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Motivation

• graphs without cycles are boring

• cycles in graphs play an important role in many applications, e.g.,
network analysis, biology, chemistry, periodic scheduling, surface
reconstruction

• cycle bases are a compact representation of the set of all cycles

• cycle bases raise many interesting mathematical and algorithmic
problems
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Overview

• Structural Results
• Directed, Undirected, Integral, Strictly Fundamental Bases
• The Arc-Cycle Matric and its Determinant
• General Weight Bounds

• Minimum Weight Cycle Bases: Complexity and Algorithms
• Undirected and Directed Cycle Basis: Polynomial Time
• Strictly Fundamental: APX-hard
• Integral: ???

• Applications
• Network Analysis
• Periodic Time Tabling
• Buffer: Surface Reconstruction

Slides available at my home page
Survey paper should be available within the next two months
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Cycle Basis
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• B = {C1,C2,C3,C4} is a directed cycle basis

• vector representation: C1 = (0,1,1,1,1,−1,0,0), entries = edge usages

• D = (1,1,1,1,0,0,0,0) = (C1 +C2 +C3 +C4)/3 computation in Q

• weight of basis: w(B) = 3w(e1)+3w(e2)+ . . .+2w(e5)+2w(e6)+ . . .

• undirected basis: C1 = (0,1,1,1,1,1,0,0) ignore directions

• D = C1⊕C2⊕C3⊕C4 computation in Z2
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Undirected Cycle Basis: Formal Definition

• G = (V,E) undirected graph

• cycle = set C of edges such that degree of every vertex wrt C is even

• C = (m(e1),m(e2), . . . ,m(em)) ∈ {0,1}E

• m(ei) = 1 iff ei is an element of C

• cycle space = set of all cycles
• addition of cycles = componentwise addition mod 2

= symmetric difference of edge sets
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The Directed Case

• G = (V,E) directed graph

• cycle space = vector space over Q.

• element of this vector space, C = (m(e1),m(e2), . . . ,m(em)) ∈ QE

• m(ei) multiplicity of ei

• constraint
• take |m(ei)| copies of ei

• reverse direction if m(ei) < 0
• then inflow = outflow for every vertex

1

2

−3

•• a simple cycle in the underlying undirected graph gives rise to a vector
in {−1,0,+1}E .
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The Spanning Tree Basis

• let T be an arbitrary spanning tree N = non-tree edges

• for every non-tree edge e,
Ce = e+ T - path connecting the endpoints of e

• B = {Ce; e ∈ N } is a basis dimension of cycle space
ν :=N :=m−n+1

• cycles in B are independent
• they span all cycles: for any cycle C, we have C = ∑e∈N λe ·Ce

λe =











+1 if C and Ce use e with identical orientation

−1 if C and Ce use e with opposite orientation

0 otherwise

Pf: C−∑e∈N λe ·Ce is a cycle and contains only tree edges.

• minimum weight spanning tree basis is NP-complete (Deo et. al., 82)

• spanning tree basis is integral
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Weight of a Basis

w, weight function on the arcs

weight of a cycle = sum of the weight of its arcs

weight of a basis = sum of the weights of its cycles

uniform weights: w(a) = 1 for all arcs a
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Applications I

• analysis of cycle space has applications in electrical engineering,
biology, chemistry, periodic scheduling, surface reconstruction, graph
drawing. . .

• in these applications, it is useful to have a basis of small cardinality
(uniform weights) or small weight (non-uniform weights)

• analysis of an electrical network (Kirchhof’s laws)

• for any cycle C the sum of the voltage drops is zero

• sufficient: for every cycle C in a cycle basis ....

• number of non-zero entries in equations = size of cycle basis

• computational effort is heavily influenced by size of cycle basis

• electrical networks can be huge (up to a 100 millions of nodes),
Infineon
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Network Analysis

• consider a network with nonlinear resistors, i.e., voltage drop is a
nonlinear function of current (not necessarily monotonic), and some
number of independent current sources

• voltage drop va at arc a, current ia through ia: va = fa(ia)

• constraints

∑
a∈C

fa(ia) = 0 for any cycle C (1)

current into v = current out of v for any vertex v (2)

ia = const for current source arcs (3)

• constraints (1) are numerically hard, (2) are easy

• it suffices to enforce (1) for the circuits in a basis

• number of terms in (1) = total cardinality of cycle basis

• computational effort is heavily influenced by size of cycle basis

• electrical networks can be huge (millions of nodes), Infineon
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The Zoo of Cycle Bases I

• Let G = (V,A) be a directed graph and let B be a basis of its directed
cycle space. B is called a

• directed cycle basis: always

• undirected cycle basis: if (after ignoring edge directions) it is a
undirected cycle basis of the underlying undirected graph.

• integral cycle basis: if every directed cycle is an integral linear
combination of the cycles in B

• strictly fundamental cycle basis: if there is a spanning tree T such that
B is the set of fundamental cycles with respect to T

Thm (Liebchen/Rizzi)

• this is a hierarchy, e.g., any integral basis is an undirected basis

• In general, higher-up classes are strictly larger.

• In general, higher-up classes have better minimum weight bases
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The Zoo of Cycle Bases II: Hierarchy

• B be a basis of directed cycle space. B is called a

• directed cycle basis: always

• undirected cycle basis: if (after ignoring edge directions) it is a
undirected cycle basis of the underlying undirected graph.

• integral cycle basis: if every directed cycle is an integral linear
combination of the cycles in B

• strictly fundamental cycle basis: if there is a spanning tree T such that
B is the set of fundamental cycles with respect to T

• any strictly fundamental basis is integral already shown
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The Zoo of Cycle Bases II: Hierarchy

• B be a basis of directed cycle space. B is called a

• directed cycle basis: always

• undirected cycle basis: if (after ignoring edge directions) it is a
undirected cycle basis of the underlying undirected graph.

• integral cycle basis: if every directed cycle is an integral linear
combination of the cycles in B

• strictly fundamental cycle basis: if there is a spanning tree T such that
B is the set of fundamental cycles with respect to T

• any integral basis is an undirected basis:

if C = ∑Ci∈B λiCi with λi ∈ Z, the same equation holds mod2
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The Zoo of Cycle Bases II: Hierarchy

• B be a basis of directed cycle space. B is called a

• directed cycle basis: always

• undirected cycle basis: if (after ignoring edge directions) it is a
undirected cycle basis of the underlying undirected graph.

• integral cycle basis: if every directed cycle is an integral linear
combination of the cycles in B

• strictly fundamental cycle basis: if there is a spanning tree T such that
B is the set of fundamental cycles with respect to T

• any undirected basis is a directed basis:

if a set of cycles is depedendent over Q, then over F2

if ∑i λiCi = 0 with λi ∈ Z, not all even, then this is also nontrivial over F2
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Proof Technique for Strict Hierarchy

• let X and Y be two of the types with X “above” Y

• invent a graph G and a weight function w

• invent a basis B of G

• show that B is a (unique minimum weight) basis of type X

• show that B is not of type Y
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Cycle Basis
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• B = {C1,C2,C3,C4} is a directed cycle basis

• vector representation: C1 = (0,1,1,1,1,−1,0,0), entries = edge usages

• D = the cycle consisting of the four outer edges

• D = (1,1,1,1,0,0,0,0) = (C1 +C2 +C3 +C4)/3

• B is not an integral basis
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Open Problem on Hierarchy

• Let X and Y be two classes with Y ⊆ X:

derive a good bound for

max
G,w

cost of minimum weight basis of type Y
cost of minimum weight basis of type X

• the only known result of this kind is (see below):

max
G,w

cost of minimum weight integral basis
cost of minimum weight basis

≤ logn
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Simple Properties

• G consists of components G1, G2, . . .

a minimum weight (directed, undirected) cycle basis of G is obtained by
combining optimal bases of the components

• there is a minimum weight (directed, undirected) cycle basis consisting
only of simple cycles
• assume C ∈ B is nonsimple
• thus C = C1 +C2 with w(Ci) ≤ w(C)

• coefficient of C in representation of either C1 or C2 is non-zero
(otherwise, B−C is a basis)

• thus either B−C +C1 or B−C +C2 is a basis.
• weight does not increase

• Open Problem: does either property hold for integral basis?

• Open Problem: a combinatorial characterization of integral bases
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The Arc-Cycle Matrix

• m×ν matrix Γ, m = ν +n−1

• rows are indexed by arcs, columns are indexed
by cycles

• Γ corresponds to a basis B iff
the equation

χC = ΓxC

has a solution for the characteristic vector χC of
any cycle C.

• square submatrices of Γ are of particular
interest

• Thm (Liebchen): Up to sign, all nonsingular
square submatrices of Γ have the same deter-
minant.

ν

m Γ
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The Arc-Cycle Matrix II

• m×ν matrix Γ, m = ν +n−1

• rows are indexed by arcs, columns are indexed
by cycles

• Let T be a set of n−1 edges

• The square submatrix corresponding to the
edges not in T is non-singular iff T is a spanning
tree
• Let Φ be the arc-cycle matrix for the

fundamental basis with respect to T . Then
Φ = ΓR for some R and hence I = AR.

Thus A is nonsingular. Also
Γ = ΦR−1 = ΦA.

• Assume T contains a cycle, say C. Then

χC = ΓxC and hence 0 = AxC

ν

A

T
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The Arc-Cycle Matrix III

• m×ν matrix Γ, m = ν +n−1

• rows are indexed by arcs, columns are indexed
by cycles

• Let T and T ′ be spanning trees,

A indexed by the edges not in T ,

A′ indexed by the edges not in T ′

• Let Φ be the arc-cycle matrix for the
fundamental basis with respect to T . Then
ΦA = Γ.

• Restriction to rows of A′: Φ′A = A′

• Φ is totally unimodular: ±detA = detA′

ν

A

T
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Characterization of Cycle Basis in Terms ofΓ
• m×ν matrix Γ, m = ν +n−1

• rows are indexed by arcs, columns are indexed
by cycles

• let D = detA be the determinant of the
nonsingular square submatrices (up to sign)

• let C be any cycle, then

χC = ΓxC and hence xC = A−1χ ′
C

• Thm (Liebchen): B is
• directed basis iff D 6= 0
• undirected basis iff D is odd
• integral basis iff D is one

• Open Problem: combinatorial characterization of
integral basis

ν

A

T
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Small Weight Integral Bases

• Thm (Rizzi): Every digraph has an integral basis of weight 2W logn,
where W is the total weight of the edges

• Fact: every graph of minimum degree 3 contains a cycle of length at
most 2logn. grow a breadth first tree

• Kavitha’s algorithm (07):

• while G is not a tree
• view paths of degree two nodes as superedges
• find cycle of 2logn superedges, call it C
• add C to basis and delete its heaviest superedge from the graph
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Small Weight Integral Basis II

• while G is not a tree
• view paths of degree two nodes as superedges
• find cycle of 2logn superedges
• add it to basis and delete its heaviest superedge from the graph

• weight of cycle is at most 2logn times weight of deleted edges

• thus w(B) ≤ (2logn)W
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Small Weight Integral Basis III

• while G is not a tree
• view paths of degree two nodes as superedges
• find cycle of 2logn superedges
• add it to basis and delete its heaviest superedge from the graph

• we construct spanning tree as we go along

• classify one deleted edge as a nontree edge, all
others as tree edges

• above dotted line: previously deleted nontree
edges

• C uses no edge above dotted line

• thus the square matrix corresponding to the non-
tree edges is lower diagonal with ones on the dia-
gonal; hence basis is integral.

!
!

C

T

N 1

∗

∗
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More on Absolute Weight Bounds

• every graph has an integral basis of weight O(W logn)

• (Horton) every graph has an integral basis of size O(n2)

• by induction on the number of nodes

• there are graphs with 2n edges such that every basis has size Ω(n logn)

• 4-regular graph with girth Ω(logn)

• so nonlinear size is required for very sparse graphs and linear size
suffices for very dense graphs

• open problem: what happens for m ∈ ω(n)∩o(n2)?

• open problem: bounds on the size of fundamental bases
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Algorithms and Complexity

• minimum weight directed cycle basis: polynomial time

• minimum weight undirected cycle basis: polynomial time

• minimum weight strictly fundamental cycle basis: APX -hard, i.e.,
if P 6= NP, no constant-factor approximation
• NP-completeness was shown by Deo et al.
• APX-hardness was shown by Rizzi

• minimum weight integral basis: nothing is known
• not known to be in P
• clearly in NP
• not known to be NP-complete
• no nontrivial exact algorithm
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Algorithmic Approach 1: Horton

• compute a sufficiently large set of cycles, e.g., all simple cycles

• sort them by weight

• initialize B to empty set

• go through the cycles C in order of increasing weight

• add C to B if it is independent of B

• use Gaussian elimination to decide independance

• in order to make the approach efficient, one needs to identify a small
set of cycles which is guaranteed to contain a minimum basis
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The Horton Set of Cycles

• for any edge e = (a,b) and vertex v take the cycle

Ce,v = e+shortest paths from v to a and b

v

a

b

e

• O(nm) cycles, Gaussian elimination on a m×nm matrix

• running time (Horton, Golynski/Horton): O(nm3) or O(nmω)

• a smaller set suffices (Mehlhorn/Michail): v belongs to a feedback
vertex set and a and b are in different subtrees of shortest path tree Tv.

• open problem: a candidate set of size o(nm)
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Algorithmic Approach 2: de Pina

• construct basis iteratively, assume partial basis is {C1, . . . ,Ci }

• compute a vector S orthogonal to C1, . . . , Ci, i.e.,
〈C j,S〉 = 0 for 1≤ j ≤ i.

• find a cheapest cycle C with 〈C,S〉 6= 0

• set Ci+1 to C and in this way extend the partial basis

• C is not the cheapest cycle independent of the partial basis
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Algorithmic Approach 2: de Pina

• construct basis iteratively, assume partial basis is {C1, . . . ,Ci }

• compute a vector S orthogonal to C1, . . . , Ci, i.e.,
〈C j,S〉 = 0 for 1≤ j ≤ i.

• find a cheapest cycle C with 〈C,S〉 6= 0

• set Ci+1 to C and in this way extend the partial basis

• C is not the cheapest cycle independent of the partial basis

• correctness
• alg computes a basis, since Ci+1 is linearly independent from the

previous C j ’s
• alg computes a minimum weight basis, since every basis must

contain a C with 〈C,S〉 6= 0 and alg adds the cheapest such C
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Algorithmic Approach 2: de Pina

• construct basis iteratively, assume partial basis is {C1, . . . ,Ci }

• compute a vector S orthogonal to C1, . . . , Ci, i.e.,
〈C j,S〉 = 0 for 1≤ j ≤ i.

• find a cheapest cycle C with 〈C,S〉 6= 0

• set Ci+1 to C and in this way extend the partial basis

• C is not the cheapest cycle independent of the partial basis

• correctness
• alg computes a basis, since Ci+1 is linearly independent from the

previous C j ’s
• alg computes a minimum weight basis, since every basis must

contain a C with 〈C,S〉 6= 0 and alg adds the cheapest such C

• efficiency
• make each iteration efficient
• make iterations profit from each other
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More Details

• partial basis C1, . . . , Ci, vectors in {0,1}E

• compute S ∈ {0,1}E orthogonal to C1, . . .Ci

• amounts to solving a linear system of equations, namely

〈S,C j〉 = 0 mod 2for 1≤ j ≤ i

• time bound for this step is O(mω) per iteration (Gaussian
elimination) and O(m1+ω) in total

• this can be brought done to O(mω) total time, see next slide

• determine a minimum weight cycle C with 〈S,C〉 6= 0
• see next but one slide

• add it to the basis and repeat
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Faster Implementation

• maintain partial basis C1, . . . , Ci−1, vectors in {0,1}E

• plus basis Si, . . . SN of orthogonal space

• iteration becomes:

• intialize S1 to SN to unit vectors (Si to i-th unit vector)

• in i-th iteration, compute Ci such that 〈Si,Ci〉 = 1 mod 2

• update S j, j > i, as S j = S j − < S j,Ci > Si

• update step makes S j orthogonal to Ci and maintains orthogonality
to C1 to Ci−1.

• update step has time O(m2), total time O(m3).

• total time for updates can be brought done to O(mω)
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Yet Faster Implementation (KMM)

• update in bulk a generally useful technique

• SN/2+1 to SN are only needed in “second half” of computation, i.e., for
computing CN/2+1 to CN

• update SN/2+1 to SN only after computation of C1 to CN/2

• (S′N/2+1, . . . ,S
′
N) = (SN/2+1, . . . ,SN)− (S1, . . . ,SN/2)×R, R unknown

• we want 〈S′N/2+i,C j〉 = 0 for 1≤ i, j ≤ N/2

• we know 〈Si,C j〉 = δi j for 1≤ j ≤ i ≤ N/2

• multiply the equality above by (C1, . . . ,CN/2)
T and obtain

0 = (C1, . . . ,CN/2)
T × (SN/2+1, . . . ,SN)−U ×R

• U is upper diagonal with ones on the diagonal, solve for R

• update corresponds to a few matrix multiplies and matrix inversions

• use this idea recursively, total time O(mω)
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Computing Cycles

determine a minimum weight cycle C with 〈S,C〉 6= 0 mod 2, i.e., a minimum
weight cycle using an odd number of edges in S.

• consider a graph with two copies of V ,
vertices v0 and v1.

• edges e ∈ S change sides, and edges
e 6∈ S do not

• for any v, compute minimum weight path
from v0 to v1.

• time O(m+n logn) for fixed v,

• time O(nm+n2 logn) per iteration, i.e.,
for all v

• O(nm2+n2m logn) overall

u

v

w

(u,v) ∈ S,
(v,w) 6∈ S,
(u,w) 6∈ S

can be improved to O(nm2/ logn+n2m) by restricting search to Horton set
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Improved Search for Cycle (MM)

• idea: find cheapest C ∈ Horton Set with 〈S,C〉 = 1 instead of cheapest
C with 〈S,C〉 = 1

• precomputation: for each v, compute shortest path tree Tv ONCE

• in each iteration, i.e., once the S of the iteration is known

• for each v do:

• label a in Tv with 〈S, pa〉

• for any edge e = (a,b), compute
〈S,Cv,e〉 as

〈S, pa〉+ 〈S,e〉+ 〈S, pb〉

in time O(1)

• O(m) per v, O(mn) per iteration

v

a

b

e
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History

Type Authors Approach Running time

undirected Horton, 87 Horton O(m3n)

de Pina, 95 de Pina O(m3 +mn2 logn)

Golinsky/Horton, 02 Horton O(mω n)

Berger/Gritzmann/de Vries, 04 de Pina O(m3 +mn2 logn)

Kavitha/Mehlhorn/Michail/Paluch, 04 de Pina O(m2n+mn2 logn)

Mehlhorn/Michail, 07 Horton-Pina O(m2n/ logn+mn2)

directed Kavitha/Mehlhorn, 04 de Pina O(m4n) det, O(m3n) Monte Carlo

Liebchen/Rizzi, 04 Horton O(m1+ω n)

Kavitha, 05 de Pina O(m2n logn) Monte Carlo

Hariharan/Kavitha/Mehlhorn, 05 de Pina O(m3n+m2n2 logn)

Hariharan/Kavitha/Mehlhorn, 06 de Pina O(m2n+mn2 logn) Monte Carlo

Mehlhorn,Michail 07 Horton-Pina O(m3n) det, O(m2n) Monte Carlo

open problem: faster algs, the S’s are only used to guarantee independence
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Implementation

• our best implementation uses a blend of de Pina and Horton’s
approach

• plus heuristics for fast cycle finding

• much, much faster than the pure algorithms

• implementation available from Dimitris Michail

• for details, see M/Michail: Implementing Minimum Cycle Basis
Algorithms (JEA)

• open problem: better implementation and/or algorithm that can handle
Infineon’s graphs
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The Directed Case

• G = (V,E) directed graph

• cycle space = vector space over Q.

• element of this vector space, C = (m(e1),m(e2), . . . ,m(em)) ∈ QE

• m(ei) multiplicity of ei

• constraint
• take |m(ei)| copies of ei

• reverse direction if m(ei) < 0
• then inflow = outflow for every vertex

1

2

−3

•• a simple cycle in the underlying undirected graph gives rise to a vector
in {−1,0,+1}E .
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The Directed Case: algorithmic Approaches

• in principle, as in the undirected case

• but the steps are much harder to realize as we now work over the field
Q and no longer over F2.

• entries of our matrices become large integers and hence
cost of arithmetic becomes non-trivial

• finding a minimum cost path with non-zero dot-product 〈C,S〉 becomes
non-trivial

• use of modular arithmetic, randomization, and a variant of Dijkstra’s
algorithm

• details, see papers
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Approximation Algorithms

2k−1 approximation in time O(kmn1+1/k +mn(1+1/k)(ω−1)) Kavitha/M/Michail 07

• let G′ = (V,E ′) be a 2k−1 spanner of G size O(n1+1/k)

• for any e ∈ E \E ′: e + shortest path in E ′ connecting its endpoints

• plus minimum cycle basis of G′

• weight of each family is bounded by (2k−1)w(MCB)

• more involved argument: joint weight is bounded by (2k−1)w(MCB)

open problem: better approximation algorithms, avoid use of matrix
multiplication, how well can you do in linear time?
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Summary

• cycle basis are useful in many contexts: analysis of electrical networks,
periodic scheduling, surface reconstruction

• significant progress was made over the past five years

• many open questions (structural, algorithmic) remain

• in the remaining time, I tell you about an unexpected application
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An Unexpected Application: Surface Reconstruction

given a point cloud P in R3 reconstruct the underlying surface S

HERE: point cloud comes from a surface of genus one
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Beyond Smooth Surfaces: Cocone Reconstruction
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Beyond Smooth Surfaces: Genus Detection I

• genus g of a closed surface = sphere + g handles

• examples are genus one surfaces, i.e., homeomorphic to a torus

• genus detection: compute 2g cycles spanning the space of non-trivial
cycles
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MCBs in Nearest Neighbor Graph

• Nearest Neighbor Graph Gk on P (k integer parameter)
• connect u and v is v is one the k points closest to u and vice versa

k = 4

• easy to construct

• Theorem (Gotsman/Kaligossi/Mehlhorn/Michail/Pyrga 05): if S is smooth, P is
sufficiently dense, and k appropriately chosen:

MCB of Gk(P) consists of short (lenght at most 2k +3) and long (length
at least 4k +6) cycles. There are 2g long cycles

Moreover, the short cycles span the space of trivial cycles and the long
cycles form a homology basis.
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Beyond Smooth Surfaces: Reconstruction

• Tewari/Gotsman/Gortler have an algorithm to reconstruct genus one
surfaces if a basis for the trivial cycles of Gk(P) is known.

• our algorithm computes a basis for the trivial cycles of Gk(P)

• together the algorithms reconstruct genus one surfaces

• algorithm constructs a genus one triangulation of P

• open problem: geometric guarantee, not just topological guarantee
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Tutte’s Algorithm for Drawing a Planar Graph

• G is a 3-connected planar graph

• place the nodes of the outer face on the vertices of a convex polygon

• relax the graph, i.e., put every nonboundary node into the center of
gravity of its neighbors

• produces a planar embedding with all faces nondegenerate

• algorithmically: amounts to solving a linear system either directly or
iteratively

• for every vertex not on the boundary: xv = ∑w∈N(v) xw/deg(v)

• or alternatively ∑w∈N(v)(xw − xv) = 0
Kurt Mehlhorn, MPI for Informatics and Saarland University Cycle Bases in Graphs Structure, Algorithms, Applications, Open Problems – p.45/56



Drawings on the Torus I

• goal: given a map (graph + cyclic ordering on the edges incident to any
vertex) of genus one, embed it into the torus

• with every (directed edge) (v,w) associate a variable zvw: the vector
from v to w in the embedding

• constraints:
(symmetry) zvw = −zwv for all (v,w) ∈ E.

(center of gravity) for all v ∈V : ∑w∈N(v) zvw = 0.

(face sums) for all faces f : ∑e∈δ f ze = 0.

• E variables (sincezvw = −zwv), V +F equations

• (Euler’s formula): F −E +V = 2−2g = 0 and hence E = V +F .

• two equations are redundant: one vertex and one face equation

• solution space is two-dimensional

compute two linearly independent solutions, assign an arbitrary vertex
to the origin, and compute x- and y-coordinates of the other vertices
using the solutions
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Drawings on the Torus II

• a map of genus one: one vertex v, two
undirected edges a and b, one face

• with every (directed edge) (v,w) associate a
variable zvw: the vector from v to w in the
embedding

• constraints:

(symmetry) za = −zaR and similarly for b

(center of gravity) za + zb + zaR + zbR = 0

(face sums) one face: a,b,aR,bR.

• two variables, no constraint

• two independent solutions:
xa = 1, xb = 0 ya = 0, yb = 1

• after identification, this is a perfect drawing
on the torus

v
aa

b
b ar

br

v

v

v

v

a

a

bb
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Drawings on the Torus III

method generalizes Tutte’s method

Gortler/Cotsman/Thurston: for a 3-connected map of genus one, the
method produces an embedding with nondegenerate and disjoint faces
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Surface Reconstruction

given a point cloud P in IR3 reconstruct the underlying surface S

for this talk; point cloud comes from a surface of genus one
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Reconstruction of Surfaces of Genus One

• P, point cloud (sampled from unknown surface S of genus one)

• Gotsman et al. suggest the following strategy:

1. map P to the torus

2. triangulate the embedded point set, say Delaunay

3. lift triangulation to the original point set in three-space

• step one must preserve local structure (as in graph embedding)
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Reconstruction of Surfaces of Genus One

• P, point cloud (sampled from unknown surface S of genus one)

• Gotsman et al. suggest the following strategy:

1. map P to the torus

• Gk symmetric nearest neighbor graph: (v,w) is an edge if w is
one of the k-closest points to v and vice-versa.

• use Gk instead of a genus-one-mesh in the embedding alg.

• enforce face-sum-constraint for an appropriate (???) set of
cycles

2. triangulate the embedded point set, say Delaunay

3. lift triangulation to the original point set in three-space

• step one must preserve local structure (as in graph embedding)
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Which Cycles?

• imagine a drawing of Gk on S

• want only cycles corresponding
to trivial loops and a sufficient
number of them

• do not want cycles correspon-
ding to nontrivial loops
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Which Cycles?

• imagine a drawing of Gk on S

• want only cycles corresponding
to trivial loops and a sufficient
number of them

• do not want cycles correspon-
ding to nontrivial loops

The following seems to work (experiments by Gotsman et al. using our impl.):

• compute a MCB of Gk, uniform edge costs

• in the MCB exactly two cycles are long and all others are short WHY

• the short ones form a basis for the trivial cycles USE THEM
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Reconstruction for Rocker Arm
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Some Intuition

• Gk has n nodes and m edges, cycle basis has m−n+1 cycles

• every cycle basis must contain at least two cycles corresponding to
nontrivial loops (= nontrivial cycles)

• if sample is sufficiently dense, nontrivial cycles are long
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Some Intuition

• Gk has n nodes and m edges, cycle basis has m−n+1 cycles

• every cycle basis must contain at least two cycles corresponding to
nontrivial loops (= nontrivial cycles)

• if sample is sufficiently dense, nontrivial cycles are long

• assume (wishful thinking)
• Gk contains a mesh M for S, M has m′ edges
• consider the following set of cycles:

• all but one face of M Euler tells us f −m′ +n = 2−2g = 0
• one cycle for each edge of Gk −M
• in total, f −1+(m−m′) = m′−n−1+m−m′ = m−n−1 cycles

• these cycles are independent; let us assume further that they are
short (compared to the nontrivial cycles)

• then there is a cycle basis in which all but two cycles are short
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Some Intuition

• Gk has n nodes and m edges, cycle basis has m−n+1 cycles

• every cycle basis must contain at least two cycles corresponding to
nontrivial loops (= nontrivial cycles)

• if sample is sufficiently dense, nontrivial cycles are long

• assume (wishful thinking)
• Gk contains a mesh M for S, M has m′ edges
• consider the following set of cycles:

• all but one face of M Euler tells us f −m′ +n = 2−2g = 0
• one cycle for each edge of Gk −M
• in total, f −1+(m−m′) = m′−n−1+m−m′ = m−n−1 cycles

• these cycles are independent; let us assume further that they are
short (compared to the nontrivial cycles)

• then there is a cycle basis in which all but two cycles are short

• Thus MCB contains exactly two long cycles and
the short cycles in MCB span the trivial cycles
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A Theorem

Assume S is smooth, P is dense, and k sufficiently large

• for x ∈ S: f (x) := distance from x to Voronoi diagram of S

• for every x ∈ S there is a p ∈ P with ||x− p|| ≤ ε f (x)

• if p,q ∈ P and p 6= q then ||p−q|| ≥ δ f (p)

• ε = 0.01, δ = ε/10, k about 100
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A Theorem

Assume S is smooth, P is dense, and k sufficiently large

• for x ∈ S: f (x) := distance from x to Voronoi diagram of S

• for every x ∈ S there is a p ∈ P with ||x− p|| ≤ ε f (x)

• if p,q ∈ P and p 6= q then ||p−q|| ≥ δ f (p)

• ε = 0.01, δ = ε/10, k about 100

• (Amena/Bern) Gk contains a mesh for S

• all cycles in the set described above are short: lenght at most 2k +3

• all nontrivial cycles are long: length at least least 4k +6.

• Theorem: the short cycles in MCB span the space of trivial cycles and
MCB contains exactly two long cycles

• experiments work with much large values of ε and much smaller values
of k
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Open Problems for this Approach to Surface Reconstruction

• guarantees for the triangulation

• extension to surfaces of higher genus

• extension to nonsmooth surfaces

• show that methods works for larger ranges of ε and k

• faster algorithms for MCB
• smaller set of candidate cycles
• approximation algorithms
• further applications
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Thank you for your attention
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