p then (¢/p) = (r/p). These three relations immediately suggest a polynomial
time algorithm for computing the Legendre symbol which is similar to the Euclidian
algorithm for greatest common divisor.

The important observation is now that if p is prime then (a/p) = a®~1/2 mod p
for all @, 1 < a < p — 1. However, if p is not prime then the above relation holds
for at most half of the a’s which are relatively prime to p. This follows from the
fact that the set of a’s for which the above relation holds is a proper subgroup of
the multiplicative group of integers which are relatively prime to p.

This suggests the following algorithm. In order to check the primality of p select
a random integer a, 1 < a < p. If a and p are not relatively prime (a gcd calculation)
then p is composite. Otherwise we check the relation (a/p) = a*~1/2 mod p; note

Version: 19.10.99 Time: 11:14 -54—

6.8. The Landscape of Complexity Classes 55

that a(®~1/2 mod p can be computed by repeated squaring (cf. Section I.1). If
the inequality does not hold then p is composite. If the equality holds then p
may be prime or composite. However, if p is composite then the equality holds
with probability at most 1/2. Repeating the experiment for several a’s reduces the
probability of error below 1/4. Hence COMPOSITE € RP or PRIMES € co — RP.
|

Another interesting example of a problem in co — RP is given by

Name: Checking Polynomial Identities (CPI).

Input: An identity of the form Q = P where @ and P are expressions formed
from real variables 1, z2, ... using operators +, —, and -

Question: “Yes”, if the identity is true, and “no”, otherwise.

Theorem 5. (Schwartz (80)): CPI € co— RP. 1

We end this section by listing problems which were recently shown to be in P.

Name: Linear Programming (LP).
Input: An integer matrix A and an integer vector b.
Question: “Yes”, if there is a real vector x with A -z <b.

Theorem 6. (Khachiyan (79)): LP € P. 1

If we require that the solution vector is to be integral then we face the integer
programming problem. It is NP-complete as was shown in Section 5. However, for
every fixed dimension there is a polynomial algorithm.

Name: Integer Programming in d-dimensional space (IPd).

Input: An n by d integer matrix A and an integer vector b.

Question: “Yes”, if there is a d-dimensional integer vector z with A -z < b, and
“no”, otherwise.

Theorem 7. (Lentstra (84)): IPd € P for every fixed d. 1

An improved algorithm for IPd can be found in Kannan (83). Finally, we want to
mention the graph isomorphism problem.

Name: Graph Isomorphism (GI).

Input: Undirected Graphs G; = (V1, E1) and G = (Va, Es).

Question: “Yes”, if G; and G2 are isomorphic, and “no”, otherwise. G; and G2
are isomorphic if there is a bijection a : V7 — V5 with (v,w) € E, iff
(a(v),a(w)) € Es.

Clearly, GI € NP. It is not known whether GI is NP-complete. Various special
cases of GI have been shown to be in P, e.g., graphs of bounded valence (Luks
(80)), and k-contractible graphs (Miller (83)).

Version: 19.10.99 Time: 11:14 —55—

56 Chapter 6. NP-Completeness

6.9. Exercises

1) Let L = {w¢v; w,v € {0,1}* and w # v}. Describe deterministic and nonde-
terministic TM’s which accept L. Running time?

2) Show that T'(n) = n, T(n) = n?, T(n) = n- |logn|, T(n) = 2" are step
functions.

3) Consider RAM’s where the only arithmetic operations are addition and sub-
traction. Show that Theorem 1 of Section 6.1 is true for unit-cost RAM’s.

4) The Clique optimization problem is to find a larges clique in an undirected
graph. Prove Lemmas 2 and 3 of 6.2 for Clique.

5) Same as exercise 4) but for Knapsack problem.

6) Show that SAT(2) is in P. [Hint: Let o be a formula with at most 2 literals
per clause. Let x1,...,x, be the variables occurring in . Construct a directed
graph with nodes z1,...,2,,%1,-..,Z, as follows. If y; V ys is a clause of a then
add directed edges §; — y2 (Interpretation: If g; is true then y; must be true)
and §2 — y;. Then « is satisfiable iff there is no cycle of the form z; — --- —
Z; =& --- — x;. Cycles of this form can be detected by determining the strongly
connected components of the graph.]

7) Show that the weighted Knapsack problem is NP-complete.

Name: Weighted Knapsack.

Input: Integers wy, ..., w, (the weights), ci,...,c, (the costs), K, C.
Question: Are there z; € {0,1}, 1 <i < nsuchthat) w;-z; < K and) ¢;-z; > C?
8) Show that partition is NP-complete.

Name: Partition.

Input: Integers ai,...,a,.

Question: Is there I C [1..n] such that } .y a; = > 47 a;7
9) Show that Chromatic Number is NP-complete.

Name: Chromatic Number.

Input: Undirected graph G = (V, E), integer k.

Question: Is there a node coloring with at most k colors, i.e., is there a mapping
c¢:V — [1..k] such that ¢(v) # c(w) for all (v, w) € E?

[Hint: Show SAT(3) < Chromatic Number.]
10) Show that Planar 3-SAT is NP-complete.

Version: 19.10.99 Time: 11:14 -56—

6.9. Ezxercises 57

Name: Planar 3-SAT.

Input: A formula o in CNF such that the following bipartite graph (V, E) is
planar. V is the set of variables and clauses of a and (v,c) € E for
variables v and clause c if either v or ¥ occur in C.

Question: Is a satisfiable?

11) Show that Bandwidth is NP-complete.

Name: Bandwidth.

Input: Undirected graph G = (V, E), integer K.

Question: Is there a bijection f : V — [1...|V]] such that |f(u) = f(v)| < K for
all (u,v) € E?

12) Show that Cycle Cover is NP-complete.

Name: Cycle Cover.

Input: Undirected graph G = (V, E), integer K.

Question: Is there a set V! C V, |V'| = K, such that every cycle in G contains at
least one node in V'?

13) Show that SIT(2) (Scheduling on two machines) is in P. [Hint: Schedule by
depth in the graph G = (V, E).]

14) Eulerian Cycle is in P.

Name: Eulerian Cycle.

Input: Undirected graph G = (V, E).

Question: Is there a cycle which uses every edge exactly once, i.e., is it possible to
order E = {ey,...,en} such that e; and e;; have a common endpoint,
1<i<m?

[Hint: Show that a Eulerian Cycle exists iff every node has even degree.] Derive a
linear time algorithm to construct a Eulerian Cycle.

15) Design a pseudo-polynomial time algorithm for the weighted Knapsack opti-
mization problem, i.e., given wy,...,wy,c1,-..,Cy, K compute

n
Copt = max{z ci-xy; x; €4{0,1} and Zwil’i < K}.

=1

[Hint: For 0 < ¢ < co and 0 < j < n let F(c,j) = min({oco} U {w; there is
(z1,...,z;) € {0,1} such that }7_ ¢;-x; = cand Y ;_, w; - ¥; = w}). Then
F(0,0) =0 and F(c,0) = oo for ¢ > 0 and F(c,j+ 1) = min{F(c, j), F(c —cjt+1) +
wjy1}. Show that the relevant part of table F, i.e., F(c,j) < K can be computed
in time O(n - Copt) = O(n? max ;). Also, vector (z1,...,2,) can be found in that
time bound.]

Version: 19.10.99 Time: 11:14 57—

58 Chapter 6. NP-Completeness

16) Design a pseudo-polynomial time algorithm for Scheduling Independent Tasks
for fixed number m of machines. [Hint: Let ¢1,...,¢, be the time requirements of n
jobs and let T' be the deadline. Fori € [0...n]let f(i) = {(T1,...,Tm); Tj < T and
there is a partial schedule PS: [1..4] — [1..m] such that T; = > {t}; k£ < i and
PS(k) = j} for 1 < j < m}. Then f(0) =(0,0,...,0) and f(i+1) ={TY,...,T},);
there is (T1,...,Tn) € f(i) and k € [1...m] such that Ty = T} + t;11 and T} = Tj
for j # k}. Derive an O(n-m - (T + 1)™) algorithm for these observations.]

17) Let G = (V, E) be a directed graph, let s and ¢ be distinguished nodes and let
¢: E — R" be a non-negative cost function on the edges. For a node v € V let
u(s,v) be the cost of the least cost path from s to v. A function g : V — [R(‘)" is
called an estimator if g(v) < {minc(p); p is path from v to ¢}. In Section 4.7.2 we
treated algorithms for computing u(s,t) using an estimator g.

a) Formulate Branch-and-Bound in terminology of finding least cost paths. What
are the values of ¢ and g in the case of the Branch-and-Bound algorithm for
the traveling salesman problem discussed in Section 6.2.

b) Are the estimators which arise from the Branch-and-Bound algorithms con-
sistent in the sense of Section 4.7.2, i.e., g(v) + ¢(v,w) > g(w) for all edges
(v,w) € E?

18) Use the Branch and Bound algorithm of Section 6.5 to solve the following

problem of n + 6 cities vg, v1, Va2, Wo, W1, W3, L, -+, Lp_1-

dZSt(U“UH_l mod 3) =2 1= 0, 1, 2
dist(v;,w;) =1 ¢=0,1
dist(va,w2) =0
dist(w;,v;) =2 1=0,1,2

dist(w;, Wi+1moas) =1 1=0,1,2
dist(w;, ;) =1 fori=0,1,2,j=0,1,...,n—1
dist(z;,w;) =1 fori=0,1,2, j=0,1,...,n—1
dist(zj,w;) =1 j=0,1,...,n—1
dist(zj,zp) =0 for j,k=0,...,n—1

The remaining distances are infinite. Run the algorithm with starting points v; and
vs respectively and always proceed to the nearest city.

19) Design an O((log sopt)*°P*| E|) algorithm for finding an optimal cycle cover of
an undirected graph (cf. Exercise 12). [Hint: Use the following graph-theoretic
lemma: If G is a graph of minimum degree three and if G has p pairwise disjoint
cycles then G has a cycle of length O(logp). Also, a shortest cycle containing a
fixed node v can be found in time O(|E|) by breadth-first-search.]

20) Repeat the Branch-and-Bound algorithm for TSP using the weighted matching
problem as a lower bound on cost.

Version: 19.10.99 Time: 11:14 —58—

6.9. Exercises 59

21) Design a class of examples where the once-around-the-tree algorithm for ATSP
actually constructs a tour which has almost twice the length of the optimum. Sim-
ilarly for the 0.5-approximate algorithm.

22) Bin Packing.

Input: Integers l4,...,l, and bound L
Output: Minimal m such that there is a mapping S : [1...n] — [1...m] with
S{li; SG) =} <Lforall j,1<j<m.

a) Show that the recognition version (m is additional input) is NP-complete.

b) Design approximation algorithms for bin packing. [Hint: The following strate-
gies are good: Start with empty bins 1,2, 3,... . Add objects one by one. When
a new object is added place it into the least numbered (first fit) or the fullest
(best fit) bin which can still take the object. These two rules can either be
applied to the objects in any order or to the objects in order of decreasing
length. First fit and best fit use at most (17/10) - mep; + 2 bins and first fit
and best fit decreasing use at most (11/9) - mp,: + 2 bins.]

23) Design a l-approximate algorithm for vertex cover. [Hint: start with graph
G = (V, E); take any edge and remove both endpoints and all edges adjacent to
them from the graph. Repeat.]

24) Design a g(x) = O((log)?)-approximate algorithm for cycle cover (Exercise 12
and 19). [Hint: Start with graph G = (V| E); search for the shortest cycle and
remove all nodes of the cycle. Repeat.]

25) (Worst case performance of LPT algorithm). Let n = 2m + 1 and ¢; = 2m —
[(i4+1)/2], 1 <i < 2m, tam4+1 = m. Construct optimal and LPT schedule.

26) Let wy,...,wy,cC1,...,Cn, KK be an instance of the weighted Knapsack problem
(cf. Exercise 7 and 15). Assume w.l.o.g. that ¢;/wy > ¢ca/we > --- > ¢, /wy, and
w; < K. Consider the following algorithm.

c+0; W « 0

for ¢ from 1 to n

doif W+Hw; <K
then z; < 1; C «+ C + ¢;
else z;+ 0
fi

od;

C + max({C} U{c;; 1 <i<n}).

Version: 19.10.99 Time: 11:14 —-59—

60 Chapter 6. NP-Completeness

Let Cq14 be the value of C' after termination and let Copy = max{> ", c;-yi; ys € {0,1}
and > w; - y; < K}. Show Copy > Coig > Copt/2, i.e., the algorithm above is 0, 5-
approximate. [Hint: Let (y1,...,¥,) be an optimal solution, and let ¢ be minimal
such that ;41 = 0. Theni > 1, wy + - +w; < K <wy +--- + w; + wiy1, and
Calg Z C1 4+ +Ci. AlSO Copt = Ecj . yj = Zj<i Cj + ng(cj/wj) ~wj . (yj — 1) +
Djsalei/wi) wi-y; < 3icici + (Cir/wigr) - (0 wily; — 1) + 3055w - y5) <
Catg + (Civ1/wit1) (3 wj - y5 — 2o j<; wi) < Carg + (Ci1/wis) - (K =30, w5) <
Caig + (Cix1/Wwit1) - Wit1 < Cag + cix1 <2 Cyyq.] 1

27) Describe a full approximation scheme for the Knapsack problem. [Hint: Use
scaling and pseudo-polynomial algorithm for Knapsack.]

28) Describe a full approximation scheme for SIT(m). [Hint: Use scaling, the
pseudo-polynomial algorithm of Exercise 16 and the LPT algorithm to obtain a
good initial value for Tpp;.]

6.10. Bibliographic Notes

A detailed treatment of Turing machines can be found in the books by Hopcroft /Ull-
man (69) and Paul (78). The connection between recognition and optimization
problems, in particular the concept fo self-reducibility, is treated by Schnorr (76).
Ladner/Lynch/Selman (74), Ladner (75) and Mehlhorn (76) investigate the prop-
erties of polynomial transformations. Theorem 5 (NP-completeness of SAT) is by
St. Cook (71). Most NP-complete problems of Section 5 are taken from the pa-
per of R. Karp (72). NP-complete scheduling problems can be found in J. Ull-
man (75), Planar 3-SAT is from D. Lichtenstein (1982) and Bandwith is from
Papadimitriou (76). The concept of strong NP-completeness was introduced by
Garey/Johnson (78). Their book is also an extensive treatment of NP-completeness.
Held/Karp describe the dynamic programming approach to TSP, a more detailed
treatment of branch-and-bound methods for TSP is contained in Christofides’ book.
Christofides is also the author of the 0, 5-approximate algorithm for ATSP. The-
orem 4 of Section 6.6 and Exercises 19 and 24 are from B. Monien (82), Exer-
cise 17 is from N. Nillson (71), and Exercise 22 is from Johnson et. al. (74). De
la Vargee/Lueker (81) describe a full approximation scheme for bin packing, the
approximate algorithms for SIT is by Graham (69), and the full approximation
scheme for Knapsack is by Ibarra/Kim (75) and Lawler (77).

Version: 19.10.99 Time: 11:14 —60—

