
Geometric Computing and Root Isolation

Kurt Mehlhorn
Max Planck Institute for Informatics and Saarland Universi ty

September 20, 2010

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Outline

Geometric Computing

Root Isolation

Bisection

Continued Fractions

Bitstream

Summary

Kurt Mehlhorn 2/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

CGAL
Computational Geometry Algorithms Library

a comprehensive library for geometric computing

joint effort of INRIA Sophia Antipolis, Tel Aviv, Berlin, ETH,
Groningen, MPI-INF, and many others

algs in CGAL are exact, complete and efficient

this requires new theory

Kurt Mehlhorn 3/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

An Arrangement of Algebraic Curves

input: a set of alge-
braic curves

output: their arrange-
ment (= a planar em-
bedded graph)

alg is exact and han-
dles any input

Eigenwillig, Kerber,

Wolpert

Kurt Mehlhorn 4/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

The Intersection of Quadric Surfaces

input: a set of
quadrics S0, S1, . . .

output: the arrange-
ment of their intersec-
tion curves with S0

alg is exact and han-
dles any input

Berberich, Fogel, Halperin,

M, Wein

Kurt Mehlhorn 5/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

An all-important primitive

Intersecting two algebraic curves

see also talk by F. Rouillier

Kurt Mehlhorn 6/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Intersecting Two Lines

intersect 5x +7y −1 = 0 and 3x −6y +4 = 0

eliminate a variable, say y , and obtain 51x +22 = 0

solve for x and obtain x = −22
51

substitute into one of the equations and obtain −110
51 +7y −1 = 0

solve for y and obtain y = 23
51

Kurt Mehlhorn 7/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Intersecting Two Algebraic Curves

intersect 5x2 +7y2 −1 = 0 and
3x2 −4x −6y2 +5y +2 = 0

eliminate a variable, say y , and obtain
1601x4 −2656x3 + . . .

solve for x and obtain x1 = 0.399 . . .,
x2 = −0.1475 . . ., x3 = . . ., x4 = . . .

substitute x1 into one of the equations
and obtain 7y2 +5(0.399 . . .)2 −1 = 0

solve for y and obtain yij =

select the right yij

Kurt Mehlhorn 8/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

eliminate y from 5x2 +7y2−1 = 0 and
3x2 −4x −6y2 +5y +2 = 0

p(x)=

∣∣∣∣∣∣∣∣

7 0 5x2 −1 0
0 7 0 5x2 −1
6 5 3x2 −4x +2 0
0 6 5 3x2 −4x +2

∣∣∣∣∣∣∣∣
= 1601x4−2656x3+ . . .

Sylvester resultant

roots of p(x) are the x-coordinates of the intersections

Emeliyanenko (’10): evaluate p(x) at five values in parallel (GPU)
and interpolate

Kurt Mehlhorn 9/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Root Isolation

Input: a polynomial p given through its coefficient sequence

Output: isolating intervals for the real roots

Isolating Interval

an interval [a,b] is isolating if it contains exactly one root of p and is
disjoint from other isolating intervals

isolating intervals are easily refined (Newton iteration or Abott’s
method)

Coefficients
integral, e.g. 27, or bitstreams , e.g., π = 3.14 . . .

bitstreams are potentially infinite; we can ask for additional bits

Kurt Mehlhorn 10/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Root Separation: A Measure of Difficulty

Root Separation

x1, . . . , xn, the complex roots of p

σ(p) = min{|xi − xj |; i 6= j }, the root separation of p

intuition: the smaller σ(p), the harder it is to isolate the roots

remark: σ(p) is zero, if p has multiple roots

Example

p = x2 −2

roots x1 = −
√

2, x2 = +
√

2

σ(p) = 2
√

2

isolating intervals, e.g., (−2,−1) and (1,2)

Kurt Mehlhorn 11/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Root Separation: A Measure of Difficulty

Root Separation

x1, . . . , xn, the complex roots of p

σ(p) = min{|xi − xj |; i 6= j }, the root separation of p

intuition: the smaller σ(p), the harder it is to isolate the roots

remark: σ(p) is zero, if p has multiple roots

Example

p = x2 −2

roots x1 = −
√

2, x2 = +
√

2

σ(p) = 2
√

2

isolating intervals, e.g., (−2,−1) and (1,2)

Kurt Mehlhorn 11/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Root Isolation is well-studied with a 200 year history
two kinds of papers

algorithms without a convergence guarantee
algorithms with a guarantee

– Simple Bisection Methods: Descartes, Gauss, Vincent, Uspensky,
Ostrowski, Collins/Loos, Krandick/Mehlhorn, Rouillier/Zimmermann,
Mourrain/Roy/Rouillier, Emiris/Tsigaridis, Mehlhorn/Sagraloff,
Eigenwillig/Sharma/Yap. . .

– Advanced Methods: Henrici, Schönhage, Pan, Smale, . . .

Pan’s algorithm is the asymptotically fastest

but, in his own words:
The algorithm is quite involved, and would require
non-trivial implementation work. No implementation was
attempted yet.

open problem: is Pan’s alg competitive in practice?

Kurt Mehlhorn 12/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Root Isolation is well-studied with a 200 year history
two kinds of papers

algorithms without a convergence guarantee
algorithms with a guarantee

– Simple Bisection Methods: Descartes, Gauss, Vincent, Uspensky,
Ostrowski, Collins/Loos, Krandick/Mehlhorn, Rouillier/Zimmermann,
Mourrain/Roy/Rouillier, Emiris/Tsigaridis, Mehlhorn/Sagraloff,
Eigenwillig/Sharma/Yap. . .

– Advanced Methods: Henrici, Schönhage, Pan, Smale, . . .

Pan’s algorithm is the asymptotically fastest

but, in his own words:
The algorithm is quite involved, and would require
non-trivial implementation work. No implementation was
attempted yet.

open problem: is Pan’s alg competitive in practice?

Kurt Mehlhorn 12/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Sign Variations var(q) in a sequence q = (q0, . . . ,qn) of reals

var(q) is the number of pairs (i, j) of integers with 0 ≤ i < j ≤ n and
qiqj < 0 and qi+1 = . . . = qj−1 = 0 var(3,0,−2,2,−1) = 3.

Descartes’ Rule of Signs:

Let q(x) = ∑n
i=0 qix i . Then

var(q) = # of positive real roots+2k for some k ∈ N0

var(q) = 0 ⇒ q has no positive real root

var(q) = 1 ⇒ q has exactly one positive real root

extension to arbitrary intervals

– zeros of p in I = (c,d): consider qI(x) :=(1+ x)n ·p
(

cx+d
x+1

)

– roots of p in I correspond to positive roots of qI

– define var (p, I) :=var(qI)

Kurt Mehlhorn 13/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Sign Variations var(q) in a sequence q = (q0, . . . ,qn) of reals

var(q) is the number of pairs (i, j) of integers with 0 ≤ i < j ≤ n and
qiqj < 0 and qi+1 = . . . = qj−1 = 0 var(3,0,−2,2,−1) = 3.

Descartes’ Rule of Signs:

Let q(x) = ∑n
i=0 qix i . Then

var(q) = # of positive real roots+2k for some k ∈ N0

var(q) = 0 ⇒ q has no positive real root

var(q) = 1 ⇒ q has exactly one positive real root

extension to arbitrary intervals

– zeros of p in I = (c,d): consider qI(x) :=(1+ x)n ·p
(

cx+d
x+1

)

– roots of p in I correspond to positive roots of qI

– define var (p, I) :=var(qI)

Kurt Mehlhorn 13/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

A Recursive Algorithm Rouillier/Zimmermann

Root Bound for p(x) = ∑1≤i≤n pix i

real roots have absolute value bounded by 1+maxi pi/pn

Task: isolate real roots of p(x)

initialize I = (c,d) according to root bound

if var(p, I) = 0 return;

if var(p, I) = 1, return and report (c,d) as an isolating interval

otherwise. Let m = (c +d)/2.

If p(m) = 0, report [m,m] as an isolating interval.

recurse on both sub-intervals (c,m) and (m,d)

Kurt Mehlhorn 14/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

The Descartes Test: Partial Converses

Landau proved the following partial converses: Let I = (c,d)

if c d contains no root, then var(p, I) = 0.

if c d contains exactly one root, then var(p, I) = 1

if w(I) ≤ σ(p), then var(p, I) ≤ 1

Kurt Mehlhorn 15/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Analysis for L-Bit Integer Coefficients

stopping criterium applies at intervals of length σ(p).

recursion depth = log(M/σ(p)) where M =length of start interval

logM = O(L) and log(1/σ(p)) = Õ(nL)
thus recursion depth = Õ(nL)

numbers grow by n bits in every node of the recursion tree

so numbers grow to L+n log(M/σ(p)) = Õ(n2L) bits

Õ(n) arithmetic operations in every node

width of tree is O(n) since var is subadditive over intervals

bit-complexity = Õ(n ·nL ·n ·n2L) = Õ(n5L2)

this assumes fast integer multiplication and Taylor shift

Kurt Mehlhorn 16/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Improved Analysis (Krandick (95), Krandick/Mehlhorn (06), Eigen-

willig/Sharma/Yap (06))

depth

n

logn

nL

n/i iL

consequence: running time is Õ(n4L2)

Kurt Mehlhorn 17/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Continued Fraction Method (Vincent, Akritas)

Find Zeros of p in [0,∞]

if p(0) = 0, replace p by p/x and recurse

find a (large) integer b ≤ any positive real root of p;

recurse on [b,b +1) and [b +1,∞)
(recursion involves a Taylor shift)

Analysis (Sharma (08))

recursion tree (depth, growth of coefficients, arithmetic operations)
has similar properties (this assumes a good b), but

time to compute a good b was O(n2)

time bound Õ(n5L2)

Kurt Mehlhorn 18/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Hong’s bound for p = ∑0≤i≤n aix i

H(p) = max
i, ai<0

(
min

j>i, aj>0

(|ai |
|aj |

)1/(j−i)
)

is a good b

Geometry helps Algebra (Mehlhorn/Ray (09))

let’s take logarithms
logH(p) = −maxi, ai<0

(
minj>i, aj>0(log |aj |− log |ai |)/(j − i)

)

define points qi = (i, log |ai |)
red = “ai < 0

black = “aj > 0”

computation of H(p) reduces to dynamic convex hull problem:
O(n) instead of O(n2)

Kurt Mehlhorn 19/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Hong’s bound for p = ∑0≤i≤n aix i

H(p) = max
i, ai<0

(
min

j>i, aj>0

(|ai |
|aj |

)1/(j−i)
)

is a good b

Geometry helps Algebra (Mehlhorn/Ray (09))

let’s take logarithms
logH(p) = −maxi, ai<0

(
minj>i, aj>0(log |aj |− log |ai |)/(j − i)

)

define points qi = (i, log |ai |)
red = “ai < 0

black = “aj > 0”

computation of H(p) reduces to dynamic convex hull problem:
O(n) instead of O(n2)

Kurt Mehlhorn 19/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Bitstream Coefficients

Definition

how about more complex coefficients, e.g.,
√

2, π, ln2, sin(π/19)

in principle: use exact arithmetic in domain of coefficients

better: approximate coefficients, i.e., coefficients are given by their
binary representation (= potentially infinite bitstream): π = 3.14 . . .

can ask for approximations of arbitrary precision

we assume: p(x) = ∑0≤i≤n pix i , a polynomial of degree n

pn ≥ 1, pi ≤ 2τ for all i τ bits before binary point

σ(p), the root separation of p

Kurt Mehlhorn 20/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Theorem (Mehlhorn/Sagraloff (09))

Theorem: Isolating intervals can be computed in time polynomial in
n and τ + log1/σ(p).

more precisely, Õ(n2(τ + log(1/σ(p))) ·n(τ + log(1/σ(p)))) bit
operations

Sagraloff (2010) improves upon this (see below)

Experimental Experience

p(x), a polynomial with integer coefficients

running times on p(x), π ·p(x), and
√

2 ·p(x) are essentially the
same

running time depends on “geometry of the polynomial”, but no t
on the representation of the polynomial

Kurt Mehlhorn 21/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Real Coefficients: Approach I

Interval Coefficients (Collins/Johnson/Krandick (02))

replace coefficients by intervals

then run alg on interval polynomials

very successful in practice: Rouillier’s solver RS (Maple, CGAL)
even on integer polynomials with large coefficients

two problems:
– not every interval has a sign
– quality of approximation, width of intervals

Eigenwillig/Kettner/Krandick/M/Schmitt/Wolpert (2005) use
randomization to make approach complete

Kurt Mehlhorn 22/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Real Coefficients: Approach II

Isolate Roots of an Approximation p∗ (M/Sagraloff (09)

roots depend continuously on coefficients
– therefore, isolate the roots of a suitable approximation p∗

– return slightly enlarged intervals

difficulties
– how good must approximation be?
– how can we make sure that enlarged intervals are disjoint?

Kurt Mehlhorn 23/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Roots Depend Continuously on Coefficients

Theorem (Schönhage, 85) Let p and p∗ polynomials of degree n,

zi roots of p, z∗
i roots of p∗, |zi | < 1

µ ≤ 2−7n and |p−p∗| < µ |p| .

Then up to a permutation of the indices of the z∗
i

|z∗
i − zi | < 9 n

√
µ .

apply with 9 n
√µ ≪ σ(p)

real roots correspond to real roots

nonreal roots correspond to . . .

σ(p∗) ≈ σ(p)

it suffices to enlarge intervals by 9 n
√µ

but we do not know σ(p)

Kurt Mehlhorn 24/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Roots Depend Continuously on Coefficients

Theorem (Schönhage, 85) Let p and p∗ polynomials of degree n,

zi roots of p, z∗
i roots of p∗, |zi | < 1

µ ≤ 2−7n and |p−p∗| < µ |p| .

Then up to a permutation of the indices of the z∗
i

|z∗
i − zi | < 9 n

√
µ .

apply with 9 n
√µ ≪ σ(p)

real roots correspond to real roots

nonreal roots correspond to . . .

σ(p∗) ≈ σ(p)

it suffices to enlarge intervals by 9 n
√µ

but we do not know σ(p)

Kurt Mehlhorn 24/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

A Modified Algorithm for Isolating Roots in I = (c,d)

let I+ = (c −2(d − c),d +2(d − c)).

if var(p, I) = 0 return;

if var(p, I) = 1 and var(p, I+) = 1 return and report (c,d)

Let m = (c +d)/2 and if p(m) = 0 report [m,m]

recurse on sub-intervals (c,m) and (m,d)

Properties:

– generates well-separated isolating intervals separation ≥ σ(p)/10

– refuses to be lucky, i.e, shortest interval generated has length ≈ σ(p)
(assume =)

c dm

Kurt Mehlhorn 25/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

A Modified Algorithm for Isolating Roots in I = (c,d)

let I+ = (c −2(d − c),d +2(d − c)).

if var(p, I) = 0 return;

if var(p, I) = 1 and var(p, I+) = 1 return and report (c,d)

Let m = (c +d)/2 and if p(m) = 0 report [m,m]

recurse on sub-intervals (c,m) and (m,d)

Properties:

– generates well-separated isolating intervals separation ≥ σ(p)/10

– refuses to be lucky, i.e, shortest interval generated has length ≈ σ(p)
(assume =)

c dm

Kurt Mehlhorn 25/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

The Master Algorithm

let µ :=2−7n so that Schönhage applies

while true
– let p∗ be such that |p−p∗| ≤ µ |p|

roots move by at most 9 n
√µ and hence σ(p∗) ≥ σ(p)−O(n

√µ)

we want 9 n
√µ ≤ σ(p∗)/10

– run modified algorithm on p∗ shortest generated interval has length
σ(p∗)

– if alg produces an interval of length less than n
√µ/90

then σ(p∗) < n
√µ/90, approximation not good enough)

– stop alg, square µ and repeat
– else exit from the loop

alg ends with log n
√µ ≈ logσ(p)

Kurt Mehlhorn 26/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Analysis

at termination: log n
√µ ≈ logσ(p) or log1/µ = n log1/σ(p)

recursion depth = log(M/σ(p)) where M =length of start interval

logM = O(τ), thus depth = O(τ + log1/σ(p))

numbers grow by n bits in every node of the recursion tree

so numbers grow to
τ + log1/µ +n log(M/σ(p)) = Õ(n(τ + log1/sep(p))) bits

Õ(n) arithmetic operations in every node

width of tree is O(n) since var is subadditive over intervals

bit-complexity = Õ(n · (τ + log1/σ(p)) ·n ·n(τ + log1/σ(p))) =
Õ(n3(τ + log1/σ(p))2)

this assumes fast integer multiplication and Taylor shift

Kurt Mehlhorn 27/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Experiments

on polynomials with integer coefficients running time of standard
Descartes and our version is about the same (give or take a factor
of two)

the big win: running time on p(x) and π ·p(x) is about the same,
i.e.,

running time depends on the geometry of the problem (distribution
of roots in the plane) and not on the idiosyncrasy of the
representation

Kurt Mehlhorn 28/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Sagraloff’s Improvements (2010)

so far: Õ(n(nτ +n log(1/σ(p)))2) bit complexity.

Sagraloff’s new algorithm works with ∑ξ log(1/σ(ξ)) instead of
n log1/σ(p).

bit complexity becomes Õ(n(nτ + ∑ξ log(1/σ(ξ)))2)

for integer polynomials, this yields bit complexity Õ(n3τ2), an
improvement by a factor of n

for details, talk to Michael

Kurt Mehlhorn 29/30

Geometric Computing Root Isolation Bisection Continued Fractions Bitstream Summary

Summary

exact geometric computing has made a big step forward in the last
decade

– mature algorithms and software for 2d
– first steps for 3d

improved methods for isolating roots of real polynomials (bitstream
coefficients) played a big rule.

open problems:
– improved bounds: see Sagraloff’s new work (10)
– Pan’s method
– 3d geometry

Kurt Mehlhorn 30/30

	Geometric Computing
	

	Root Isolation
	

	Bisection
	

	Continued Fractions
	

	Bitstream
	

	Summary
	

