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CGAL
Computational Geometry Algorithms Library

a comprehensive library for geometric computing

joint effort of INRIA Sophia Antipolis, Tel Aviv, Berlin, ETH,
Groningen, MPI-INF, and many others

algs in CGAL are exact, complete and efficient

this requires new theory
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An Arrangement of Algebraic Curves

input: a set of alge-
braic curves

output: their arrange-
ment (= a planar em-
bedded graph)

alg is exact and han-
dles any input

Eigenwillig, Kerber,

Wolpert
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The Intersection of Quadric Surfaces

input: a set of
quadrics S0, S1, . . .

output: the arrange-
ment of their intersec-
tion curves with S0

alg is exact and han-
dles any input

Berberich, Fogel, Halperin,

M, Wein
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An all-important primitive

Intersecting two algebraic curves

see also talk by F. Rouillier
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Intersecting Two Lines

intersect 5x +7y −1 = 0 and 3x −6y +4 = 0

eliminate a variable, say y , and obtain 51x +22 = 0

solve for x and obtain x = −22
51

substitute into one of the equations and obtain −110
51 +7y −1 = 0

solve for y and obtain y = 23
51
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Intersecting Two Algebraic Curves

intersect 5x2 +7y2 −1 = 0 and
3x2 −4x −6y2 +5y +2 = 0

eliminate a variable, say y , and obtain
1601x4 −2656x3 + . . .

solve for x and obtain x1 = 0.399 . . .,
x2 = −0.1475 . . ., x3 = . . ., x4 = . . .

substitute x1 into one of the equations
and obtain 7y2 +5(0.399 . . .)2 −1 = 0

solve for y and obtain yij =

select the right yij
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eliminate y from 5x2 +7y2−1 = 0 and
3x2 −4x −6y2 +5y +2 = 0

p(x)=

∣∣∣∣∣∣∣∣

7 0 5x2 −1 0
0 7 0 5x2 −1
6 5 3x2 −4x +2 0
0 6 5 3x2 −4x +2

∣∣∣∣∣∣∣∣
= 1601x4−2656x3+ . . .

Sylvester resultant

roots of p(x) are the x-coordinates of the intersections

Emeliyanenko (’10): evaluate p(x) at five values in parallel (GPU)
and interpolate
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Root Isolation

Input: a polynomial p given through its coefficient sequence

Output: isolating intervals for the real roots

Isolating Interval

an interval [a,b] is isolating if it contains exactly one root of p and is
disjoint from other isolating intervals

isolating intervals are easily refined (Newton iteration or Abott’s
method)

Coefficients
integral, e.g. 27, or bitstreams , e.g., π = 3.14 . . .

bitstreams are potentially infinite; we can ask for additional bits
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Root Separation: A Measure of Difficulty

Root Separation

x1, . . . , xn, the complex roots of p

σ(p) = min{|xi − xj |; i 6= j }, the root separation of p

intuition: the smaller σ(p), the harder it is to isolate the roots

remark: σ(p) is zero, if p has multiple roots

Example

p = x2 −2

roots x1 = −
√

2, x2 = +
√

2

σ(p) = 2
√

2

isolating intervals, e.g., (−2,−1) and (1,2)
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Root Isolation is well-studied with a 200 year history
two kinds of papers

algorithms without a convergence guarantee
algorithms with a guarantee

– Simple Bisection Methods: Descartes, Gauss, Vincent, Uspensky,
Ostrowski, Collins/Loos, Krandick/Mehlhorn, Rouillier/Zimmermann,
Mourrain/Roy/Rouillier, Emiris/Tsigaridis, Mehlhorn/Sagraloff,
Eigenwillig/Sharma/Yap. . .

– Advanced Methods: Henrici, Schönhage, Pan, Smale, . . .

Pan’s algorithm is the asymptotically fastest

but, in his own words:
The algorithm is quite involved, and would require
non-trivial implementation work. No implementation was
attempted yet.

open problem: is Pan’s alg competitive in practice?

Kurt Mehlhorn 12/30
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Sign Variations var(q) in a sequence q = (q0, . . . ,qn) of reals

var(q) is the number of pairs (i, j) of integers with 0 ≤ i < j ≤ n and
qiqj < 0 and qi+1 = . . . = qj−1 = 0 var(3,0,−2,2,−1) = 3.

Descartes’ Rule of Signs:

Let q(x) = ∑n
i=0 qix i . Then

var(q) = # of positive real roots+2k for some k ∈ N0

var(q) = 0 ⇒ q has no positive real root

var(q) = 1 ⇒ q has exactly one positive real root

extension to arbitrary intervals

– zeros of p in I = (c,d): consider qI(x) :=(1+ x)n ·p
(

cx+d
x+1

)

– roots of p in I correspond to positive roots of qI

– define var (p, I) :=var(qI)
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A Recursive Algorithm Rouillier/Zimmermann

Root Bound for p(x) = ∑1≤i≤n pix i

real roots have absolute value bounded by 1+maxi pi/pn

Task: isolate real roots of p(x)

initialize I = (c,d) according to root bound

if var(p, I) = 0 return;

if var(p, I) = 1, return and report (c,d) as an isolating interval

otherwise. Let m = (c +d)/2.

If p(m) = 0, report [m,m] as an isolating interval.

recurse on both sub-intervals (c,m) and (m,d)
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The Descartes Test: Partial Converses

Landau proved the following partial converses: Let I = (c,d)

if c d contains no root, then var(p, I) = 0.

if c d contains exactly one root, then var(p, I) = 1

if w(I) ≤ σ(p), then var(p, I) ≤ 1
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Analysis for L-Bit Integer Coefficients

stopping criterium applies at intervals of length σ(p).

recursion depth = log(M/σ(p)) where M =length of start interval

logM = O(L) and log(1/σ(p)) = Õ(nL)
thus recursion depth = Õ(nL)

numbers grow by n bits in every node of the recursion tree

so numbers grow to L+n log(M/σ(p)) = Õ(n2L) bits

Õ(n) arithmetic operations in every node

width of tree is O(n) since var is subadditive over intervals

bit-complexity = Õ(n ·nL ·n ·n2L) = Õ(n5L2)

this assumes fast integer multiplication and Taylor shift
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Improved Analysis (Krandick (95), Krandick/Mehlhorn (06), Eigen-

willig/Sharma/Yap (06))

depth

n

logn

nL

n/i iL

consequence: running time is Õ(n4L2)
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Continued Fraction Method (Vincent, Akritas)

Find Zeros of p in [0,∞]

if p(0) = 0, replace p by p/x and recurse

find a (large) integer b ≤ any positive real root of p;

recurse on [b,b +1) and [b +1,∞)
(recursion involves a Taylor shift)

Analysis (Sharma (08))

recursion tree (depth, growth of coefficients, arithmetic operations)
has similar properties (this assumes a good b), but

time to compute a good b was O(n2)

time bound Õ(n5L2)
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Hong’s bound for p = ∑0≤i≤n aix i

H(p) = max
i, ai<0

(
min

j>i, aj>0

( |ai |
|aj |

)1/(j−i)
)

is a good b

Geometry helps Algebra (Mehlhorn/Ray (09))

let’s take logarithms
logH(p) = −maxi, ai<0

(
minj>i, aj>0(log |aj |− log |ai |)/(j − i)

)

define points qi = (i, log |ai |)
red = “ai < 0

black = “aj > 0”

computation of H(p) reduces to dynamic convex hull problem:
O(n) instead of O(n2)

Kurt Mehlhorn 19/30
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Bitstream Coefficients

Definition

how about more complex coefficients, e.g.,
√

2, π, ln2, sin(π/19)

in principle: use exact arithmetic in domain of coefficients

better: approximate coefficients, i.e., coefficients are given by their
binary representation (= potentially infinite bitstream): π = 3.14 . . .

can ask for approximations of arbitrary precision

we assume: p(x) = ∑0≤i≤n pix i , a polynomial of degree n

pn ≥ 1, pi ≤ 2τ for all i τ bits before binary point

σ(p), the root separation of p
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Theorem (Mehlhorn/Sagraloff (09))

Theorem: Isolating intervals can be computed in time polynomial in
n and τ + log1/σ(p).

more precisely, Õ(n2(τ + log(1/σ(p))) ·n(τ + log(1/σ(p)))) bit
operations

Sagraloff (2010) improves upon this (see below)

Experimental Experience

p(x), a polynomial with integer coefficients

running times on p(x), π ·p(x), and
√

2 ·p(x) are essentially the
same

running time depends on “geometry of the polynomial”, but no t
on the representation of the polynomial
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Real Coefficients: Approach I

Interval Coefficients (Collins/Johnson/Krandick (02))

replace coefficients by intervals

then run alg on interval polynomials

very successful in practice: Rouillier’s solver RS (Maple, CGAL)
even on integer polynomials with large coefficients

two problems:
– not every interval has a sign
– quality of approximation, width of intervals

Eigenwillig/Kettner/Krandick/M/Schmitt/Wolpert (2005) use
randomization to make approach complete
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Real Coefficients: Approach II

Isolate Roots of an Approximation p∗ (M/Sagraloff (09)

roots depend continuously on coefficients
– therefore, isolate the roots of a suitable approximation p∗

– return slightly enlarged intervals

difficulties
– how good must approximation be?
– how can we make sure that enlarged intervals are disjoint?
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Roots Depend Continuously on Coefficients

Theorem (Schönhage, 85) Let p and p∗ polynomials of degree n,

zi roots of p, z∗
i roots of p∗, |zi | < 1

µ ≤ 2−7n and |p−p∗| < µ |p| .

Then up to a permutation of the indices of the z∗
i

|z∗
i − zi | < 9 n

√
µ .

apply with 9 n
√µ ≪ σ(p)

real roots correspond to real roots

nonreal roots correspond to . . .

σ(p∗) ≈ σ(p)

it suffices to enlarge intervals by 9 n
√µ

but we do not know σ(p)

Kurt Mehlhorn 24/30
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A Modified Algorithm for Isolating Roots in I = (c,d)

let I+ = (c −2(d − c),d +2(d − c)).

if var(p, I) = 0 return;

if var(p, I) = 1 and var(p, I+) = 1 return and report (c,d)

Let m = (c +d)/2 and if p(m) = 0 report [m,m]

recurse on sub-intervals (c,m) and (m,d)

Properties:

– generates well-separated isolating intervals separation ≥ σ(p)/10

– refuses to be lucky, i.e, shortest interval generated has length ≈ σ(p)
(assume =)

c dm

Kurt Mehlhorn 25/30
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The Master Algorithm

let µ :=2−7n so that Schönhage applies

while true
– let p∗ be such that |p−p∗| ≤ µ |p|

roots move by at most 9 n
√µ and hence σ(p∗) ≥ σ(p)−O( n

√µ)

we want 9 n
√µ ≤ σ(p∗)/10

– run modified algorithm on p∗ shortest generated interval has length
σ(p∗)

– if alg produces an interval of length less than n
√µ/90

then σ(p∗) < n
√µ/90, approximation not good enough)

– stop alg, square µ and repeat
– else exit from the loop

alg ends with log n
√µ ≈ logσ(p)
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Analysis

at termination: log n
√µ ≈ logσ(p) or log1/µ = n log1/σ(p)

recursion depth = log(M/σ(p)) where M =length of start interval

logM = O(τ), thus depth = O(τ + log1/σ(p))

numbers grow by n bits in every node of the recursion tree

so numbers grow to
τ + log1/µ +n log(M/σ(p)) = Õ(n(τ + log1/sep(p))) bits

Õ(n) arithmetic operations in every node

width of tree is O(n) since var is subadditive over intervals

bit-complexity = Õ(n · (τ + log1/σ(p)) ·n ·n(τ + log1/σ(p))) =
Õ(n3(τ + log1/σ(p))2)

this assumes fast integer multiplication and Taylor shift
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Experiments

on polynomials with integer coefficients running time of standard
Descartes and our version is about the same (give or take a factor
of two)

the big win: running time on p(x) and π ·p(x) is about the same,
i.e.,

running time depends on the geometry of the problem (distribution
of roots in the plane) and not on the idiosyncrasy of the
representation
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Sagraloff’s Improvements (2010)

so far: Õ(n(nτ +n log(1/σ(p)))2) bit complexity.

Sagraloff’s new algorithm works with ∑ξ log(1/σ(ξ )) instead of
n log1/σ(p).

bit complexity becomes Õ(n(nτ + ∑ξ log(1/σ(ξ )))2)

for integer polynomials, this yields bit complexity Õ(n3τ2), an
improvement by a factor of n

for details, talk to Michael
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Summary

exact geometric computing has made a big step forward in the last
decade

– mature algorithms and software for 2d
– first steps for 3d

improved methods for isolating roots of real polynomials (bitstream
coefficients) played a big rule.

open problems:
– improved bounds: see Sagraloff’s new work (10)
– Pan’s method
– 3d geometry
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