Geometric Computing and Root Isolation

Kurt Mehlhorn
Max Planck Institute for Informatics and Saarland University

Outline

Geometric Computing

Root Isolation

Bisection

Continued Fractions

Bitstream

Summary

CGAL

Computational Geometry Algorithms Library

- a comprehensive library for geometric computing
- joint effort of INRIA Sophia Antipolis, Tel Aviv, Berlin, ETH, Groningen, MPI-INF, and many others
- algs in CGAL are exact, complete and efficient

this requires new theory

An Arrangement of Algebraic Curves

> input: a set of algebraic curves
output: their arrangement (= a planar embedded graph)
alg is exact and handles any input

Eigenwillig,
Kerber,
Wolpert

The Intersection of Quadric Surfaces

input: a set of quadrics S_{0}, S_{1}, \ldots
output: the arrangement of their intersection curves with S_{0}
alg is exact and handles any input

Berberich, Fogel, Halperin, M, Wein

An all-important primitive

Intersecting two algebraic curves

see also talk by F. Rouillier

Intersecting Two Lines

intersect $5 x+7 y-1=0$ and $3 x-6 y+4=0$

eliminate a variable, say y, and obtain $51 x+22=0$ solve for x and obtain $x=-\frac{22}{51}$
substitute into one of the equations and obtain $-\frac{110}{51}+7 y-1=0$ solve for y and obtain $y=\frac{23}{51}$

Intersecting Two Algebraic Curves

$$
\begin{aligned}
& \text { intersect } 5 x^{2}+7 y^{2}-1=0 \text { and } \\
& 3 x^{2}-4 x-6 y^{2}+5 y+2=0
\end{aligned}
$$

eliminate a variable, say y, and obtain $1601 x^{4}-2656 x^{3}+\ldots$
solve for x and obtain $x_{1}=0.399 \ldots$, $x_{2}=-0.1475 \ldots, x_{3}=\ldots, x_{4}=\ldots$
substitute x_{1} into one of the equations and obtain $7 y^{2}+5(0.399 \ldots)^{2}-1=0$ solve for y and obtain $y_{i j}=$ select the right $y_{i j}$

eliminate y from $5 x^{2}+7 y^{2}-1=0$ and
 $3 x^{2}-4 x-6 y^{2}+5 y+2=0$

$p(x)=\left|\begin{array}{cccc}7 & 0 & 5 x^{2}-1 & 0 \\ 0 & 7 & 0 & 5 x^{2}-1 \\ 6 & 5 & 3 x^{2}-4 x+2 & 0 \\ 0 & 6 & 5 & 3 x^{2}-4 x+2\end{array}\right|=1601 x^{4}-2656 x^{3}+\ldots$

- Sylvester resultant
- roots of $p(x)$ are the x-coordinates of the intersections
- Emeliyanenko ('10): evaluate $p(x)$ at five values in parallel (GPU) and interpolate

Root Isolation

Input: a polynomial p given through its coefficient sequence
Output: isolating intervals for the real roots

Isolating Interval

 an interval $[a, b]$ is isolating if it contains exactly one root of p and is disjoint from other isolating intervals isolating intervals are easily refined (Newton iteration or Abott's method)
Coefficients

- integral, e.g. 27, or bitstreams, e.g., $\pi=3.14 \ldots$
- bitstreams are potentially infinite; we can ask for additional bits

Root Separation: A Measure of Difficulty

Root Separation

- x_{1}, \ldots, x_{n}, the complex roots of p
- $\sigma(p)=\min \left\{\left|x_{i}-x_{j}\right| ; i \neq j\right\}$, the root separation of p
- intuition: the smaller $\sigma(p)$, the harder it is to isolate the roots
- remark: $\sigma(p)$ is zero, if p has multiple roots

Example

- $p=x^{2}-2$
- roots $x_{1}=-\sqrt{2}, x_{2}=+\sqrt{2}$
- $\sigma(p)=2 \sqrt{2}$
- isolating intervals, e.g., ($-2,-1$) and (1,2)

Root Separation: A Measure of Difficulty

Root Separation

- x_{1}, \ldots, x_{n}, the complex roots of p
- $\sigma(p)=\min \left\{\left|x_{i}-x_{j}\right| ; i \neq j\right\}$, the root separation of p
- intuition: the smaller $\sigma(p)$, the harder it is to isolate the roots
- remark: $\sigma(p)$ is zero, if p has multiple roots

Example

- $p=x^{2}-2$
- roots $x_{1}=-\sqrt{2}, x_{2}=+\sqrt{2}$
- $\sigma(p)=2 \sqrt{2}$
- isolating intervals, e.g., ($-2,-1$) and (1,2)

Root Isolation is well-studied with a 200 year history

 two kinds of papers- algorithms without a convergence guarantee
- algorithms with a guarantee
- Simple Bisection Methods: Descartes, Gauss, Vincent, Uspensky, Ostrowski, Collins/Loos, Krandick/Mehlhorn, Rouillier/Zimmermann, Mourrain/Roy/Rouillier, Emiris/Tsigaridis, Mehlhorn/Sagraloff, Eigenwillig/Sharma/Yap...
- Advanced Methods: Henrici, Schönhage, Pan, Smale, ...
- Pan's algorithm is the asymptotically fastest
- but, in his own words:

The algorithm is quite involved, and would require non-trivial implementation work. No implementation was attempted yet.

- open problem: is Pan's alg competitive in practice?

Root Isolation is well-studied with a 200 year history

 two kinds of papers- algorithms without a convergence guarantee
- algorithms with a guarantee
- Simple Bisection Methods: Descartes, Gauss, Vincent, Uspensky, Ostrowski, Collins/Loos, Krandick/Mehlhorn, Rouillier/Zimmermann, Mourrain/Roy/Rouillier, Emiris/Tsigaridis, Mehlhorn/Sagraloff, Eigenwillig/Sharma/Yap...
- Advanced Methods: Henrici, Schönhage, Pan, Smale, ...
- Pan's algorithm is the asymptotically fastest
- but, in his own words:

The algorithm is quite involved, and would require non-trivial implementation work. No implementation was attempted yet.

- open problem: is Pan's alg competitive in practice?

Sign Variations $\operatorname{var}(q)$ in a sequence $q=\left(q_{0}, \ldots, q_{n}\right)$ of reals

 $\operatorname{var}(q)$ is the number of pairs (i, j) of integers with $0 \leq i<j \leq n$ and $q_{i} q_{j}<0$ and $q_{i+1}=\ldots=q_{j-1}=0$ $\operatorname{var}(3,0,-2,2,-1)=3$.
Descartes' Rule of Signs:

- Let $q(x)=\sum_{i=0}^{n} q_{i} x^{i}$. Then
$\operatorname{var}(q)=\#$ of positive real roots $+2 k$ for some $k \in \mathbb{N}_{0}$
- $\operatorname{var}(q)=0 \quad \Rightarrow \quad q$ has no positive real root
- $\operatorname{var}(q)=1 \quad \Rightarrow \quad q$ has exactly one positive real root
- extension to arbitrary intervals
- zeros of p in $I=(c, d): \quad$ consider $q_{I}(x):=(1+x)^{n} \cdot p\left(\frac{c x+d}{x+1}\right)$
- roots of p in / correspond to positive roots of q_{l}
- define $\operatorname{var}(p, l):=\operatorname{var}\left(q_{l}\right)$

Sign Variations $\operatorname{var}(q)$ in a sequence $q=\left(q_{0}, \ldots, q_{n}\right)$ of reals $\operatorname{var}(q)$ is the number of pairs (i, j) of integers with $0 \leq i<j \leq n$ and $q_{i} q_{j}<0$ and $q_{i+1}=\ldots=q_{j-1}=0$ $\operatorname{var}(3,0,-2,2,-1)=3$.

Descartes' Rule of Signs:

- Let $q(x)=\sum_{i=0}^{n} q_{i} x^{i}$. Then
$\operatorname{var}(q)=\#$ of positive real roots $+2 k$ for some $k \in \mathbb{N}_{0}$
- $\operatorname{var}(q)=0 \Rightarrow q$ has no positive real root
- $\operatorname{var}(q)=1 \Rightarrow q$ has exactly one positive real root
- extension to arbitrary intervals
- zeros of p in $I=(c, d)$: consider $q_{I}(x):=(1+x)^{n} \cdot p\left(\frac{c x+d}{x+1}\right)$
- roots of p in / correspond to positive roots of q_{l}
- define $\operatorname{var}(p, l):=\operatorname{var}\left(q_{l}\right)$

A Recursive Algorithm

Root Bound for $p(x)=\sum_{1 \leq i \leq n} p_{i} x^{i}$

 real roots have absolute value bounded by $1+\max _{i} p_{i} / p_{n}$
Task: isolate real roots of $p(x)$

 initialize $I=(c, d)$ according to root boundif $\operatorname{var}(p, I)=0$ return; if $\operatorname{var}(p, I)=1$, return and report (c, d) as an isolating interval otherwise. Let $m=(c+d) / 2$.

- If $p(m)=0$, report $[m, m]$ as an isolating interval.
- recurse on both sub-intervals (c, m) and (m, d)

The Descartes Test: Partial Converses

Landau proved the following partial converses: Let $I=(c, d)$

contains exactly one root, then $\operatorname{var}(p, I)=1$
if $w(I) \leq \sigma(p)$, then $\operatorname{var}(p, I) \leq 1$

Analysis for L-Bit Integer Coefficients

- stopping criterium applies at intervals of length $\sigma(p)$.
- recursion depth $=\log (M / \sigma(p))$ where $M=$ length of start interval
- $\log M=O(L)$ and $\log (1 / \sigma(p))=\widetilde{O}(n L)$
thus recursion depth $=\widetilde{O}(n L)$
- numbers grow by n bits in every node of the recursion tree
- so numbers grow to $L+n \log (M / \sigma(p))=\widetilde{O}\left(n^{2} L\right)$ bits
- $\widetilde{O}(n)$ arithmetic operations in every node
- width of tree is $O(n)$ since var is subadditive over intervals
- bit-complexity $=\widetilde{O}\left(n \cdot n L \cdot n \cdot n^{2} L\right)=\widetilde{O}\left(n^{5} L^{2}\right)$
- this assumes fast integer multiplication and Taylor shift

Improved Analysis (Krandick (95), Krandick/Mehhorn (06), Eigen-

 willig/Sharma/Yap (06))depth

consequence: running time is $\widetilde{O}\left(n^{4} L^{2}\right)$

Continued Fraction Method (Vincent, Akritas)

Find Zeros of p in $[0, \infty]$

- if $p(0)=0$, replace p by p / x and recurse
- find a (large) integer $b \leq$ any positive real root of p;
- recurse on $[b, b+1)$ and $[b+1, \infty)$
(recursion involves a Taylor shift)

Analysis (Sharma (08))

- recursion tree (depth, growth of coefficients, arithmetic operations) has similar properties (this assumes a good b), but
- time to compute a good b was $O\left(n^{2}\right)$
- time bound $\widetilde{O}\left(n^{5} L^{2}\right)$

Hong's bound for $p=\sum_{0 \leq i \leq n} a_{i} x^{i}$

$$
H(p)=\max _{i, a_{i}<0}\left(\min _{j>i, a_{j}>0}\left(\frac{\left|a_{i}\right|}{\left|a_{j}\right|}\right)^{1 /(j-i)}\right) \quad \text { is a good } b
$$

Geometry helps Algebra (Mehlhorn/Ray (09))

- let's take logarithms
$\log H(p)=-\max _{i, a_{i}<0}\left(\min _{j>i}, a_{j}>0\left(\log \left|a_{j}\right|-\log \left|a_{i}\right|\right) /(j-i)\right)$
- define points $q_{i}=\left(i, \log \left|a_{i}\right|\right)$

- computation of $H(p)$ reduces to dynamic convex hull problem: $O(n)$ instead of $O\left(n^{2}\right)$

Hong's bound for $p=\sum_{0 \leq i \leq n} a_{i} x^{i}$

$$
H(p)=\max _{i, a_{i}<0}\left(\min _{j>i, a_{j}>0}\left(\frac{\left|a_{i}\right|}{\left|a_{j}\right|}\right)^{1 /(j-i)}\right) \quad \text { is a good } b
$$

Geometry helps Algebra (Mehlhorn/Ray (09))

- let's take logarithms $\log H(p)=-\max _{i, a_{i}<0}\left(\min _{j>i}, a_{j}>0\left(\log \left|a_{j}\right|-\log \left|a_{i}\right|\right) /(j-i)\right)$
- define points $q_{i}=\left(i, \log \left|a_{i}\right|\right)$

$$
\begin{aligned}
& \text { red }=" a_{i}<0 \\
& \text { black }=" a_{j}>0 "
\end{aligned}
$$

- computation of $H(p)$ reduces to dynamic convex hull problem: $O(n)$ instead of $O\left(n^{2}\right)$

Bitstream Coefficients

Definition

- how about more complex coefficients, e.g., $\sqrt{2}, \pi, \ln 2, \sin (\pi / 19)$
- in principle: use exact arithmetic in domain of coefficients
- better: approximate coefficients, i.e., coefficients are given by their binary representation (= potentially infinite bitstream): $\pi=3.14 \ldots$
- can ask for approximations of arbitrary precision
- we assume: $p(x)=\sum_{0 \leq i \leq n} p_{i} x^{i}$, a polynomial of degree n
- $p_{n} \geq 1, p_{i} \leq 2^{\tau}$ for all i
τ bits before binary point
- $\sigma(p)$, the root separation of p

Theorem (Mehlhorn/Sagraloff (09))

Theorem: Isolating intervals can be computed in time polynomial in n and $\tau+\log 1 / \sigma(p)$.
more precisely, $\tilde{O}\left(n^{2}(\tau+\log (1 / \sigma(p))) \cdot n(\tau+\log (1 / \sigma(p)))\right)$ bit operations

Sagraloff (2010) improves upon this (see below)

Experimental Experience

$p(x)$, a polynomial with integer coefficients running times on $p(x), \pi \cdot p(x)$, and $\sqrt{2} \cdot p(x)$ are essentially the same

running time depends on "geometry of the polynomial", but not on the representation of the polynomial

Real Coefficients: Approach I

Interval Coefficients (Collins/Johnson/Krandick (02))

- replace coefficients by intervals
- then run alg on interval polynomials
- very successful in practice: Rouillier's solver RS (Maple, CGAL)
even on integer polynomials with large coefficients
- two problems:
- not every interval has a sign
- quality of approximation, width of intervals
- Eigenwillig/Kettner/Krandick/M/Schmitt/Wolpert (2005) use randomization to make approach complete

Real Coefficients: Approach II

Isolate Roots of an Approximation p* (M/Sagraloff (09)

- roots depend continuously on coefficients
- therefore, isolate the roots of a suitable approximation p^{*}
- return slightly enlarged intervals
- difficulties
- how good must approximation be?
- how can we make sure that enlarged intervals are disjoint?

Roots Depend Continuously on Coefficients

- Theorem (Schönhage, 85) Let p and p^{*} polynomials of degree n, z_{i} roots of p, z_{i}^{*} roots of $p^{*},\left|z_{i}\right|<1$

$$
\mu \leq 2^{-7 n} \quad \text { and } \quad\left|p-p^{*}\right|<\mu|p|
$$

Then up to a permutation of the indices of the z_{i}^{*}

$$
\left|z_{i}^{*}-z_{i}\right|<9 \sqrt[n]{\mu}
$$

- apply with $\quad 9 \sqrt[n]{\mu} \ll \sigma(p)$
- real roots correspond to real roots
- nonreal roots correspond to ...
- $\sigma\left(p^{*}\right) \approx \sigma(p)$
- it suffices to enlarge intervals by $9 \sqrt[n]{\mu}$
- but we do not know $\sigma(p)$

Roots Depend Continuously on Coefficients

- Theorem (Schönhage, 85) Let p and p^{*} polynomials of degree n, z_{i} roots of p, z_{i}^{*} roots of $p^{*},\left|z_{i}\right|<1$

$$
\mu \leq 2^{-7 n} \quad \text { and } \quad\left|p-p^{*}\right|<\mu|p|
$$

Then up to a permutation of the indices of the z_{i}^{*}

$$
\left|z_{i}^{*}-z_{i}\right|<9 \sqrt[n]{\mu}
$$

- apply with $\quad 9 \sqrt[n]{\mu} \ll \sigma(p)$
- real roots correspond to real roots
- nonreal roots correspond to ...
- $\sigma\left(p^{*}\right) \approx \sigma(p)$
- it suffices to enlarge intervals by $9 \sqrt[n]{\mu}$
- but we do not know $\sigma(p)$

A Modified Algorithm for Isolating Roots in $I=(c, d)$

- let $I^{+}=(c-2(d-c), d+2(d-c))$.
- if $\operatorname{var}(p, l)=0$ return;
- if $\operatorname{var}(p, I)=1$ and $\operatorname{var}\left(p, I^{+}\right)=1$ return and report (c, d)
- Let $m=(c+d) / 2$ and if $p(m)=0$ report $[m, m]$
- recurse on sub-intervals (c, m) and (m, d)
- Properties:
- generates well-separated isolating intervals
- refuses to be lucky, i.e, shortest interval generated has length $\approx \sigma(p)$ (assume $=$)

A Modified Algorithm for Isolating Roots in $I=(c, d)$

- let $I^{+}=(c-2(d-c), d+2(d-c))$.
- if $\operatorname{var}(p, l)=0$ return;
- if $\operatorname{var}(p, I)=1$ and $\operatorname{var}\left(p, I^{+}\right)=1$ return and report (c, d)
- Let $m=(c+d) / 2$ and if $p(m)=0$ report $[m, m]$
- recurse on sub-intervals (c, m) and (m, d)
- Properties:
- generates well-separated isolating intervals
separation $\geq \sigma(p) / 10$
- refuses to be lucky, i.e, shortest interval generated has length $\approx \sigma(p)$ (assume =)

The Master Algorithm

- let $\mu:=2^{-7 n}$
so that Schönhage applies
- while true
- let p^{*} be such that $\left|p-p^{*}\right| \leq \mu|p|$ roots move by at most $9 \sqrt[n]{\mu}$ and hence $\sigma\left(p^{*}\right) \geq \sigma(p)-O(\sqrt[n]{\mu})$ we want $9 \sqrt[n]{\mu} \leq \sigma\left(p^{*}\right) / 10$
- run modified algorithm on p^{*} shortest generated interval has length $\sigma\left(p^{*}\right)$
- if alg produces an interval of length less than $\sqrt[n]{\mu} / 90$ then $\sigma\left(p^{*}\right)<\sqrt[n]{\mu} / 90$, approximation not good enough)
- stop alg, square μ and repeat
- else exit from the loop
- alg ends with $\log \sqrt[n]{\mu} \approx \log \sigma(p)$

Analysis

- at termination: $\log \sqrt[n]{\mu} \approx \log \sigma(p)$ or $\log 1 / \mu=n \log 1 / \sigma(p)$
- recursion depth $=\log (M / \sigma(p))$ where $M=$ length of start interval
- $\log M=O(\tau)$, thus depth $=O(\tau+\log 1 / \sigma(p))$
- numbers grow by n bits in every node of the recursion tree
- so numbers grow to $\tau+\log 1 / \mu+n \log (M / \sigma(p))=\widetilde{O}(n(\tau+\log 1 / \operatorname{sep}(p)))$ bits
- $\widetilde{O}(n)$ arithmetic operations in every node
- width of tree is $O(n)$ since var is subadditive over intervals
- bit-complexity $=\widetilde{O}(n \cdot(\tau+\log 1 / \sigma(p)) \cdot n \cdot n(\tau+\log 1 / \sigma(p)))=$ $\widetilde{O}\left(n^{3}(\tau+\log 1 / \sigma(p))^{2}\right)$
- this assumes fast integer multiplication and Taylor shift

Experiments

- on polynomials with integer coefficients running time of standard Descartes and our version is about the same (give or take a factor of two)
- the big win: running time on $p(x)$ and $\pi \cdot p(x)$ is about the same, i.e.,
- running time depends on the geometry of the problem (distribution of roots in the plane) and not on the idiosyncrasy of the representation

Sagraloff's Improvements (2010)

- so far: $\tilde{O}\left(n(n \tau+n \log (1 / \sigma(p)))^{2}\right)$ bit complexity.
- Sagraloff's new algorithm works with $\sum_{\xi} \log (1 / \sigma(\xi))$ instead of $n \log 1 / \sigma(p)$.
- bit complexity becomes $\tilde{O}\left(n\left(n \tau+\sum_{\xi} \log (1 / \sigma(\xi))\right)^{2}\right)$
- for integer polynomials, this yields bit complexity $\tilde{O}\left(n^{3} \tau^{2}\right)$, an improvement by a factor of n
- for details, talk to Michael

Summary

- exact geometric computing has made a big step forward in the last decade
- mature algorithms and software for 2d
- first steps for 3d
- improved methods for isolating roots of real polynomials (bitstream coefficients) played a big rule.
- open problems:
- improved bounds: see Sagraloff's new work (10)
- Pan's method
- 3d geometry

