

Assigning Papers to Referees Objectives, Algorithms, Open Problems

Kurt Mehlhorn Max-Planck-Institut für Informatik Saarbrücken Germany

joint work with

Naveen Garg and Amit Kumar, IIT Delhi Telikepalli Kavitha, IISC Bangalore Julian Mestre, MPI Informatik

Overview

- Motivation
- Informal Problem Definition
- Formal Definition
- Algorithms and Hardness
- Truthfulness

Slides and paper are available at my home page

Motivation

I was program chair of ESA 2008.

After submission closes and before reviewing starts, the PC chair assigns the papers to the PC members (called reviewers in the sequel).

What constitutes a good assignment?

- *n* reviewers, *r* indexes reviewers
- *m* papers, *p* indexes papers
- v_{rp}, the value of paper p for reviewer r the interest of reviewer r in paper p the qualification of reviewer r for paper p the rank of paper p for reviewer r
- valuations can be determined in many different ways:
 - the PC chair invents them
 - papers and reviewers provide key words, v_{rp} is a function of the number of common key words
 - reviewers provide values in { NO, LOW, MEDIUM, HIGH }
 - a combination of the above (our recommendation)
 - EasyChair (Andrei Voronkov), the system used for ESA 2008, asks the reviewers for bids

• *n* reviewers, *r* indexes reviewers

- m papers, p indexes papers
- edge-labelled bipartite graph $G = (papers \cup reviewers, E)$
- $(r, p) \notin E$ means that r cannot review p

- for $e = (r, p) \in E$, $v_{rp} \in \{1, \dots, \Delta\}$ is the rank of r for p
- an assignment *M* is a subset of the edges

• *n* reviewers, *r* indexes reviewers

- m papers, p indexes papers
- edge-labelled bipartite graph $G = (papers \cup reviewers, E)$
- $(r, p) \notin E$ means that r cannot review p

- for $e = (r, p) \in E$, $v_{rp} \in \{1, \dots, \Delta\}$ is the rank of r for p
- an assignment *M* is a subset of the edges
- Objectives
 - Coverage: each paper is reviewed (at least) k times
 - Load-Balance: load is shared evenly among reviewers;
 every rev. reviews h = [mk/n] or h − 1 papers; today: mk/n ∈ N

• *n* reviewers, *r* indexes reviewers

- m papers, p indexes papers
- edge-labelled bipartite graph $G = (papers \cup reviewers, E)$
- $(r,p) \notin E$ means that r cannot review p

- for $e = (r, p) \in E$, $v_{rp} \in \{1, \dots, \Delta\}$ is the rank of r for p
- an assignment *M* is a subset of the edges
- Objectives
 - Coverage: each paper is reviewed (at least) k times
 - Load-Balance: load is shared evenly among reviewers;
 every rev. reviews h = [mk/n] or h − 1 papers; today: mk/n ∈ N
 - Quality: papers are reviewed by qualified reviewers and reviewers get the papers that they are interested in

• *n* reviewers, *r* indexes reviewers

- m papers, p indexes papers
- edge-labelled bipartite graph $G = (papers \cup reviewers, E)$
- $(r, p) \notin E$ means that r cannot review p

- for $e = (r, p) \in E$, $v_{rp} \in \{1, \dots, \Delta\}$ is the rank of r for p
- an assignment *M* is a subset of the edges
- Objectives
 - Coverage: each paper is reviewed (at least) k times
 - Load-Balance: load is shared evenly among reviewers;
 every rev. reviews h = [mk/n] or h − 1 papers; today: mk/n ∈ N
 - Quality: papers are reviewed by qualified reviewers and reviewers get the papers that they are interested in
 - Fairness: papers are treated fairly, reviewers are treated fairly

Quality w.r.t. a Reviewer (Paper)

- balanced assignment: k reviews per paper, h reviews per reviewer
- signature of reviewer *r*: $s^r = (s^r_{\Delta}, \dots, s^r_1)$

 s_{ℓ}^{r} = number of papers with valuation ℓ assigned to r

- order signatures either
 - lexicographically or
 - by weight

$$w(s^r) = \sum_{1 \le \ell \le \Delta} w_\ell s_\ell^r$$

where
$$w_\ell = \ell$$
 or $w_\ell = 2^\ell$ or . . .

reviewers prefer assignments that give them a high signature (selfish view)

EasyChair's Solution

- convert the v_{rp} 's to numbers (LOW = 1, MEDIUM = 2, HIGH = 3)
- compute an maximum weight balanced assignment

EasyChair computes an approximation

• value of assignment = sum of the values of the reviewers

$$\sum_{r} w(s^{r})$$

- LEDA running time: 0.1 sec for ESA instance
- maximum weight assignments are not necessarily "fair"

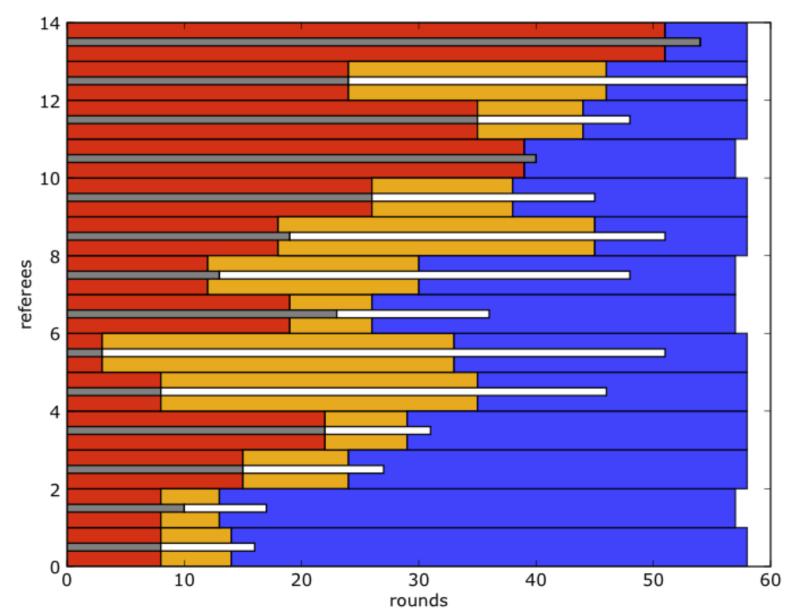
- four papers, two reviewers, each paper needs to be reviewed once
- reviewers agree in their valuation: two papers are H, two papers are L
- consider

Assignment A: reviewer 1: L L reviewer 2: H H

Assignment B: reviewer 1: L H reviewer 2: L H

- both assignments have weight 2w(H) + 2w(L), but Assignment B is more fair than Assignment A
- whenever valuation v_{rp} depends only on p, all assignments have the same weight

Max Weight Assignment



Assigning Papers to Referees Objectives, Algorithms, Open Problems – p.9/30

Formalization of Fairness

- PC work is a group effort; therefore special attention should be given to the reviewer that is least satisfied by an assignment
- recall $s^r(M)$ = signature of reviewer r in assignment M
- signatures are ordered (lexicographically or by weight)
- for an assignment M

 $\min_r s^r(M)$

is the worst signature of any reviewer r

we want the balanced assignment that maximizes the minimum signature

$$\max_{M} \min_{r} s^{r}(M)$$

- and among these assignments?
- the one that maximizes the second smallest signature, and among these, the one ...

Results

 $\Delta \ge 3$: problem is NP-complete

- all Δ : approx. such that every reviewer looses at most Δ wrt optimum
- $\Delta = 2$: efficient algorithm

experiments: good solutions for ESA data

Signatures are Ordered by Weight

- inspired by allocation of indivisible goods (Santa Claus problem)
- sources
 - Bezakova, Dani: ACM SIGecom 2005
 - Lenstra, Schmoys, Tardos: Math Program. 1990
- the values v_{rp} are numbers and it makes sense to add them
- binary variables x_{rp} with $x_{rp} = 1$ iff paper p is assigned to reviewer r
- load and coverage constraints:
 - $\sum_{p} x_{rp} = h$ for every reviewer r
 - $\sum_{r} x_{rp} = k$ for every (real) paper p

 $S_r := \sum_p v_{rp} x_{rp}$ is value (utility) for reviewer r

A Hardness Result

- goal: maximize the smallest signature
- It is NP-hard to compute a balanced assignment approximating the minimum signature within less than $\Delta/2$ for all $\Delta \ge 3$

- fractional balanced assignments
 - every fractional balanced assignment gives rise to a vector $(t_1, t_2, ..., t_n)$, where t_i = utility for reviewer i
 - let (t₁^{*}, t₂^{*},..., t_n^{*}) be an optimal fractional assignment, i.e., it maximizes *sort*(t₁^{*},..., t_n^{*}) (sort in increasing order)
 - $(t_1^*, t_2^*, \dots, t_n^*)$ is unique and efficiently computable
 - fractional assignment: we may assign papers fractionally, e.g., 0.3 to reviewer 1, 0.5 to reviewer 2, 0.2 to reviewer 3.

- fractional balanced assignments
 - every fractional balanced assignment gives rise to a vector $(t_1, t_2, ..., t_n)$, where t_i = utility for reviewer i
 - let (t₁^{*}, t₂^{*},..., t_n^{*}) be an optimal fractional assignment, i.e., it maximizes *sort*(t₁^{*},..., t_n^{*}) (sort in increasing order)
 - $(t_1^*, t_2^*, \dots, t_n^*)$ is unique and efficiently computable
- in polynomial time on can compute an integral assignment M such that

$$S_r > t_r^* - \Delta$$
 for all r

i.e., each reviewer is within Δ of its utility in optimal fractional assignment

- fractional balanced assignments
 - every fractional balanced assignment gives rise to a vector $(t_1, t_2, ..., t_n)$, where t_i = utility for reviewer i
 - let (t₁^{*}, t₂^{*},..., t_n^{*}) be an optimal fractional assignment, i.e., it maximizes *sort*(t₁^{*},..., t_n^{*}) (sort in increasing order)
 - $(t_1^*, t_2^*, \dots, t_n^*)$ is unique and efficiently computable
- in polynomial time on can compute an integral assignment M such that

 $S_r > t_r^* - \Delta$ for all r

• approach: compute optimal fractional assignment and round

- fractional balanced assignments
 - every fractional balanced assignment gives rise to a vector $(t_1, t_2, ..., t_n)$, where t_i = utility for reviewer i
 - let (t₁^{*}, t₂^{*},..., t_n^{*}) be an optimal fractional assignment, i.e., it maximizes *sort*(t₁^{*},..., t_n^{*}) (sort in increasing order)
 - $(t_1^*, t_2^*, \dots, t_n^*)$ is unique and efficiently computable
- in polynomial time on can compute an integral assignment M such that

$$S_r > t_r^* - \Delta$$
 for all r

• remark: ESA instance ($\Delta = 3$): h = 58 and $58 \le S_r \le 174$, but

$$k = 4$$
 and $4 \le S_p \le 12$

Finding the Optimum Fractional Solution

- proceed in rounds: in *j*-th round we compute *j*-th entry of $(s_1^*, \ldots, s_n^*) := sort(t_1^*, \ldots, t_n^*)$
- assume that we know the first j-1 entries of s^* and the reviewers r_1 to r_{j-1} defining them
- consider the following LP: maximize q subj. to
 - x guarantees coverage and load balance
 - $\sum_p v_{r_i p} x_{r_i p} = s_i^*$ for $1 \le i < j$
 - $\sum_{p} v_{rp} x_{rp} \ge q$ for the remaining *r*
- let q^* be the optimal value.
- find the reviewer(s) that cannot do better than q^*

change one of the $\geq q$ into a > q and check feasibility

• set s_i^* to q^* and r_j to this reviewer

Rounding Fractional Solutions

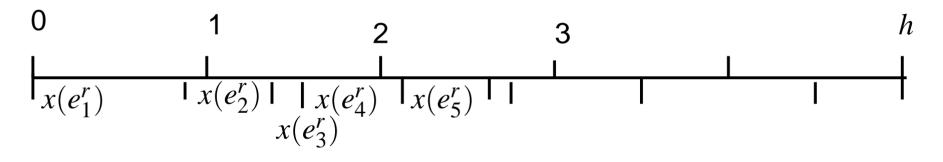
- let *x*(*e*), *e* ∈ *E* be any fractional solution satisfying the load and coverage constraints
- let $s_r(x) := \sum_p v_{rp} x_{rp}$, value for reviewer r
- let $s_p(x) := \sum_r v_{rp} x_{rp}$, value for paper p
- in polynomial time, we can find an integer assignment y(e), e ∈ E, such that
 - *y* satisfies the load and coverage constraints
 - $s_r(y) > s_r(x) \Delta$ for all reviewers r
 - $s_p(y) > s_p(x) \Delta$ for all papers p.
- observe that we have a guarantee for reviewers and papers

The Rounding Scheme

• given a fractional assignment x(e), $e \in E$ round to $y(e) \in \{0, 1\}$

The Rounding Scheme

- given a fractional assignment x(e), $e \in E$ round to $y(e) \in \{0, 1\}$
- consider a fixed reviewer *r*, order the incident edges in order of decreasing weight, say w(e^r₁) ≥ w(e^r₂) ≥
- visualize the values $x(e_1^r)$, $x(e_2^r)$, ...



The Rounding Scheme

- given a fractional assignment x(e), $e \in E$ round to $y(e) \in \{0, 1\}$
- consider a fixed reviewer *r*, order the incident edges in order of decreasing weight, say w(e^r₁) ≥ w(e^r₂) ≥
- visualize the values $x(e_1^r)$, $x(e_2^r)$, ...

- goal: at least one of $y(e_1^r)$, $y(e_2^r)$ is one, at least two of $y_(e_1^r)$, ..., $y(e_4^r)$ are one, ...
- more generally: $x(e_1^r) + \ldots + x(e_\ell^r) \ge j \implies y(e_1^r) + \ldots + y(e_\ell^r) \ge j$
- such an integral solution exists and it yields the desired approximation

The Approximation Quality

- given a fractional solution x(e), $e \in E$, round to $y(e) \in \{0, 1\}$
- reviewer *r*, order incident edges by weight $w(e_1^r) \ge w(e_2^r) \ge \dots$
- assume: $x(e_1^r) + \ldots + x(e_\ell^r) \ge j \implies y(e_1^r) + \ldots + y(e_\ell^r) \ge j$

• how much can we loose by rounding?

The Approximation Quality

- given a fractional solution x(e), $e \in E$, round to $y(e) \in \{0, 1\}$
- reviewer *r*, order incident edges by weight $w(e_1^r) \ge w(e_2^r) \ge \dots$
- assume: $x(e_1^r) + \ldots + x(e_\ell^r) \ge j \implies y(e_1^r) + \ldots + y(e_\ell^r) \ge j$

how much can we loose by rounding? No more than

$$(w(e_1^r) - w(e_2^r)) + (w(e_2^r) - w(e_4^r)) + \dots$$

since fractional value of [1,2] at most $w(e_2^r)$ and integral value at least $w(e_4^r)$

The Approximation Quality

- given a fractional solution x(e), $e \in E$, round to $y(e) \in \{0, 1\}$
- reviewer *r*, order incident edges by weight $w(e_1^r) \ge w(e_2^r) \ge \dots$
- assume: $x(e_1^r) + \ldots + x(e_\ell^r) \ge j \implies y(e_1^r) + \ldots + y(e_\ell^r) \ge j$

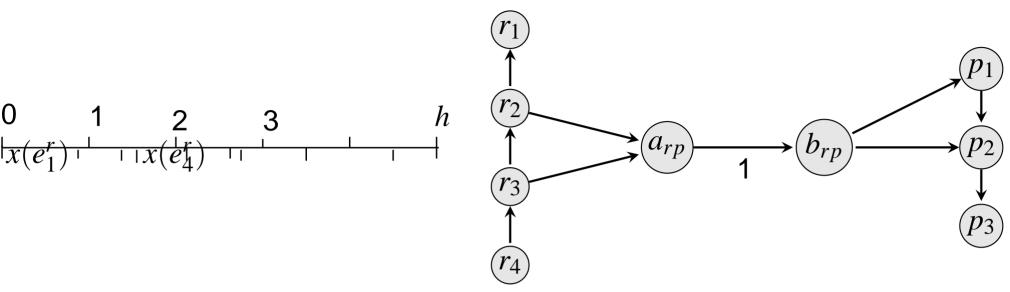
how much can we loose by rounding? No more than

$$(w(e_1^r) - w(e_2^r)) + (w(e_2^r) - w(e_4^r)) + \dots$$

since fractional value of [1,2] at most $w(e_2^r)$ and integral value at least $w(e_4^r)$

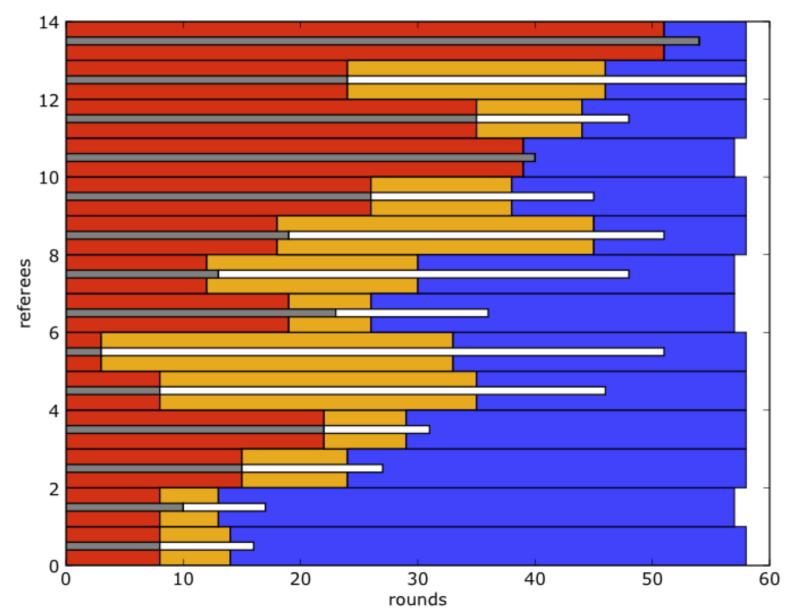
• this telescopes to no more than Δ

Existence: A Flowproblem



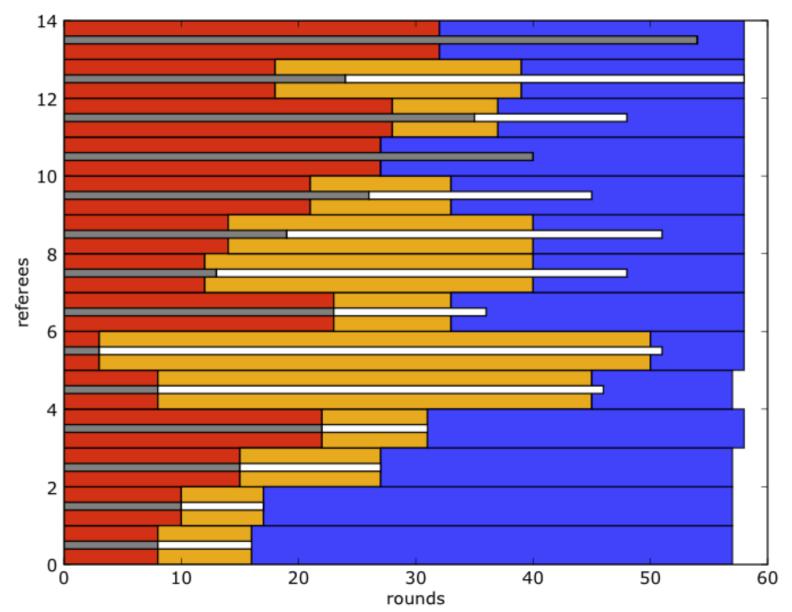
- have h nodes for each reviewer (supply one) and k nodes for each paper (demand one)
- $e_4^r = rp$ belongs to second and third group with respect to r and first and second group with respect to p.
- fractional flow is feasible
- all capacities are integral \Rightarrow integral flow exists
- flow out of $\{r_1, \ldots, r_i\}$ is at least *i*, flow into $\{p_1, \ldots, p_j\}$ is at least *j*.

Max Weight Assignment



Assigning Papers to Referees Objectives, Algorithms, Open Problems – p.20/30

Our Assignment (leximax)



Assigning Papers to Referees Objectives, Algorithms, Open Problems – p.21/30

- ordering signatures by weight or lexicographically is the same
- consider (reviewers are ordered by signature)

Н	Н	Н	Н	Н	Н	Н	Н	L	L	L
Н	Н	Н	Н	Н	Н	L	L	L	L	L
Н	Н	Н	Н	Н	Н	L	L	L	L	L
Н	Н	Н	Н	Н	L	L	L	L	L	L
Н	Н	L	L	L	L	L	L	L	L	L

- we want the assignment for which the H L staircase is as far to the right as possible
- this is the same as saying that the H L staircase is as far down as possible.
- we will next see a polynomial time alg for the case of two ranks

A Polynomial Time Algorithm for Two Ranks

- the following alg computes an assignment for any value of Δ for Δ = 2, it computes leximax solution for Δ ≥ 3, it also seems to work well
- ranks are in $\{1, .., \Delta\}$, large ranks are better than small ranks
- we view the assignment as proceeding in rounds:

revs	papers						revs	ranks (sorted)				(k
1	3	7	4	9	1		1	5	5	3	1	1
2	5	4	2	3	7		2	5	4	2	2	2
3	3	1	4	7	9		3	3	1	1	1	1

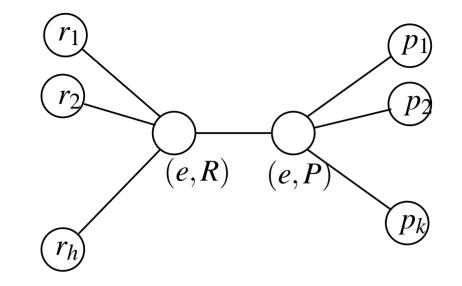
• signature of a round: (# of rank Δ papers, # of rank $\Delta - 1$ papers, ..., # of rank 1 papers)

Rank-Maximality

- we view the assignment as proceeding in rounds:
- signature of a round: (# of rank Δ papers, # of rank $\Delta - 1$ papers, ..., # of rank 1 papers)
- objective:
 - maximize signature of first round and subject to this signature of second round and ...
 - for two ranks: objective yields lex-max solution
 - for more than two ranks: ????
- polynomial time algorithm via
 - weighted bipartite matching problem with exponentially large weights
 - running time, 1 sec for ESA instance

The Weighted Bipartite Matching Problem

- vertex r_{ℓ} represents reviewer r in round ℓ , $1 \leq \ell \leq h$
- vertex p_c represents copy c of paper p, $1 \le c \le k$
- for an edge e = (r, p) of rank d, we have vertices (e, R) and (e, P) and the edges shown



- If p is assigned to r in round ℓ , $(r_{\ell}, (e, R))$ and $((e, P), p_c)$ are in M.
- If *p* is not assigned to *r* in any round,

- $((e,R),(e,P))\in M.$
- the edges from nodes r_{ℓ} to the nodes (e, R) are weighted

The Weights

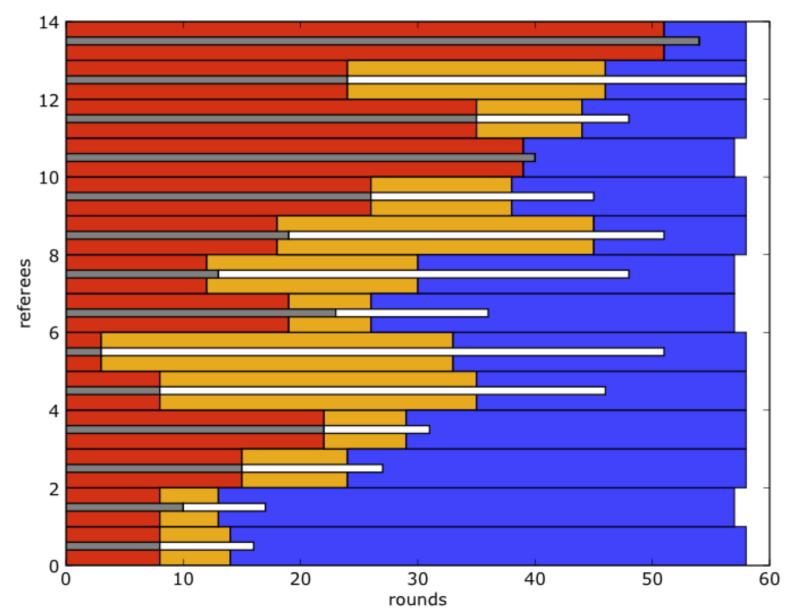
• if e = (r, p) has rank d, we give the edge connecting r_{ℓ} and (e, R) weight

 $(n+1)^d W^{k-\ell+1}$ where $W = (n+1)^{r+1}$

- weights for a single round:
 - a paper of rank *d* contributes weight $(n+1)^d$ to the weight of a round; because then
 - $n \operatorname{rank} d 1$ assignments cannot make up for one rank d assignment
 - maximum weight of a round: $n(n+1)^r$, set $W = (n+1)^{r+1}$
- total weight of assignment = $w_1W^k + w_2W^{k-1} + \ldots + w_kW^0$

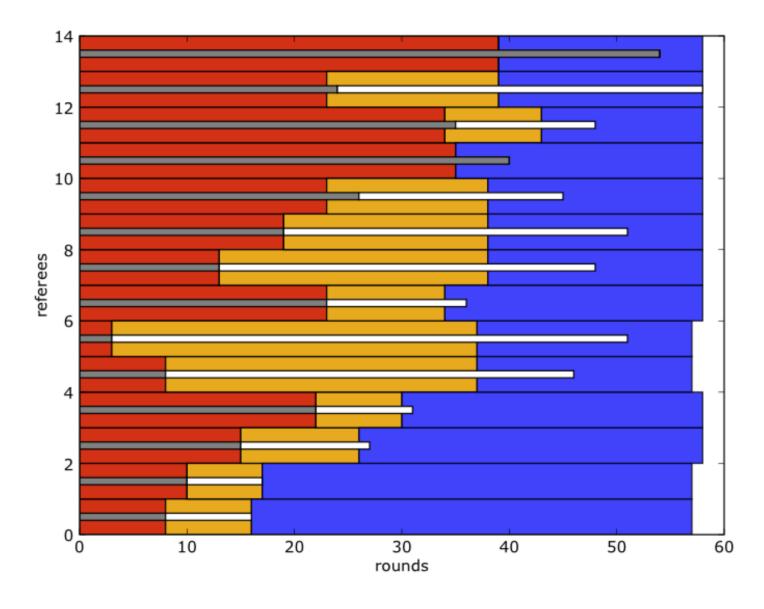
 w_{ℓ} = weight of round ℓ and k is the number of rounds

Max Weight Assignment



Assigning Papers to Referees Objectives, Algorithms, Open Problems – p.27/30

Our Assignment (rank-maximal)



first 22 rounds are perfect

Kurt Mehlhorn, MPI for Informatics and Saarland University

Assigning Papers to Referees Objectives, Algorithms, Open Problems – p.28/30

• the goal of a reviewer is to maximize his signature

does any of the strategies induce reviewers to reveal their true valuations?

Truthfulness

• the goal of a reviewer is to maximize his signature

does any of the strategies induce reviewers to reveal their true valuations?

- NO
 - assume we have three reviewers, three papers and each paper needs to be reviewed twice.
 - the reviewers have equal valuations: they rate papers 1 and 2 high and paper 3 medium.
 - assume reviewers 2 and 3 tell the truth; then
 - reviewer 1 should lie about paper 3 and state a low rating.
 - he will get papers 1 and 2.

Truthfulness

• the goal of a reviewer is to maximize his signature

does any of the strategies induce reviewers to reveal their true valuations?

- NO
 - assume we have three reviewers, three papers and each paper needs to be reviewed twice.
 - the reviewers have equal valuations: they rate papers 1 and 2 high and paper 3 medium.
 - assume reviewers 2 and 3 tell the truth; then
 - reviewer 1 should lie about paper 3 and state a low rating.
 - he will get papers 1 and 2.
- more extreme: a reviewer declares a conflict for all but *h* papers

What Next?

- are these the right objectives; alternative objectives?
- more algorithms (exact and approximate)
- a deeper investigation of truthfulness
- a better way to determine valuations?

bids + keywords + wisdom of PC chair

- more experiments in collaboration with Andrei Voronkov (EasyChair)
- incorporation into EasyChair