

Geometric Computing and Root Isolation

Kurt Mehlhorn

Max Planck Institute for Informatics and Saarland University

September 20, 2010

Geometric Computing	Root Isolation	Bisection 00000	Continued Fractions	Bitstream 0000000000	Summary O

Outline

Geometric Computing

Root Isolation

Bisection

Continued Fractions

Bitstream

Summary

Geometric Computing	Root Isolation	Bisection	Continued Fractions	Bitstream	Summary
•000000	000	00000	00	0000000000	

CGAL

Computational Geometry Algorithms Library

- a comprehensive library for geometric computing
- joint effort of INRIA Sophia Antipolis, Tel Aviv, Berlin, ETH, Groningen, MPI-INF, and many others
- algs in CGAL are exact, complete and efficient

this requires new theory

 Geometric Computing
 Root Isolation
 Bisection
 Continued Fractions
 Bitstream
 Summary

 000000
 000
 00000
 00
 00000000
 0

An Arrangement of Algebraic Curves

input: a set of algebraic curves

output: their arrangement (= a planar embedded graph)

alg is exact and handles any input

Eigenwillig, Kerber, Wolpert

The Intersection of Quadric Surfaces

input: a set of quadrics S_0, S_1, \ldots

output: the arrangement of their intersection curves with S_0

alg is exact and handles any input

Berberich, Fogel, Halperin, M, Wein

Kurt Mehlhorn

Summary

Geometric Computing	Root Isolation	Bisection 00000	Continued Fractions	Bitstream 0000000000	Summary O

An all-important primitive Intersecting two algebraic curves

see also talk by F. Rouillier

 Geometric Computing
 Root Isolation
 Bisection
 Continued Fractions
 Bitstream
 Summary

 0000000
 000
 000
 00
 00000000
 0

Intersecting Two Lines

intersect 5x + 7y - 1 = 0 and 3x - 6y + 4 = 0

eliminate a variable, say y, and obtain 51x + 22 = 0

solve for x and obtain $x = -\frac{22}{51}$

substitute into one of the equations and obtain $-\frac{110}{51}+7y-1=0$

solve for y and obtain $y = \frac{23}{51}$

 Geometric Computing 0000000
 Root Isolation
 Bisection
 Continued Fractions
 Bitstream
 Summary

 0000000
 000
 00000
 00
 000000000
 0

Intersecting Two Algebraic Curves

intersect
$$5x^2 + 7y^2 - 1 = 0$$
 and
 $3x^2 - 4x - 6y^2 + 5y + 2 = 0$

eliminate a variable, say y, and obtain $1601x^4 - 2656x^3 + \dots$

solve for x and obtain $x_1 = 0.399..., x_2 = -0.1475..., x_3 = ..., x_4 = ...$

substitute x_1 into one of the equations and obtain $7y^2 + 5(0.399...)^2 - 1 = 0$

solve for y and obtain $y_{ij} =$

select the right y_{ij}

Geometric Computing	Root Isolation	Bisection 00000	Continued Fractions	Bitstream 0000000000	Summary O

eliminate y from
$$5x^2 + 7y^2 - 1 = 0$$
 and
 $3x^2 - 4x - 6y^2 + 5y + 2 = 0$

$$p(x) = \begin{vmatrix} 7 & 0 & 5x^2 - 1 & 0 \\ 0 & 7 & 0 & 5x^2 - 1 \\ 6 & 5 & 3x^2 - 4x + 2 & 0 \\ 0 & 6 & 5 & 3x^2 - 4x + 2 \end{vmatrix} = 1601x^4 - 2656x^3 + \dots$$

- Sylvester resultant
- roots of p(x) are the x-coordinates of the intersections
- Emeliyanenko ('10): evaluate p(x) at five values in parallel (GPU) and interpolate

Geometric Computing	Root Isolation ●○○	Bisection 00000	Continued Fractions	Bitstream 0000000000	Summary O
---------------------	-----------------------	--------------------	---------------------	-------------------------	--------------

Root Isolation

Input: a polynomial p given through its coefficient sequence

Output: isolating intervals for the real roots

Isolating Interval

an interval [a, b] is isolating if it contains exactly one root of p and is disjoint from other isolating intervals

isolating intervals are easily refined (Newton iteration or Abott's method)

Coefficients

• integral, e.g. 27, or **bitstreams**, e.g., $\pi = 3.14...$

bitstreams are potentially infinite; we can ask for additional bits

Seometric Computing	Root Isolation	Bisection	Continued Fractions	Bitstream	Summary
000000	000	00000	00	0000000000	

Root Separation: A Measure of Difficulty

Root Separation

- x_1, \ldots, x_n , the complex roots of p
- $\sigma(p) = \min\{|x_i x_j|; i \neq j\}$, the root separation of p
- intuition: the smaller $\sigma(p)$, the harder it is to isolate the roots
- remark: $\sigma(p)$ is zero, if p has multiple roots

Example

- $p = x^2 2$
- roots $x_1 = -\sqrt{2}$, $x_2 = +\sqrt{2}$
- $\sigma(p) = 2\sqrt{2}$
- isolating intervals, e.g., (-2, -1) and (1, 2)

eometric Computing	Root Isolation ○●○	Bisection 00000	Continued Fractions	Bitstream 0000000000	Summary O
--------------------	-----------------------	--------------------	---------------------	-------------------------	--------------

Root Separation: A Measure of Difficulty

Root Separation

- x_1, \ldots, x_n , the complex roots of p
- $\sigma(p) = \min\{|x_i x_j|; i \neq j\}$, the root separation of p
- intuition: the smaller $\sigma(p)$, the harder it is to isolate the roots
- remark: $\sigma(p)$ is zero, if p has multiple roots

Example

- $p = x^2 2$
- roots $x_1 = -\sqrt{2}, x_2 = +\sqrt{2}$
- $\sigma(p) = 2\sqrt{2}$
- isolating intervals, e.g., (-2, -1) and (1, 2)

Root Isolation is well-studied with a 200 year history

two kinds of papers

- algorithms without a convergence guarantee
- algorithms with a guarantee
 - Simple Bisection Methods: Descartes, Gauss, Vincent, Uspensky, Ostrowski, Collins/Loos, Krandick/Mehlhorn, Rouillier/Zimmermann, Mourrain/Roy/Rouillier, Emiris/Tsigaridis, Mehlhorn/Sagraloff, Eigenwillig/Sharma/Yap...
 - Advanced Methods: Henrici, Schönhage, Pan, Smale, ...
- Pan's algorithm is the asymptotically fastest
- but, in his own words:

The algorithm is quite involved, and would require non-trivial implementation work. No implementation was attempted yet.

open problem: is Pan's alg competitive in practice?

Root Isolation is well-studied with a 200 year history

two kinds of papers

- algorithms without a convergence guarantee
- algorithms with a guarantee
 - Simple Bisection Methods: Descartes, Gauss, Vincent, Uspensky, Ostrowski, Collins/Loos, Krandick/Mehlhorn, Rouillier/Zimmermann, Mourrain/Roy/Rouillier, Emiris/Tsigaridis, Mehlhorn/Sagraloff, Eigenwillig/Sharma/Yap...
 - Advanced Methods: Henrici, Schönhage, Pan, Smale, ...
- Pan's algorithm is the asymptotically fastest
- but, in his own words:

The algorithm is quite involved, and would require non-trivial implementation work. No implementation was attempted yet.

open problem: is Pan's alg competitive in practice?

Sign Variations var(q) in a sequence $q = (q_0, \ldots, q_n)$ of reals

var(q) is the number of pairs (i,j) of integers with $0 \le i < j \le n$ and $q_iq_j < 0$ and $q_{i+1} = \ldots = q_{j-1} = 0$ var(3,0,-2,2,-1) = 3.

Descartes' Rule of Signs:

• Let $q(x) = \sum_{i=0}^{n} q_i x^i$. Then

var(q) = # of positive real roots + 2k for some $k \in \mathbb{N}_0$

- $var(q) = 0 \Rightarrow q$ has no positive real root
- $var(q) = 1 \Rightarrow q$ has exactly one positive real root
- extension to arbitrary intervals
 - zeros of p in I = (c, d): consider $q_I(x) := (1+x)^n \cdot p\left(\frac{cx+a}{x+1}\right)$
 - roots of p in l correspond to positive roots of q_l
 - define $var(\rho, l) := var(q_l)$

Summarv

 Geometric Computing
 Root Isolation
 Bisection
 Continued Fractions
 Bitstream
 Summary

 0000000
 000
 00
 00000000
 0
 000000000
 0

Sign Variations var(q) in a sequence $q = (q_0, ..., q_n)$ of reals var(q) is the number of pairs (i, j) of integers with $0 \le i < j \le n$ and $q_iq_j < 0$ and $q_{i+1} = ... = q_{j-1} = 0$ var(3, 0, -2, 2, -1) = 3.

Descartes' Rule of Signs:

• Let $q(x) = \sum_{i=0}^{n} q_i x^i$. Then

var(q) = # of positive real roots + 2k for some $k \in \mathbb{N}_0$

- $var(q) = 0 \Rightarrow q$ has no positive real root
- $var(q) = 1 \Rightarrow q$ has exactly one positive real root
- extension to arbitrary intervals
 - zeros of p in I = (c, d): consider $q_I(x) := (1 + x)^n \cdot p\left(\frac{cx+d}{x+1}\right)$
 - roots of p in l correspond to positive roots of q_l
 - define $var(p, l) := var(q_l)$

A Recursive Algorithm

Rouillier/Zimmermann

Root Bound for
$$p(x) = \sum_{1 \le i \le n} p_i x^i$$

real roots have absolute value bounded by $1 + \max_i p_i / p_n$

Task: isolate real roots of p(x)

initialize I = (c, d) according to root bound

if var(p, I) = 0 return;

if var(p, I) = 1, return and report (c, d) as an isolating interval

otherwise. Let m = (c+d)/2.

- If p(m) = 0, report [m, m] as an isolating interval.
- recurse on both sub-intervals (c, m) and (m, d)

The Descartes Test: Partial Converses

Landau proved the following partial converses: Let I = (c, d)

if $w(I) \leq \sigma(p)$, then $var(p, I) \leq 1$

Analysis for *L*-Bit Integer Coefficients

- stopping criterium applies at intervals of length $\sigma(\rho)$.
- recursion depth = $\log(M/\sigma(\rho))$ where M =length of start interval
- $\log M = O(L)$ and $\log(1/\sigma(p)) = \widetilde{O}(nL)$

thus recursion depth = $\widetilde{O}(nL)$

- numbers grow by n bits in every node of the recursion tree
- so numbers grow to $L + n\log(M/\sigma(p)) = \widetilde{O}(n^2L)$ bits
- $\widetilde{O}(n)$ arithmetic operations in every node
- width of tree is O(n) since var is subadditive over intervals
- bit-complexity = $\widetilde{O}(n \cdot nL \cdot n \cdot n^2 L) = \widetilde{O}(n^5 L^2)$
- this assumes fast integer multiplication and Taylor shift

Improved Analysis (Krandick (95), Krandick/Mehlhorn (06), Eigen-

willig/Sharma/Yap (06))

consequence: running time is $\tilde{O}(n^4L^2)$

Continued Fraction Method (Vincent, Akritas)

Find Zeros of p in $[0,\infty]$

- if p(0) = 0, replace p by p/x and recurse
- find a (large) integer b ≤ any positive real root of p;

• recurse on
$$[b, b+1)$$
 and $[b+1, \infty)$

(recursion involves a Taylor shift)

Analysis (Sharma (08))

- recursion tree (depth, growth of coefficients, arithmetic operations) has similar properties (this assumes a good b), but
- time to compute a good *b* was $O(n^2)$
- time bound $\widetilde{O}(n^5L^2)$

Geometry helps Algebra (Mehlhorn/Ray (09))

- let's take logarithms $\log H(p) = -\max_{i, a_i < 0} (\min_{j > i, a_j > 0} (\log |a_j| - \log |a_i|) / (j - i))$
- define points $q_i = (i, \log |a_i|)$

 $red = "a_i < 0$

black = " $a_j > 0$ "

computation of *H*(*p*) reduces to dynamic convex hull problem:
 O(*n*) instead of *O*(*n*²)

Geometry helps Algebra (Mehlhorn/Ray (09))

• let's take logarithms $\log H(p) = -\max_{i, a_j < 0} (\min_{j > i, a_j > 0} (\log |a_j| - \log |a_i|) / (j - i))$

• define points
$$q_i = (i, \log |a_i|)$$

max planck institut informatik

$$red = "a_i < 0$$

black = "
$$a_j > 0$$
"

computation of *H*(*p*) reduces to dynamic convex hull problem:
 O(*n*) instead of *O*(*n*²)

Bitstream Coefficients

Definition

- how about more complex coefficients, e.g., $\sqrt{2}$, π , ln 2, sin($\pi/19$)
- in principle: use exact arithmetic in domain of coefficients
- better: approximate coefficients, i.e., coefficients are given by their binary representation (= potentially infinite bitstream): π = 3.14...
- can ask for approximations of arbitrary precision
- we assume: $p(x) = \sum_{0 \le i \le n} p_i x^i$, a polynomial of degree *n*
- $p_n \ge 1, p_i \le 2^{\tau}$ for all *i* τ bits before binary point
- $\sigma(p)$, the root separation of p

Bisection 00000 Continued Fractions

Bitstream Summary

Theorem (Mehlhorn/Sagraloff (09))

Theorem: Isolating intervals can be computed in time polynomial in *n* and $\tau + \log 1/\sigma(p)$.

more precisely, $\tilde{O}(n^2(\tau + \log(1/\sigma(p))) \cdot n(\tau + \log(1/\sigma(p))))$ bit operations

Sagraloff (2010) improves upon this (see below)

Experimental Experience

p(x), a polynomial with integer coefficients

running times on p(x), $\pi \cdot p(x)$, and $\sqrt{2} \cdot p(x)$ are essentially the same

running time depends on "geometry of the polynomial", but not on the representation of the polynomial

Real Coefficients: Approach I

Interval Coefficients (Collins/Johnson/Krandick (02))

- replace coefficients by intervals
- then run alg on interval polynomials
- very successful in practice: Rouillier's solver RS (Maple, CGAL) even on integer polynomials with large coefficients
- two problems:
 - not every interval has a sign
 - quality of approximation, width of intervals
- Eigenwillig/Kettner/Krandick/M/Schmitt/Wolpert (2005) use randomization to make approach complete

Real Coefficients: Approach II

Isolate Roots of an Approximation p^* (M/Sagraloff (09)

roots depend continuously on coefficients

- therefore, isolate the roots of a suitable approximation p*
- return slightly enlarged intervals

difficulties

- how good must approximation be?
- how can we make sure that enlarged intervals are disjoint?

Roots Depend Continuously on Coefficients

Bisection

• **Theorem (Schönhage, 85)** Let *p* and *p*^{*} polynomials of degree *n*, z_i roots of *p*, z_i^* roots of p^* , $|z_i| < 1$

$$\mu \le 2^{-7n}$$
 and $|p - p^*| < \mu |p|$.

Continued Fractions

Then up to a permutation of the indices of the z_i^*

 $|z_i^*-z_i|<9\sqrt[n]{\mu}.$

- apply with $9\sqrt[n]{\mu} \ll \sigma(\rho)$
- real roots correspond to real roots

Root Isolation

- nonreal roots correspond to ...
- $\sigma(\rho^*) \approx \sigma(\rho)$

Geometric Computing

• it suffices to enlarge intervals by $9\sqrt[n]{\mu}$

max planck institut

• but we do not know $\sigma(p)$

Roots Depend Continuously on Coefficients

Bisection

• **Theorem (Schönhage, 85)** Let *p* and *p*^{*} polynomials of degree *n*, z_i roots of *p*, z_i^* roots of p^* , $|z_i| < 1$

$$\mu \le 2^{-7n}$$
 and $|p - p^*| < \mu |p|$.

Continued Fractions

Then up to a permutation of the indices of the z_i^*

 $|z_i^*-z_i|<9\sqrt[n]{\mu}.$

- apply with $9\sqrt[n]{\mu} \ll \sigma(\rho)$
- real roots correspond to real roots

Root Isolation

- nonreal roots correspond to ...
- $\sigma(\rho^*) \approx \sigma(\rho)$

Geometric Computing

• it suffices to enlarge intervals by $9\sqrt[n]{\mu}$

max planck institut informatik

• but we do not know $\sigma(p)$

Bitstream

Summary

A Modified Algorithm for Isolating Roots in I = (c, d)

- let $I^+ = (c 2(d c), d + 2(d c)).$
- if var(p, I) = 0 return;
- if var(p, I) = 1 and $var(p, I^+) = 1$ return and report (c, d)
- Let m = (c+d)/2 and if p(m) = 0 report [m,m]
- recurse on sub-intervals (c, m) and (m, d)
- Properties:
 - generates well-separated isolating intervals

separation $\geq \sigma(p)/10$

- refuses to be lucky, i.e, shortest interval generated has length $\approx \sigma(p)$ (assume =)

A Modified Algorithm for Isolating Roots in I = (c, d)

- let $I^+ = (c 2(d c), d + 2(d c)).$
- if var(p, I) = 0 return;
- if var(p, I) = 1 and $var(p, I^+) = 1$ return and report (c, d)
- Let m = (c+d)/2 and if p(m) = 0 report [m,m]
- recurse on sub-intervals (c, m) and (m, d)
- Properties:
 - generates well-separated isolating intervals separation $\geq \sigma(\rho)/10$
 - refuses to be lucky, i.e, shortest interval generated has length $\approx \sigma(p)$ (assume =)

The Master Algorithm

• let $\mu := 2^{-7n}$

so that Schönhage applies

- while true
 - let p^* be such that $|p p^*| \leq \mu |p|$

roots move by at most $9\sqrt[n]{\mu}$ and hence $\sigma(p^*) \ge \sigma(p) - O(\sqrt[n]{\mu})$

we want $9\sqrt[n]{\mu} \le \sigma(p^*)/10$

- run modified algorithm on p^* shortest generated interval has length $\sigma(p^*)$
- if alg produces an interval of length less than $\sqrt[n]{\mu}/90$

then $\sigma(p^*) < \sqrt[n]{\mu}/90$, approximation not good enough)

- stop alg, square μ and repeat
- else exit from the loop
- alg ends with $\log \sqrt[n]{\mu} \approx \log \sigma(p)$

Geometric Computing	Root Isolation	Bisection 00000	Continued Fractions	Bitstream ooooooo●oo	Summary O
Analysis					

- .
- at termination: $\log \sqrt[n]{\mu} \approx \log \sigma(p)$ or $\log 1/\mu = n \log 1/\sigma(p)$
- recursion depth = $\log(M/\sigma(p))$ where M =length of start interval
- $\log M = O(\tau)$, thus depth = $O(\tau + \log 1/\sigma(p))$
- numbers grow by n bits in every node of the recursion tree
- so numbers grow to $\tau + \log 1/\mu + n\log(M/\sigma(p)) = \widetilde{O}(n(\tau + \log 1/sep(p)))$ bits
- $\tilde{O}(n)$ arithmetic operations in every node
- width of tree is O(n) since var is subadditive over intervals
- bit-complexity = $\widetilde{O}(n \cdot (\tau + \log 1/\sigma(p)) \cdot n \cdot n(\tau + \log 1/\sigma(p))) = \widetilde{O}(n^3(\tau + \log 1/\sigma(p))^2)$
- this assumes fast integer multiplication and Taylor shift

Experiments

- on polynomials with integer coefficients running time of standard Descartes and our version is about the same (give or take a factor of two)
- the big win: running time on p(x) and $\pi \cdot p(x)$ is about the same, i.e.,
- running time depends on the geometry of the problem (distribution of roots in the plane) and not on the idiosyncrasy of the representation

Sagraloff's Improvements (2010)

- so far: $\tilde{O}(n(n\tau + n\log(1/\sigma(p)))^2)$ bit complexity.
- Sagraloff's new algorithm works with Σ_ξ log(1/σ(ξ)) instead of nlog1/σ(p).
- bit complexity becomes $\tilde{O}(n(n\tau + \sum_{\xi} \log(1/\sigma(\xi)))^2)$
- for integer polynomials, this yields bit complexity $\tilde{O}(n^3 \tau^2)$, an improvement by a factor of *n*
- for details, talk to Michael

Summary

- exact geometric computing has made a big step forward in the last decade
 - mature algorithms and software for 2d
 - first steps for 3d
- improved methods for isolating roots of real polynomials (bitstream coefficients) played a big rule.
- open problems:
 - improved bounds: see Sagraloff's new work (10)
 - Pan's method
 - 3d geometry

