

Basic Facts about Electrical Networks

Kurt Mehlhorn

Max Planck Institute for Informatics and Saarland University

September 27, 2011

Kirchoff's Laws

- Let G = (V, E) be an undirected graph; fix an orientation of each edge.
- R_e = resistance of edge e = (u, v)
- b_u = external current provided (extracted) at u; $\sum_u b_u = 0$.
- *Q_e* = current through *e* in the direction from *u* to *v* (might be negative)
- Current Law: $\sum_{e=(u,v)} Q_e \sum_{e=(v,u)} Q_e = b_u$ for every u
- Ohm's Law: If R_e is the resistance of e = (u, v), then

$$Q_e = \Delta_e/R_e$$

where Δ_e is the potential difference between *u* and *v*.

 Voltage Law: Potential differences sum to zero around any cycle and hence can assign potentials p_u to the vertices

Superposition Principle

Additivity of Solutions

- Assume $b = b^{(1)} + b^{(2)}$ and $b^{(i)}$ legal
- Let Q⁽ⁱ⁾ be an electrical flow for b⁽ⁱ⁾. Then Q⁽¹⁾ + Q⁽²⁾ is electrical flow for b.
- Potentials also add.

Thompson's Principle

Electrical Flows are Optimal

Let Q be the electrical flow satisfying the demand vector b and let f be any flow satisfying it. Then

$$\mathcal{E}(\mathcal{Q}) = \sum_{e} \Delta_{e} \mathcal{Q}_{e} = \sum_{e} \mathcal{R}_{e} \mathcal{Q}_{e}^{2} \leq \sum_{e} \mathcal{R}_{e} f_{e}^{2}$$

Let g = f - Q. Then g is a circulation and f = g + Q. Then

$$\sum_e R_e f_e^2 = \sum_e R_e (g_e^2 + 2g_e Q_e + Q_e^2) \geq \sum_e R_e Q_e^2 + \sum_e 2\Delta_e g_e.$$

The last term is zero since g is a sum of circular flows and for any cycle the potential differences sum to zero.

Effective Resistance

Effective Resistance

Let Q be an electrical flow of 1 from s to t.

The effective resistance of the network is the potential difference Δ between *s* and *t*.

This is also the energy of the flow.

$$\mathcal{E}(Q) = \Delta \cdot \mathbf{1} = \Delta.$$

$$\mathcal{E}(Q) = \sum_{e} \Delta_{e} Q_{e} = \sum_{P} \sum_{e \in P} \Delta_{e} Q_{P} = \Delta \sum_{P} Q_{P} = \Delta.$$

Computing the Currents

Let p_u be the (unknown) potential of node u. For any edge e = (u, v) the current from u to v is $(p_u - p_v)/R_{uv}$. The net-current at u is equal to b_u :

$$\sum_{\boldsymbol{v}\in\delta(\boldsymbol{u})}\frac{\boldsymbol{\rho}_{\boldsymbol{u}}-\boldsymbol{\rho}_{\boldsymbol{v}}}{\boldsymbol{R}_{\boldsymbol{u}\boldsymbol{v}}}=\boldsymbol{b}_{\boldsymbol{u}}.$$

or equivalently

$$\left(\sum_{v\in\delta(u)}\frac{1}{R_{uv}}\right)p_u+\sum_{v\in\delta(u)}\frac{-1}{R_{uv}}p_v=b_u$$

Coefficient matrix is symmetric diagonally dominant (SDD).

Methods for Solving SSD-system Ax = b

- Cholesky factorization: A = LL^T where L is a lower triangular matrix
- Gauss-Seidel Iteration: compute x^(k) for k = 1, 2, 3, For fixed k, compute x^(k+1) for i = 1, 2, 3, ...:

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{j > i} a_{ij} x_{j}^{(k)} - \sum_{j < i} a_{ij} x_{j}^{(k+1)} \right)$$

- Preconditioning: solve BAx = Bb for a suitable B.
- Recursive Preconditioning + Partial Cholesky + Chebyshev Iteration (Spielman/Teng, Koutsis/Miller/Peng): Õ(m log n log 1/ε).

Kirchhoff's Spanning Tree Theorem

- Assume $b_s = 1 = -b_t$ and $b_v = 0$ otherwise (Superposition)
- for a spanning tree T: $c(T) = \prod_e 1/R_e$
- $N = \sum_T c(T)$
- for an edge e = (a, b): S(a, b) = all spanning trees that contain a and b (in this order) on path from s to t.

$$N(a,b) = \sum_{T \in S(a,b)} c(T).$$

$$Q_{(a,b)} = \frac{N(a,b) - N(b,a)}{N}$$

Q is an electrical flow of value 1 from s to t.

Current Law Holds

For simplicity, multiply all currents by *N*.

$$Q_{(a,b)}^{T} = \begin{cases} c(T) & \text{if } T \text{ contains } s \dots ab \dots t \\ -c(T) & \text{if } T \text{ contains } s \dots ba \dots t \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$Q_{ab} = \sum_{T} Q_{ab}^{T}$$

T induces a current of c(T) from s to t along its path from s to t. So total current is N as desired and flow conservation holds.

Voltage Law Holds

thicket = spanning forests with two components F_0 and F_1 such that $s_i \in F_i$. $F = F_0 \cup F_1$.

 $Q^F_{(a,b)} = egin{cases} Q^{F\cup ab}_{(a,b)} & ext{if } F\cup ab ext{ is a spanning tree} \ 0 & ext{otherwise.} \end{cases}$

Then $Q_e = \sum_F Q_e^F$. Let *C* be a cycle.

$$\sum_{e \in C} d(e, C) \Delta_e = \sum_{e \in C} d(e, C) R_e Q_e = \sum_{e \in C} d(e, C) R_e \sum_F Q_e^F$$
$$= \sum_F \sum_{e \in C, e \text{ extends } F} d(e, C) R_e \prod_{e' \in F \cup e} 1/R_{e'}$$
$$= \sum_F \prod_{e' \in F} 1/R_{e'} \sum_{e \in C, e \text{ extends } F} d(e, C) = 0$$

