"リи"

Basic Facts about Electrical Networks

Kurt Mehlhorn

Max Planck Institute for Informatics and Saarland University

September 27, 2011

Kirchoff's Laws

- Let $G=(V, E)$ be an undirected graph; fix an orientation of each edge.
- $R_{e}=$ resistance of edge $e=(u, v)$
- $b_{u}=$ external current provided (extracted) at $u ; \sum_{u} b_{u}=0$.
- $Q_{e}=$ current through e in the direction from u to v (might be negative)
- Current Law: $\sum_{e=(u, v)} Q_{e}-\sum_{e=(v, u)} Q_{e}=b_{u}$ for every u
- Ohm's Law: If R_{e} is the resistance of $e=(u, v)$, then

$$
Q_{e}=\Delta_{e} / R_{e}
$$

where Δ_{e} is the potential difference between u and v.

- Voltage Law: Potential differences sum to zero around any cycle and hence can assign potentials p_{u} to the vertices

Superposition Principle

Additivity of Solutions

- Assume $b=b^{(1)}+b^{(2)}$ and $b^{(i)}$ legal
- Let $Q^{(i)}$ be an electrical flow for $b^{(i)}$. Then $Q^{(1)}+Q^{(2)}$ is electrical flow for b.
- Potentials also add.

Thompson's Principle

Electrical Flows are Optimal

Let Q be the electrical flow satisfying the demand vector b and let f be any flow satisfying it. Then

$$
\mathcal{E}(Q)=\sum_{e} \Delta_{e} Q_{e}=\sum_{e} R_{e} Q_{e}^{2} \leq \sum_{e} R_{e} f_{e}^{2}
$$

Let $g=f-Q$. Then g is a circulation and $f=g+Q$. Then

$$
\sum_{e} R_{e} f_{e}^{2}=\sum_{e} R_{e}\left(g_{e}^{2}+2 g_{e} Q_{e}+Q_{e}^{2}\right) \geq \sum_{e} R_{e} Q_{e}^{2}+\sum_{e} 2 \Delta_{e} g_{e} .
$$

The last term is zero since g is a sum of circular flows and for any cycle the potential differences sum to zero.

Effective Resistance

Effective Resistance

Let Q be an electrical flow of 1 from s to t.
The effective resistance of the network is the potential difference Δ between s and t.

This is also the energy of the flow.

$$
\begin{gathered}
\mathcal{E}(Q)=\Delta \cdot 1=\Delta . \\
\mathcal{E}(Q)=\sum_{e} \Delta_{e} Q_{e}=\sum_{P} \sum_{e \in P} \Delta_{e} Q_{P}=\Delta \sum_{P} Q_{P}=\Delta .
\end{gathered}
$$

Computing the Currents

Let p_{u} be the (unknown) potential of node u. For any edge $e=(u, v)$ the current from u to v is $\left(p_{u}-p_{v}\right) / R_{u v}$. The net-current at u is equal to b_{u} :

$$
\sum_{v \in \delta(u)} \frac{p_{u}-p_{v}}{R_{u v}}=b_{u} .
$$

or equivalently

$$
\left(\sum_{v \in \delta(u)} \frac{1}{R_{u v}}\right) p_{u}+\sum_{v \in \delta(u)} \frac{-1}{R_{u v}} p_{v}=b_{u}
$$

Coefficient matrix is symmetric diagonally dominant (SDD).

Methods for Solving SSD-system $A x=b$

- Cholesky factorization: $A=L L^{T}$ where L is a lower triangular matrix
- Gauss-Seidel Iteration: compute $x^{(k)}$ for $k=1,2,3, \ldots$. For fixed k, compute $x_{i}^{(k+1)}$ for $i=1,2,3, \ldots$:

$$
x_{i}^{(k+1)}=\frac{1}{a_{i j}}\left(b_{i}-\sum_{j>i} a_{i j} x_{j}^{(k)}-\sum_{j<i} a_{i j} x_{j}^{(k+1)}\right)
$$

- Preconditioning: solve $B A x=B b$ for a suitable B.
- Recursive Preconditioning + Partial Cholesky + Chebyshev Iteration (Spielman/Teng, Koutsis/Miller/Peng):
$\widetilde{O}(m \log n \log 1 / \epsilon)$.

Kirchhoff's Spanning Tree Theorem

- Assume $b_{s}=1=-b_{t}$ and $b_{v}=0$ otherwise (Superposition)
- for a spanning tree $T: c(T)=\prod_{e} 1 / R_{e}$
- $N=\sum_{T} c(T)$
- for an edge $e=(a, b): S(a, b)=$ all spanning trees that contain a and b (in this order) on path from s to t.

$$
\begin{gathered}
N(a, b)=\sum_{T \in S(a, b)} c(T) . \\
Q_{(a, b)}=\frac{N(a, b)-N(b, a)}{N}
\end{gathered}
$$

Q is an electrical flow of value 1 from s to t.

Current Law Holds

For simplicity, multiply all currents by N.

$$
Q_{(a, b)}^{T}= \begin{cases}c(T) & \text { if } T \text { contains } s \ldots a b \ldots t \\ -c(T) & \text { if } T \text { contains } s \ldots b a \ldots t \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
Q_{a b}=\sum_{T} Q_{a b}^{T}
$$

T induces a current of $c(T)$ from s to t along its path from s to t. So total current is N as desired and flow conservation holds.

Voltage Law Holds

thicket $=$ spanning forests with two components F_{0} and F_{1} such that $s_{i} \in F_{i} . \quad F=F_{0} \cup F_{1}$.

$$
Q_{(a, b)}^{F}= \begin{cases}Q_{(a, b)}^{F \cup a b} & \text { if } F \cup a b \text { is a spanning tree } \\ 0 & \text { otherwise. }\end{cases}
$$

Then $Q_{e}=\sum_{F} Q_{e}^{F}$. Let C be a cycle.

$$
\begin{aligned}
\sum_{e \in C} d(e, C) \Delta_{e} & =\sum_{e \in C} d(e, C) R_{e} Q_{e}=\sum_{e \in C} d(e, C) R_{e} \sum_{F} Q_{e}^{F} \\
& =\sum_{F} \sum_{e \in C, e \text { extends } F} d(e, C) R_{e} \prod_{e^{\prime} \in F \cup e} 1 / R_{e^{\prime}} \\
& =\sum_{F} \prod_{e^{\prime} \in F} 1 / R_{e^{\prime}} \sum_{e \in C, e \text { extends } F} d(e, C)=0
\end{aligned}
$$

