Exercise 1 Let $B^{(1)}, B^{(2)}, \ldots$ be an unknown sequence of bits. We have n experts. The i-th expert predicts $b_{i}^{(1)}, b_{i}^{(2)}, \ldots$ Whom should we follow?

Consider the following weighted majority rule:

```
let \(w_{i}^{(1)}=\) for all \(i, 1 \leq i \leq n\).
for \(t=1,2, \ldots d o\)
    let \(W^{(t)}=\sum_{i} w_{i}^{(t)}\)
    let \(b^{(t)}=\) nearest integer to \(\sum_{i} w_{i}^{(t)} b_{i}^{(t)} / W^{(t)}\);
    predict \(b^{(t)}\)
    learn \(B^{(t)}\)
    for \(1 \leq i \leq n d o\)
        if \(B^{(t)} \neq b_{i}^{(t)}\) then
                \(w_{i}^{(t+1)}=(1-\varepsilon) w_{i}(t)\)
        end if
    end for
end for
```

1. Let $m_{i}^{(t)}$ be the number of mistakes made by the i-th expert in rounds 1 to t, and let $m^{(t)}$ be the number of mistakes made by the majority rule. Prove

- $w_{i}^{(t+1)}=(1-\varepsilon)^{m_{i}^{(t)}}$
- if $b^{(t)} \neq B^{(t)}$, then $W^{(t+1)} \leq(1-\varepsilon / 2) W^{(t)}$.
- $W^{(t+1)} \leq(1-\varepsilon)^{m^{(t)}}$.

2. Use the previous item to bound $m^{(t)}$.
3. Interpret the result.

Exercise 2 Consider a network of k parallel links with lengths $L_{1}<L_{2}<\ldots<L_{k}$. Let D_{i} be the diameter of the i-th link.

1. $R_{i}=L_{i} / D_{i}$ is the resistance of the i-th link. Compute the effective resistance of the network.
2. Compute the potential difference between source and sink and the current on the i-th link.
3. Let $D=\sum_{i} D_{i}$. Determine the derivative \dot{D} of D.
4. Let $x_{i}=D_{i} / D$. Determine the derivative \dot{x}_{i} of x_{i}. Answer: $\dot{x}_{i}=(1 / D)\left(L / L_{i}-1\right) x_{i}$, where L is defined in the next item.
5. Let L be such that $1 / L=\sum_{i} x_{i} / L_{i}$. Show that $L_{1} \leq L \leq L_{k}$. Show that L is decreasing.
6. Conclude that at all times there is an index $k(t)$ such that D_{i} increases for $i \leq k(t)$ and grows for $i>k(t)$. Moreover, $k(t)$ is a decreasing function of time.
