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Goals
� long term: create the basis for the next generation CAD systems

� more concretely: build a system for exact and efficient computational geometry and

solid modeling with curves and surfaces

� develop and extend the underlying theory

� by analogy: a LEDA/CGAL for the curved world

Status

� Elmar, Lutz, and I have taught a course and a seminar in WS 01/02

� now: Seminar, FOPRAs, Diplomarbeiten, Doktorarbeiten, � � �

� part of EU-project “Effective Computational Geometry”, partners: Tel Aviv, Inria

Sophia-Antipolis, ETH Zürich, Groningen, FU Berlin.

� first handful of papers written (I will report on three)

� EXACUS library project started



What is Wrong with Current CAD Systems?
� current CAD systems are not reliable

� construct a regular n-gon P, (or cylinder)

� obtain Q from P by a rotation by α degrees about its center,

� compute the union of P and Q (= a 4n gon).

Dimension System n α time output

3D ACIS 1000 1.0e-4 5 min correct

3D ACIS 1000 1.0e-5 4.5 min correct

3D ACIS 1000 1.0e-6 30 sec problem too difficult

3D Microstation95 100 1.0e-2 2 sec correct

3D Microstation95 100 0.5e-2 3 sec incorrect answer

3D Rhino3D 200 1.0e-2 15sec correct

3D Rhino3D 400 1.0e-2 – CRASH

2D CGAL/LEDA 5000 6.175e-06 30 sec correct

2D CGAL/LEDA 5000 1.581e-09 34 sec correct

2D CGAL/LEDA 20000 9.88e-07 141 sec correct
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Examples I

polygons with circular arcs

green polygon is union of red and blue polygon

computation of union takes about 1 minute for two roses with 1000 petals.
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Example II

algorithms can handle

arbitrary degeneracies

� many curves have a

common point

� different slopes

� same slope, diffe-

rent curvature,

� same slope and cur-

vature, diff � � �

computation takes about

15 seconds
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Contents
� Bentley-Ottmann sweep for curves

� required predicates and functions

� boolean operations on polygons and curve intersection

� intersections of conics

� algebraic numbers, implicit and explicit

� algorithms for the predicates and optimizations

� open problems

� E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, E. Schömer: A Computational Basis for

Conic Arcs and Boolean Operations on Conic Polygons, submitted

� C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, S. Schmitt: A Separation Bound for Real Algebraic

Expressions, ESA 2001, LNCS 2161, 254–263

� K. Mehlhorn: A Remark on the Sign Variation Method for Real Root Isolation, to appear in Journal of

Symbolic Computation

� N. Geismann, M. Hemmer, E. Schömer: Computing a 3-dimensional Cell in an Arrangement of Quadrics:

Exactly and Actually, ACM Conference on Computational Geometry 2001

� N. Wolpert: Algorithms for Arrangement of Quadrics, PhD-thesis, 2002

� M. Hemmer: Computational Geometry for Conics, Diplomarbeit, April 2002
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Bentley-Ottmann Sweep for Line Intersection

input: a set of line segments

output: the planar map (arrangement) G defined by the segments; G has one vertex for

each endpoint and each intersection

Y−structure X−structure

� sweep a vertical line L across the

plane and maintain

� Y-structure = sorted sequence of

intersections between L and given

curves

� X-structure = already known verti-

ces ahead of sweep line

� update at event points

� G emerges to the left of L
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Sweeping Through a High Degree Vertex I
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� in the case of segments:

– when we sweep through a vertex, the y-

order of the segments is reversed

– and hence the update of the Y-structure is

fairly simple

– linear time in degree of the vertex
� in the case of curves:

– when we sweep through a vertex, the y-

order of the curves changes according to

an arbitrary permutation

– or maybe not so arbitrary ?



Sweeping Through a High Degree Vertex II
� assume for simplicity that common point is origin

� (conceptually) write the curves as power series in x and arrange in a trie.

� y1 � 2x � 3x2 y2 � 2x � 1x2 � 4x3 y3 � 2x � 1x2 y4 � 1x � 7x2
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� trie on left reflects order for small positive x

� order for small negative x is obtained by flipping children at odd depth

� only shape of trie is important

� paths for y2 and y3 split at depth two since multiplicity of intersection is three.

� intersection = multiplicity 1, same slope = 2, same curvature = 3, same � � � = 4, � � �

� update time is linear in degree times cost of determining multiplicities of intersection
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Predicates and Functions Required for the Sweep
� given two conics C and D, compute their intersection points

� lex-order on intersection points and starting and endpoints

for order of X-structure and for inserting starting segments into Y-structure

� multiplicity of intersections

for sweeping through a vertex

Boolean Ops on Polygons and Intersection of Curves

� once the arrangement induced by the boundaries is known, boolean ops reduce to

graph traversal



The Arrangement of Two Conics I
� a conic C: α1x2 � α2y2 � 2α3xy � 2α4x � 2α5y � α6 � 0

� assume for simplicity that α2 �� 0, the other case being simpler

� solve for y and obtain equations for the upper and lower arcs of C

C1 � 2 � x � � 	 b � x ��
 b � x � 2 	 4a � x � c � x �

2a � x �

where a � x � � α2 b � x � � 2α3x � 2α5 c � x � � α1x2 � 2α4x � α6 �

� x-coordinates of points of vertical tangents are one-root-expressions (OREs):
r � s � t with r s  t � � .

� two conics C and D can have up to four intersections

� x-coordinates of intersections are roots of a polynomial RCD of degree at most four

� R � RCD is readily computed from equations of C and D resultant of C and D

� can determine number of real roots of R, their multiplicity, and isolating intervals by
methods of computer algebra (we use Uspensky’s method)

� I � � a  b � is an isolating interval for a real root x of P iff x is the unique root of P in I.
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Computing with Radical Expressions

Let E be an expression with integer operands and operators � , 	 ,� and � . Define

� u � E � � value of E after replacing 	 by � .

� k � E � � number of distinct square roots in E .

Then (BFMS, BFMSS)

E � 0 or � E � 1
u � E � 2k � E �� 1

Theorem allows us to determine signs of algebraic expressions by numerical computation

with precision � 2k � E � 	 1 � logu � E � .

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann

extensions: division, higher-order roots, roots of univariate polynomials
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Discussion I

How small can A 	 B � C be, if non-zero? A  B  C �� .

� A 	 B � C � ������
� A 	 B � C � � A � B � C �

A � B � C

�����
� � A2 	 B2C �

� A � B � C ��

1

� A � B � C ��

1

� A � � � B � � C

This is a special case of the theorem

� u � E � � � A � � � B � � C

� k � 1
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Discussion II
� Consider E � � � x � 1 � � x �! � � x � 1 	 � x � 	 1 where x is an arbitrary integer.

� Observe E � 0.

� u � E �#" 4x � 1" 4x and k � E � � 2.

� Thus

E � 0 or � E � 1
u � E � 2k � E �� 1

$ 1

� 4x � 3

� It suffices to evaluate E with precision 3log � 4x � � 3logx � 6.
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Numerical Sign Computation

sep � E �&% u � E � 1' 2k ( E ) ; // bound from previous slide

k% 1;

while (true)

* compute an approximation

+
E with � E 	 +

E �-, 2' k;

if ( �
+

E �� 2' k ) return sign �
+

E � ;
if ( 2' k, sep � E � . 2 ) return “sign is zero”; // since / E /0 21 k 2 21 k 3 sep 4 E 5

k% 2 k; // double precision

6
� +

E is computed by numerical methods

� worst case complexity is determined by separation bound:

maximal precision required is logarithm of separation bound

� easy cases are decided quickly (a big plus of the separation bound approach)

� strategy above is basis for sign test in LEDA reals.
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The LEDA Number Type REAL

The theorem is packaged in the LEDA data type real. It provides exact arithmetic for

arithmetic expressions involving roots.

real x = ... some integer ...;

real sx = sqrt(x);

real sxp = sqrt(x+1);

real A = (sxp + sx) * (sxp - sx); // = 1

real B = A - 1; // = 0

cout << A.sign(); // 1

cout << B.sign(); // 0

If x has 100 binary places this takes less than .1 seconds. Run demo.

Reals are used in many geometric programs, e.g., Voronoi diagrams of line segments,

boolean operations on curved polygons, arrangements of ellipsoids, � � �



MPI Informatik 17 Kurt Mehlhorn

The Arrangement of Two Conics C and D, Part II
� do arcs Ci and D j intersect at ORE x?

� a conic C: α1x2 � α2y2 � 2α3xy � 2α4x � 2α5y � α6 � 0

�

C1 � 2 � x � � 	 b � x ��
 b � x � 2 	 4a � x � c � x �

2a � x �

where a � x � � α2 b � x � � 2α3x � 2α5 c � x � � α1x2 � 2α4x � α6 �

� similarly for D1 � 2

� is Ci � x � � D j � x � ? where x � r � s � t with r s  t � Q

� this question can be answered using LEDA reals, namely

E � 0 ? where E � Ci � r � s � t � 	 D j � r � s � t �

� k � 3
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The Arrangement of Two Conics C and D, Part III
� have a deg four polynomial R � RCD: x-coordinates of intersections are roots of R.

� a degree four polynomial either has four distinct roots or roots are OREs.

� if C and D intersect with multiplicity m at � x  � � then x is root of R of multiplicity at

least m

� assume x is a root of R

– do Ci and D j intersect at x?

– if x is given as ORE, compare Ci � x � and D j � x � using LEDA-reals

– if x is not given as an ORE, x is a simple root of R and hence

� we have an isolating interval � a  b � for x

� Ci and D j intersect at most once in � a  b � and, if so, at x

� if Ci and D j intersect at x, they cross at x

� cross if sign � Ci � a � 	 D j � a � � �� sign � Ci � b � 	 D j � b � �

� decide the latter using LEDA reals

OR

Ci

Dj

Ci

Dj

a b
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The Arrangement of Two Conics C and D, Part IV
� assume Ci and D j intersect at x.

� what is multiplicity c of intersection?

� m � multiplicity of x as root of R � RCD; then m 7 4.

� if m � 1 we have c � 1 and are done

� if m� 2, we have an ORE for x

� compute tangent vectors for Ci and D j at x as LEDA-reals by considering partial
derivatives

� if not parallel, c � 1, otherwise c� 2.

� d � multiplicity of intersection of C1' i and D1' j at x.

� then c � d � m this requires a little lemma

� determine whether d � 0, d � 1, d� 2.

� together with c� 2 and m 7 4, this determines c
Ci

Dj

x

D(1−j)

C(1−i)

c

d
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Lexicographic Order of Intersections
� Consider intersections � x1  Ci  D j � and � x2  Ek  Fl � where xi is either an ORE or a

simple root of degree four polynomial.

Compare x1 and x2:

If equal, compare y-coordinates:

Use Similar Techniques
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Correctness of Implementation
� have manually checked output for a small number of examples

� have run alg on a large number of random examples

– always checked that arrangement computed by the sweep is a planar map, i.e.,

satisfies Euler’s formula

number of vertices 	 number of edges � number of face cycles � 2

– for boolean ops on polygons P and Q:

threw random points p into the plane and checked

� p � P � op � p � Q � � p � � P op Q �
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Optimization I: Prefer Combinatorics over Numerics
� dictionary for intersections

s1

s3

s2

– s18 s2 is recomputed and reinserted into X-

struct after s3 is swept

– it is better to store it in a dictionary (under key

� s1  s2 � )
– optimization is used in LEDAsweep and ge-

neric sweep, but now it really pays

� fast equality test for identically constructed points

– assume sweep point is at left intersection of

circular arcs

– at this point: we compare the sweep point to

itself

– this is extremely costly when done numerical-

ly
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Optimization II: Retain Geometric Information
� default implementation of segments: store endpoints

� when endpoints are circle points it is very costly to recover the underlying line

� better implementation: store underlying line and the endpoints

� generalizes to arbitrary curves: store underlying curve and two curve points

Optimiziation III: Number Types

� always use the simplest possible number type

� use floating point filtering



MPI Informatik 24 Kurt Mehlhorn

Timings I
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Optimizations for Circle Arcs and Line Segments

no optimizations
using structural filtering
using rational numbers
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Timings II
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Beyond Conics
� computational geometry part works for arbitrary curves

� implementation of predicates and functions requires considerable refinement, e.g.,

– need arithmetic ops on algebraic numbers given as roots of polynomials

– need analysis of singularities

– � � �

and into 3D

computed by Michael Hemmer, Elmar

Schömer, and Nicola Wolpert


