Exercise 1 Let $B^{(1)}$, $B^{(2)}$, ... be an unknown sequence of bits. We have n experts. The *i*-th expert predicts $b_i^{(1)}$, $b_i^{(2)}$, Whom should we follow? Consider the following weighted majority rule:

$$\begin{split} & let \ w_i^{(1)} = for \ all \ i, \ 1 \leq i \leq n. \\ & for \ t = 1, 2, \dots \ do \\ & let \ W^{(t)} = \sum_i w_i^{(t)} \\ & let \ b^{(t)} = nearest \ integer \ to \ \sum_i w_i^{(t)} b_i^{(t)} / W^{(t)} \\ & predict \ b^{(t)} \\ & learn \ B^{(t)} \\ & for \ 1 \leq i \leq n \ do \\ & if \ B^{(t)} \neq b_i^{(t)} \ then \\ & w_i^{(t+1)} = (1-\varepsilon) w_i(t) \\ & end \ if \\ end \ for \\ end \ for \end{split}$$

- 1. Let $m_i^{(t)}$ be the number of mistakes made by the *i*-th expert in rounds 1 to t, and let $m^{(t)}$ be the number of mistakes made by the majority rule. Prove
 - $w_i^{(t+1)} = (1 \varepsilon)^{m_i^{(t)}}$
 - *if* $b^{(t)} \neq B^{(t)}$, *then* $W^{(t+1)} \leq (1 \varepsilon/2)W^{(t)}$.
 - $W^{(t+1)} \leq (1-\varepsilon)^{m^{(t)}}$.
- 2. Use the previous item to bound $m^{(t)}$.
- 3. Interpret the result.

Exercise 2 Consider a network of k parallel links with lengths $L_1 < L_2 < ... < L_k$. Let D_i be the diameter of the *i*-th link.

- 1. $R_i = L_i/D_i$ is the resistance of the *i*-th link. Compute the effective resistance of the network.
- 2. Compute the potential difference between source and sink and the current on the i-th link.
- *3.* Let $D = \sum_i D_i$. Determine the derivative \dot{D} of D.
- 4. Let $x_i = D_i/D$. Determine the derivative \dot{x}_i of x_i . Answer: $\dot{x}_i = (1/D)(L/L_i 1)x_i$, where *L* is defined in the next item.
- 5. Let L be such that $1/L = \sum_i x_i/L_i$. Show that $L_1 \leq L \leq L_k$. Show that L is decreasing.
- 6. Conclude that at all times there is an index k(t) such that D_i increases for $i \le k(t)$ and grows for i > k(t). Moreover, k(t) is a decreasing function of time.