Contents

11 Windowsand Panels page2
11.1 Pixel and User Coordinates 2
11.2 Creation, Opening, and Closing of a Window
11.3 Colors 5
11.4 Window Parameters 7
11.5 Window Coordinates and Scaling 9
11.6 The Input and Output Operategsand>> 10
11.7 Drawing Operations 11
11.8 Pixrects and Bitmaps 12
11.9 Clip Regions 17
11.10 Buffering 18
11.11 Mouse Input 20
11.12 Events 23
11.13 Timers 31
11.14 The Panel Section of a Window 33
11.15 Displaying Three-Dimensional Objects_@8dow 44
Bibliography 46
Index 47

11
Windows and Panels

The data typevindowis the base type for all visualisation and animation suppothe
LEDA system. It provides an interface for the graphical ingrud output of basic geometric
objects for both th&X11 system on Unix platforms and for Microsaffindowssystems.

An instanceW of typewindowis a rectangular window on the display screen. The width
w and heighth of W are measured in pixels and can be defined in the constructm. T
default constructor initializes the width and heighMgfto default values depending on the
system and screen resolution of the display. The positidh@display is given by the pixel
coordinates of the upper left corner\®. It can be specified in thdisplayoperation.

A window consists of two rectangular regionspanel sectiorin the upper part and a
drawing sectiorin the rest of the window. Either section may be empty. Thespaaction
containgpanel itemssuch as sliders, choice fields, string items, and buttonsy Hiave to
be created by the operations described in Section 11.14d#fe window is displayed for
the first time. Figure 11.1 shows a typical LEDA window. If andow has no drawing
section we call it gpanel Figure 11.2 shows the LEDA panel used for #imanmanual
reader.

The drawing section can be used to draw geometric objects asipoints, lines, seg-
ments, arrows, circles, polygons, graphs, ...and to inputad these objects using the
mouse input device.

In this chapter we discuss LEDA windows and show how to usentimedemo and visu-
alization programs.

11.1 Pixel and User Coordinates 3

input cube |["hall sguare| para | mesh |sphere| line |

points [0 _1000 | 2000 | 4000 | 8000 | 16000 | 32000 |
+ 53 |

gen | vfile | run | setup| exit |

left: zoom up middle: zoom down right: stop rotation

Figure11.1 A typical LEDA window.

|| Introduct ion

© /1l

Figure 11.2 A typical LEDA panel: xIman.

11.1 Pixel and User Coordinates

The underlying graphics systems (X11 or Windows) maps wirglo rectangular regions
of the display screen using a pixel based coordinate syskerthis pixel coordinate sys-
tem the upper left corner of the window rectangle has coordmél, 0), x-coordinates
increase from left to right, and y-coordinate increase ftomto bottom. This is illustrated
in Figure 11.3.

All drawing and input operations in the drawing section useuser coordinate system
whose y-axis is oriented in the usual mathematical way, item bottom to top. The

4 Windows and Panels

width

A\ 4

0,0

Y

heigh

3

Figure 11.3 The pixel coordinate system: the pixel with coordinai@st).

user coordinate system is defined by three numbers ofdgpéle xmin, the minimal x-
coordinatexmay the maximal x-coordinate, aryanin the minimal y-coordinate. The two
parametergminandxmaxdefine the scaling factor

scaling= w/(Xxmax— xmin),

wherew is the width of the window in pixels. The maximal y-coordiegmaxof the
drawing section is equal tgmin+ h - scaling whereh is the height of the drawing section
in pixels. The user coordinatés, y) correspond to the pixel

(scaling- (x — xmin), scaling- (y — ymin)).

The window type provides operations for translating userdimates into window coor-
dinates and vice versa.

11.2 Creation, Opening, and Closing of a Window

We describe how to create, open, and close a window.

11.2 Creation, Opening, and Closing of a Window 5

Figure11.4 The LEDA default icon.

window W;

creates a window of default size.
window W(int w, int h);

creates a windowV of sizew x h pixels.
void W.display();

opensW and displays it at the default position on the screen. Naewhdisplay() has to
be called before all drawing operations and that all openatadding panel items ¥ (cf.
Section 11.14) have to be called before the first calhodlisplay().

void W.display(int x, int y);

opensW and displays it with its left upper corner at positign y) in pixel coordinates.
The three special constantgndow:.: min, window:: center window.: maxcan be used for
positioningW at the minimal or maximak- or y-coordinate or centering it horizontally or
vertically on the screen.

void W.display(window WO, int x=window::center, int y=window::center);

opensW and displays it at positiofix, y) above windowWO0 which must be displayed
already.

void W.iconify();

closesW and displays it as a small icon. If no user-defined icon isifipelsee thécon
pixrectparameter) the LEDA default icon, as shown in Figure 11.4sed.

void W.close();

closeswW and removes it from the display.

6 Windows and Panels

11.3 Colors

The data typeolor represents all colors available in drawing operations.

Each color value corresponds to a triple of integerg), b) with 0 < r, g, b < 255, the
so-calledrgb-valueof the color. The number of available colors is restricted dapends
on the underlying hardware. A color can be created from @bes,

color col(int r, int g, int b);

from a color name in a system data base (X11 only)
color col(string color_name);

or from one of the integer color constants definedLliEDA/impl/xwindowh>
color col(int color_const);

wherecolor_constis one of the constants from the enumeration

enum { black, white, red, green, blue, yellow, violet,
orange, cyan, brown, pink, green2, blue2,
greyl, grey2, grey3, ivory, invisible }
A drawing operation with the special coliowisible has no effect on the display.
The definition of a color may fail due to one of the followingsens:

e There is a system dependent limitation on the total numbdifigfrent colors any
application may use and the construction exceeds this. limit

e One of the specified, g, b)-values is illegal, i.e., notin the range [Q ., 255].

e The color name is not present in the systems color data bake system does not
support this method of specifying colors.

If the definition of a color fails, we say that the constructetbr isbad it is calledgood
otherwise. The operation

bool col.is_good()

tests whether a color is good or bad.
It is also possible to retrieve the, g, b)-values of a color by

void col.getrgb(int& r, int& g, int& b);

The following program tries to construct all 256 possibleygcolors and reports how
many of them are available.

(greyscales.)e=
#include <LEDA/window.h>
#include <LEDA/array.h>
main()
{
array<color> grey(256);
int n = O;

11.4 Window Parameters 7

for(int i = 0; i < 256; i++)
{ color c(i,i,i);

if (c.is_good()) grey[n++] = c;
}

cout << n << " different greys available." << endl;

return 0;

Exercisesfor 11.3

1 How man different versions of “red” are available on yousteyn? Write a program to
find out.

2 Write a program that displays a rainbow.

11.4 Window Parameters

Every window has a list of parameters which control its apgeee and the way drawing
operations are performed on the window. In this section wkfingt survey the available
window parameters and then show how to read and to change them

The Available Parameters. We list the parameters together with their type, defauli®al
and a short description of their meaning.

background color A parameter of typeolor (default valuewhite) defining the default
background color (e.g., used WV.clear() to erase the drawing area).

background pixrectA parameter of typehars (default valueNULL) defining a pixrect
(see Section 11.8) that is used to tile the background of thdaw. If it is different from
NULL the background color parameter is ignored.

foreground color A parameter of typeolor (default value:black) defining the default
color to be used in all drawing operations. All drawing opienss have an optional color
argument that can be used to override the default foregroalad temporarily.

mouse cursar A parameter of typent (default value: —1) defining the shape of the
mouse cursor. Its value must be either the default value erajrthe values listed in
<LEDA/X11/cursorfonth>.

text font A parameter of type string (default value: system depetdisfining the name
of the font to be used in text drawing operations. Possibleegare strings of the form:
T<nunv, F<nune, | <nun®, and B<nun». HereT stands for (normal) text- for fixed
size,l for italic, andB for bold, andnumgives the font size in points. These special names
are used by the window class to provide a platform indepengeay of specifying fonts.
For example, B14' specifies a “usual” 14pt bold font of the underlying opengtsystem.
Note, however, that, in general, a font specified in this willaok different for different

8 Windows and Panels

platforms. On Unix systems fonts can also be specified by dnfetit name as for instance
—adobe-helvetica-medium-r—*—*—14—k—k—k—k—k—k—x%,

window coordinates (xmin, xmax, yminfParameters of typdouble (default values:
(0, 100, 0)) defining the user coordinate space of the window, keijn is the minimal
x-coordinate xmaxthe maximalx-coordinate, angmin the minimaly-coordinate of the
drawing area. The maximatcoordinateymaxdepends on the shape and size of the draw-
ing area.

grid width: A parameter of typint (default value: 0) defining the width of the grid used
in the drawing area. A grid width of 0 indicates that no gritbide used.

grid style A parameter of typgrid_style(default value:pointgrid) defining how a grid
is represented in the window. Possible valuesmrisiblegrid, pointgrid, andline.grid.

frame label A parameter of typstring (default value: LEDA header) defining the frame
label of the window that is used by the graphics system or ainghanager.

icon label A parameter of typetring (default value: empty) defining the icon label of
the window.

icon pixrect A parameter of typehar« (default value:NULL) defining a pixrect (see
Section 11.8) that is used as the icon of the window. If it helseNULL the default icon
is used.

show coordinatesA parameter of typdool (default value:falsg determining whether
the current coordinates of the mouse pointer are displaydakei upper right corner of the
window.

line widtht A parameter of typént (default value: 1) defining the width of all kinds of
lines (segments, arrows, edges, circles, polygons) irfgixe

line style A parameter of typdine style (default value:solid) defining the style of all
kinds of lines. Possible styles aselid, dasheddotted anddashedlotted

node width A parameter of typént (default value: 10) defining the diameter of nodes
created by thelrawnodeanddrawfilled.nodeoperations.

text mode A parameter of typéextmode(default valueitransparen} defining how text
is inserted into the window. Possible values amsparentandopaque

drawing mode A parameter of typelrawingmode(default value:srcmodedefining the
logical operation that is used for setting pixels in all dirgwoperations. Possible values are
srcmodeandxormode In srcmodepixels are set to the respective color valuesdnmode
the value is bitwise added to the current pixel value.

clip regiont A parameter defining the clipping region of the window,,itee region of
the window to which drawing operations are applied (defsaltie: the entire drawing
area). In the current implementation clip regions are iestl to rectangles (defined by
setclip_rectanglg and ellipses (defined bsetclip_ellipse.

redraw function A parameter of typevoid (xfunc)(windows) (default value: NULL).

11.4 Window Parameters 9

Its value is a pointer to a function that is called with a peirtb the corresponding win-
dow, whenever a redrawing of the window is necessary, é.the ishape of the window is
changed or previously hidden parts of the window becoméleisi

client data A parameter of typeoid« (default value: NULL). Its value is an arbitrary
pointer value that can be set or read by client applicatidnsmost cases it is used to
associate user-defined data with a window for usedmawor other call-back functions.

buttons per line A parameter of typét (default value oo) defining the maximal number
of buttons in one line of the panel section.

Reading and Changing Parameters. Most parameters may be retrieved or changed by
getandsetfunctions. We us@aramto denote any of the window parameters gagdamt
to denote its type.

param_t W.get_param()
returns the current value of parameparam and
param t W.set_param(paramt val)

sets the value of parametparam of type paramt to the new valueval and returns the
former value of the parameter.
Here are some simple examples:

line style = W.get_line_style();
int 1w = W.get line width();

.set_cursor (XC_dotbox) ;
.set_bg pixrect (leda pixmap);
.set_grid dist(10);

.set_grid style(line grid);
.set_line width(1)
.set_bg_color(ivory)
.set_color(blue)
.set_redraw(redraw_func) ;

SEs=s=ss =5 =

The fact that thesetoperation returns the old value of the parameter is veryeoient
when a parameter is to be changed only temporarily. Forriestan order to change the
mouse cursor to a “watch symbol” during the execution of a&taansuming operation, one
writes:

int old_cursor = W.set_cursor (XC_watch);

// some time consuming computation
W.set_cursor (old_cursor) ;

There are a few operations for changing parameters that tdfolhmv the scheme de-
scribed above, e.g., theit operation for changing the user coordinate system that-is ex
plained in the next section.

10 Windows and Panels

11.5 Window Coordinatesand Scaling

We discuss the connection between coordinates and pixedsuséiv andh for the width
and the height of the drawing section in pixels. Both valuestetermined by the appear-
ance of a window on the screen. The coordinate system unadglye drawing area is
defined by thénit operation.

void W.init(double x0, double x1, double yO, int grid._dist=0);

defines the coordinate system underlying the drawing ar@alo§ settingxminto xo, Xmax
to x1, andyminto yp. It also defines implicitly a scaling fact@calingand the maximal
y-coordinateymaxof the drawing area.

scaling= w/(xmax— xmin and ymax= ymin+ h - scaling

If, in addition, agrid_dist argument is supplied, it is used to initialize the grid dista of
the window. The following function give information abobetwindow coordinates and the
scaling factor:

double W.xmin()

returnsxmin the minimalx-coordinate of the drawing area ¥, i.e., the coordinate of
the left window border in user space. The analogous funstgmxmax), W.ymin(), and
W.ymax) are also available.

double W.scale()

returns the scaling factor of the drawing ared\fi.e. the number of pixels of a unit length
line segment in user space.

double W.pix_to_real(int p)

translates pixel distances into user space distances,prerisely, returns the length offa
pixel horizontal or vertical line segment in the user cooaté system.

double W.real to_pix(double d)

translates user space distances into pixel distances, pnecesely, returns the number of
pixels contained in a horizontal or vertical line segmerieofythd.

11.6 Thelnput and Output Operators « and >

For the input and output of basic two-dimensional geomethbiects of the floating point
kernel point, segmentray, line, circle, polygon the « and>>> operators can be used. In
analogy to G+ input streams, windows have an internal state indicatingthdr there was
more input to read or not. The state is true initially and ieéd to false if an input sequence
is terminated by clicking the right mouse button (similaetaling stream input by theof-
character). In conditional statements, objects of tyjredoware automatically converted

11.7 Drawing Operations 11

to boolean by returning this internal state. Thus, winddseots can be used in conditional
statements in the same way astGnput streams. For example, to read a sequence of points
terminated by a right button click, use

while (W>>p) { }

The following program uses the> operator to read points defined by mouse clicks and
draws each point using the& operator until input is terminated by clicking the right nseu
button.

(draw_points.¢=
#include <LEDA/window.h>

main()

{
window W(400,400);
W.display(window: :center,window: :center) ;

point p;
while (W >> p) W << p;

W.screenshot ("draw_points.ps");

Graphical input and output for LEDA windows can be extendedser-defined types by
overloading thex and>>> operators. This is in analogy to+#€ stream input and output. For
example <LEDA/rat windowh> contains input and output operators for the objects of the
rational kernel.

window& operator<<(window& W, const rat_point& p)
{ return W << p.topoint(); }
window& operator>>(window& W, rat_point& p)
{ point q;
W >> q;
p = rat_point(q);
return W;

}

Exercisesfor 11.6

1 Modify the programdrawpointsc such that segments (circles, line, or polygons) are
echoed. The modified program is supposed to work for only drileeomentioned ob-
jects.

2 Write operatorsg and>>> for rat polygors.

11.7 Drawing Operations

TheW <« objectoutput operators apply to the basic objects of the floatingtgarnel.
The windows class also provides a large number of additidraaling operations that give

12 Windows and Panels

more flexibility. In this book we can only give a few exampld%r the complete list of
operations we refer the reader to the LEDA User Manual.
There are two kinds of drawing operations

void W.draw_object(coords, color col=window::fg color);
void W.draw object(object, color col=window::fg color);

For the first variant, a geometric object is given by its cawaites in the user coordinate
system of the window, and for the second variant, the obgegiven as an object of the
floating point kernel. For example,

W.draw_circle(double x, double y, double r, color col);
draws a circle with centgix, y) and radius,
W.draw_polygon(list<point> P, color col);
draws a polygon with vertex sequeniee
W.draw_circle(circle C, color col);
draws the circleC, and
W.draw_polygon(polygon P, color col);

draws the polygori.

The allowed objects are points, pixels, segments, lines, r@lipses, circles and disks,
triangles (unfilled and filled), polygons (unfilled and filjedectangles and boxes, arcs,
Bezier curves, splines, arrows, text, nodes, and edges.wirigow data type can draw
many more types of objects than are available in the georketnel. For these types only
the first variant exists that takes an explicit coordinapgeeentation as input.

The optional color argument at the end of the parameterdisbe used to specify a color
that is to be used as foreground color by the operation. $f dmitted the current value of
the foreground color parameter (cf. Section 11.4) is used.

The clear operation erases the window by painting it withithekground color or tiling
it using the background pixrect (if defined).

void W.clear();
void W.clear(double x0, double y0O, double x1, double y1);

The second variant only clears rectan@g, Yo, X1, Y1).

Exercisesfor 11.7
1 Write a program that draws a red circle, a green line segraadta blue filled polygon.
2 Write a program that draws a filled box for each availablelsigof grey.

11.8 Pixrectsand Bitmaps

Pixrects and bitmaps are rectangular regions of pixels &adrbspectively.

11.8 Pixrects and Bitmaps 13

11.8.1 Pixrects

Pixrects (often called pixmaps) are rectangles of pixels oértain width and height. Each
pixel has a color value from the possible set of colors alskglan the underlying graphics
system. In this way pixrects represent rectangular pisture

There are operations to copy a pixrect into a rectangle ofitaeing area of a displayed
window of the appropriate size and to construct a pixreanfeorectangle of the drawing
area. Pixrects can also be constructed from external reiggsons of pictures storedxpm
files orxpmdata strings. xpm data strings are of tyghar « x, i.e., they are represented by
arrays of G+_ strings. An xpm file contains the ¢&) definition of an xpm data string,
see Figure 11.5 for an example. For the exact definition oikgra format we refer the
reader to one of th&11handbooks or manuals [Nye93]. LEDA provides a small calbect
of icon pictures stored in xpm files in thke.EDA/pixmapgbutton32 directory. A typical
X11 system provides tools for the construction and mantmraf xpm files.

In the current implementation of LEDA pixrects and bitmapesot realized by real data
types but by pointers (of typehars). In particular, there is no constructor and destructor,
i.e., the user must explicitly create and destroy pixrectbittnaps by callingcreateand
destroyoperations.

Constructing and Destroying Pixrects. We discuss functions for constructing and de-
stroying pixrects.

char* W.create pixrect(double x0, double yO, double x1, double y1)

constructs a pixrect of all pixels contained in the rectarig, Yo, X1, y1) of the drawing
area ofW and returnsit.

char* W.get_window_pixrect()
constructs a pixrect of all pixels in the drawing area\vfand returns it.
char* W.create pixrect(char** xpm)
constructs a pixrect from the xpm pixmap data string xpm.
char* W.create pixrect(string xpm file)
constructs a pixrect from the xpm pixmap data in Xpemfile.
void W.del pixrect(char* prect)

destroys pixrecprect

Drawing Pixrects: We discuss the functions for drawing picrects.

void W.put_pixrect(double x, double y, char* prect)
void W.put_pixrect(point p, char* prect)

copies the pixels of pixregirectinto a rectangle of the drawing area\&f which is placed
with its left lower corner at the specified position of thewlirag area.

14 Windows and Panels

<<xpm_example_file.h>>=

/* XPM */
static char xexample_xpm[] = {
/* width height ncolors chars_per_pixel */

"32 326 1",

/* colors */

"¢ ¢ #000000",
"a ¢ #F5DEB3",
“b ¢ #EBEBFA",
"¢ ¢ #DBDBDB",
"d ¢ #CC9933",

"e c #FFFFCC",

/* pixels */
"cceeecccecccccccccccccccccccccccec"”,
""ccececececcccecccccccccccccccccccccec"”,
"ceeececccececef “ ffcecececcccccccccccece”,
"ceceececcec f‘bebef ‘et fccececcccccece”,
"cccccecf ‘bebebebeb‘beb‘c‘ccccccc”,
"cceceec ‘ebebebebebebebeb‘bcccccce"”,
"cccccc ‘bebebebebeb‘bebebeb‘ccccc”,
"cccccecc‘bebe ‘b ¢ ‘bebebebe‘ccccc",
"ceeeeceee b fddf ‘beb‘bebe‘cccce”,
"ccccecccecf f “‘ddddddd‘ ¢ ¢ ‘ebebe‘ccc",
"eceeceef f ¢ “‘dddddddddddd ‘ ebeb‘ccc",
"cececf‘aaa‘‘d‘ddd‘ddd‘ddf ‘ ‘be‘ccc",
"cccf‘aaaa‘‘dd‘ddd‘ddd‘d‘ ‘‘eb‘ccc",
"cecfaaa‘‘“‘dd‘ddd‘ddd‘df ‘eb‘cccc",
"cecfaa‘ccf‘dd‘ddd‘ddd‘df ‘be‘cccce"”,
"cccfaa‘ccf‘dd‘ddd‘ddd‘df ‘eb‘cccc",
"cecfaa‘ccf‘dd‘ddd‘ddd‘df ‘bccccce",
"cccfaa‘ccf‘dd‘ddd‘ddd‘df ‘e‘ccccc”,
"cccfaa‘ccf‘dd‘ddd‘ddd‘df ‘b‘ccccc”,
"cecfaa‘ccf‘dd‘ddd‘ddd‘df ‘e‘cccece",
"cccfaa‘ccf‘dd‘ddd‘ddd‘df ‘b‘ccccc”,
"cccfaa‘ccf‘dd‘ddd‘ddd‘df ‘e‘ccccc”,
"cecfaaa‘‘“‘dd‘ddd‘ddd‘df ‘bccccce”,
"cccf‘aaaa‘‘dd‘ddd‘ddd‘df ‘e‘ccccc",
"cececf‘aaa‘‘dd‘ddd‘ddd‘d “ ‘ccccece",
"eceeceef ¢ fdd‘ddd‘ddd‘df ‘cececcece",
"cccececececf ‘dfddf ‘ddf‘ddf ‘cccccecc”,
"cececcceef ‘dddddddddddd ¢ ccecccece,
"CCCCCCCCC““““““““CCCCCCC",
"ccececceccccc ccccccec”,
"cceeececcecccccccccccccccccccccccec"”,
""ccceececcecceccccccccccccccccccccccec”

};

ccececccccccc

Figure11.5 A pixrect stored irxpmformat.

void W.center pixrect(double x, double y, char* prect)
void W.center pixrect(point p, char* prect)

copies the pixels of pixregirectinto a rectangle of the drawing area\®f that is placed
with its center at the specified position of the drawing area.

In the following example we construct a pixrect representime LEDA icon and put
it (with its lower left corner) at positions defined by moudiels. Figure 11.6 shows a
screenshot.

11.8 Pixrects and Bitmaps 15

Figure11.6 A screenshot of the pigixrect program.

(put pixrect.0=
#include <LEDA/window.h>
#include <LEDA/pixmaps/leda_icon.xpm>

main()

{
window W(400,400);
W.display();
char* pr = W.create_pixrect(leda_icon);
point p;
while (W >> p) W.put_pixrect(p,pr);
W.del_pixrect(pr);

W.screenshot ("put_pixrect.ps");
return O;

11.8.2 Bitmaps

Bitmaps are pixrects containing pixels of only two possitiéors: black and white. The
name indicates that each pixels in a bitmap can be represbgta single bit and that is
exactly the way bitmaps are usually represented: by a t¢ipldn, s), wherew andh give
the width and height of the bitmap arsdis a string of bits (of typechark). A file that
contains the (€+) definition of such a string is called a bitmap file. Usuallg guffixxbm
(x bit map) is used for such a file. LEDA provides a small cdi@t of bitmap pictures

16 Windows and Panels

stored inxbmfiles in the<LEDA/bitmapgbutton32h> directory. As for pixmaps there are
many programs for constructing and manipulatiignfiles.

Bitmap Operations:
char* W.create bitmap(int w, int h, char* xbm)

creates a bitmap of widtly and height from the bits in the xom stringbm The length
of xbmmust be at leasp - h bits, i.e.,[(w - h)/8] characters.

void W.put_bitmap(double x, double y, char* bmap, color c)

void W.put_bitmap(point p, char* bmap, color c)
places the bitmapmapwith its left lower corner at the specified position of the wlirag
area and draws with colarall pixels in the drawing area that correspond to a pixddrabp
with value one.

void W.del bitmap(char* bmap)

destroys bitmajppmap

The following program is very similar to the last example gnam but uses a bitmap
instead of a pixrect. First, we construct a bitmap représgrihe LEDA icon and put it
(with its lower left corner) at positions defined by mouseldi.

(bitmap.¢=
#include <LEDA/window.h>
#include <LEDA/bitmaps/leda_icon.xbm>

main()

{
window W(400,400);
W.set_bg_color(yellow);
W.display();
// construct bitmap from the bitmap data in
// <LEDA/bitmaps/leda_icon.xbm>

char* bm = W.create_bitmap(leda_icon_width, leda_icon_height,
(char*)leda_icon_bits);

// copy copies of bm into the window

point p;

while (W >> p) W.put_bitmap(p.xcoord(),p.ycoord(),bm,blue);

W.del_bitmap (bm) ;

W.screenshot ("bitmap.ps");
return 0;

Exercisesfor 11.8

1 Write a program that converts a bitmap into a pixrect.
2 Construct a pixrect containing your picture.

3 Whatis shown in the pixrect of Figure 11.5

11.9 Clip Regions 17

11.9 Clip Regions

Sometimes it is necessary to limit the effect of a drawingragien to some restricted area,
a so-calledclipping regionof the window. The following operations allow us to define
clipping regions.

void W.set_clip rectangle(double x0, double yO, double x1, double y1);

sets the clipping region to rectandbe, Yo, X1, Y1)-

void W.set_clip_ellipse(double x0, double yO, double ri, double r2);

sets the clipping region to the ellipse with centey, yo), horizontal radius; and vertical
radiusrs.

void W.reset_clipping();

resets the clipping region to the entire drawing area of timelow.

We give an example for the usefulness of clipping. We show tmfill a circle with a
pixrect picture. In this situation, we have to restrict tiileet of aputpixrectoperation to
the interior of this circle. This can be done by defining a esponding clip-ellipse. Here is
the program and the resulting picture (Figure 11.7).

(clip_pixrect.¢=
#include <LEDA/window.h>
#include <LEDA/pixmaps/leda_icon.xpm>
void draw_pix_circle(window& W, const circle& C, char* prect)

{
point p = C.center();
double x = p.xcoord();
double y = p.ycoord();

double r = C.radius();
W.draw_disc(C,black);
W.set_clip_ellipse(x,y,r,r);
W.center_pixrect(x,y,prect);

W.reset_clipping();
}

main()

{

window W(400,400, "Clipping a Pixmap");
W.display();

// create a pixrect using LEDA’s xpm icon
char* leda_pix = W.create_pixrect(leda_icon);

circle c;
while (W >> ¢) draw_pix_circle(W,c,leda_pix);

W.del_pixrect(leda_pix);

W.screenshot ("clip_pixrect.ps");
return 0O;

18 Windows and Panels

Figure11.7 A screenshot demonstrating the effect of clip regions.

11.10 Buffering

The default behavior of all drawing operations discussekérpreceding sections is to draw
immediately into the drawing area of the displayed windohef® are, however, situations
where this behavior is not desired, and where it is very useftonstruct an entire drawing
in a memory buffer before copying it (or parts of it) into theadling area.

Buffering allows us to draw complex objects, which requiegesal primitive drawing
operations, in a single blow. One draws the complex objectarbuffer and then copies the
buffer to the drawing area. In this way, the illusion is cezhthat the entire object is drawn
by a single drawing operation. The ability to draw complejects in a single operation is
frequently needed ianimations where one wants to display a sequence of snapshots of a
scene that changes over time. Another application of uffés to create a pixrect copy of
a drawing without displaying it in the drawing area. At thelex this section we will give
example programs for both applications.

These are the most important buffering operations:

void W.start buffering()

starts buffering of windowV, i.e, all subsequent drawing operations have no effectdn th
drawing area of the displayed window, but draw into an iraébuffer with the same size
and coordinates as the drawing ared\af

void W.flush buffer()

copies the contents of the internal buffer ivib

11.10 Buffering 19

void W.flush buffer(double x0, double yO, double x1, double y1)

copies all pixels in the rectang(®, Yo, X1, 1) Of the buffer into the corresponding rectan-
gle of W. This can be much faster if the rectangle is significantly llenghan the entire
drawing area otV and is often used in animations when the drawing changes aceyly

in a small rectangular area.

void W.stop buffering()

stops buffering and deletes the internal buffer; all subsegidrawing operations again draw
into the drawing area diV. The alternative

void W.stop_buffering(char*& pr)

stops buffering and converts the internal buffer into aqitthat is assigned far.

The following program uses buffering to move the LEDA pixrball that was drawn
by the previous example program smoothly across the windwia let it bounce at the
window border lines.

(bufferingl.¢=
#include <LEDA/window.h>
#include <LEDA/pixmaps/leda_icon.xpm>
void move_ball(window& W, circle& ball, double& dx, double& dy,
char* prect)

{
ball = ball.translate(dx,dy);

point c¢ = ball.center();
double r = ball.radius();

if (c.xcoord()-r < W.xmin() || c.xcoord()+r > W.xmax()) dx = -dx;
if (c.ycoord()-r < W.ymin() || c.ycoord()+r > W.ymax()) dy = -dy;
W.clear();
W.set_clip_ellipse(c.xcoord(),c.ycoord(),r,r);
W.center_pixrect(c.xcoord(),c.ycoord() ,prect);
W.reset_clipping();
W.draw_circle(ball,black);

}

main()

{

window W(300,300, "Bouncing Leda");
W.set_bg_color(greyl);

W.display(window: :center,window: : center) ;
circle ball(50,50,16);

double dx = W.pix_to_real(2);

double dy = W.pix_to_real(1);

char* leda = W.create_pixrect(leda_icon);
W.start_buffering();

for(;;)

{ move_ball(W,ball,dx,dy,leda);

20

}

Windows and Panels

W.flush_buffer();
}
W.stop_buffering();

W.del_pixrect(leda);

W.screenshot ("bufferingl.ps");
return 0;

We next show how to use buffering to construct a pixrect cdgydrawing. The follow-
ing program uses an auxiliary winddiW1in buffering mode to create a pixrect picture that
is used as an icon for the primary winda.

(buffering2.6=
#include <LEDA/window.h>

main()

{

window W1(100,100);

Wi.set_bg_color(grey3);

Wi.init(-1,+1,-1);

Wi.start_buffering();

Wil.draw_disc(0,0,0.8,blue); Wi.draw_circle(0,0,0.8,black);
Wil.draw_disc(0,0,0.6,yellow);Wl.draw_circle(0,0,0.6,black);
W1.draw_disc(0,0,0.4,green); Wi.draw_circle(0,0,0.4,black);
Wil.draw_disc(0,0,0.2,red); Wi.draw_circle(0,0,0.2,black);
char* pr;

W1l.stop_buffering(pr);

window W(400,400);

W.set_icon_pixrect(pr);

W.display(window: :center,window: :center) ;

s

point p;
while (W >> p) W.put_pixrect(p,pr);
W.del_pixrect(pr);

W.screenshot ("buffering2.ps");
return 0;

Exercisesfor 11.10

1
2

Draw ten random line segments, once without buffering arwavith buffering.
Extend the “Bouncing LEDA’ program, such that the ball isqessed when it hits the
boundary of the window.

11.11 Mouselnput

The main input operation for reading positions, mouse sligd buttons from a window
W is the operatioW.readmouse). This operation is blocking, i.e., waits for a button to be

11.11 Mouse Input 21

pressed which is either a “real” button on the mouse devi@elrtton in the panel section
of W. In both cases, the number of the selected button is returlwkaise buttons have
predefined numbetrdOUSEBUTTON) for the left button MOUSEBUTTON2) for the
middle button, andMOUSEBUTTON?3) for the right button. The numbers of the panel
buttons can be defined by the user. If the selected buttonrhassaciated action function
or sub-window, this function/window is executed/opendd$ection 11.14 for details).

There is also a non-blocking input operatitvigetmouse), it returns the constant
NQBUTTON:If no button was pressed since the last calgjetmouseor readmouse and
there are even more general input operations for readindomirevents. Both will be dis-
cussed at the end of this section.

Read Mouse: The function
int W.read mouse();

waits for a mouse button to be pressed inside the drawingaréar a panel button of
the panel section to be selected. In both cases, the nhumbg&the button is returned.
The number is one of the predefined constW@®USEBUTTON) withi € {1, 2, 3} for
mouse buttons and a user defined value (defined when addibgttioa withW.button())
for panel buttons. If the button has an associated actiottifum this function is called with
parameten. If the button has an associated windy M is opened andl.readmousé)
is returned.
The functions

int W.read mouse(double& x, double& y)
int W.read mouse(point& p)

wait for a button to be pressed. If the button is pressedéntid drawing area, the position
of the mouse cursor (in user space) is assignes,tg) or p, respectively. If a panel button
is selected, no assignment takes place. In either case #ratmm returns the number of
the pressed button.

The following program shows a trivial but frequent applicatof readmouse We exploit
the fact thateadmouseis blocking to stop the program at the stateméfteadmouse).
The user may then leisurely view the scene drawn. Any click afouse button resumes
execution (and terminates the program).

(readmousel.=
#include <LEDA/window.h>

main()

{

window W;
W.init(-1,+1,-1);
W.display();
W.draw_disc(0,0,0.5,red);

W.read_mouse() ;

22 Windows and Panels

W.screenshot ("read_mousel.ps");
return 0;

}

The next program prints the different return valueseddmousefor clicks on mouse
and panel buttons.

(read.mouse2.=
#include <LEDA/window.h>

main()
{

window W;

W.button("button 0"); W.button("button 1");
W.button("button 2"); W.button("button 3");

int exit_but = W.button("exit");
W.display();
for(;;)
{ int but = W.read_mouse();
if (but == exit_but) break;
switch (but) {
case MOUSE_BUTTON(1): cout << "left button click" << endl; break;

case MOUSE_BUTTON(2): cout << "middle button click" << endl; break;
case MOUSE_BUTTON(3): cout << "right button click" << endl; break;

default: cout << string("panel button: J%d",but) << endl; break;
}
}
W.screenshot ("read_mouse2.ps");
return O;
}

Get Mouse: The functions

int W.get.mouse()
int W.get mouse(double& x, double& y)
int W.get.mouse(point& p)

are non-blocking variants eéadmousei.e., they do not wait for a mouse click, but check
whether there is an unprocessed click in the input queueeofvthdow. If a click is avail-
able, it will be processed in the same way as by the correspgread mouseoperation. If
there is no click, the special button valN€©BUTTON!is returned.

The following program draws random points. It ugegmouseat the beginning of every
execution of the main loop to check whether a mouse buttofées clicked or not. If the
right button has been clicked the loop is terminated, if #felutton has been clicked the
drawing area is erased.

11.12 Events 23

(getmouse.j=
#include <LEDA/window.h>
random_source& operator>>(random_source& ran, point& p)
{ int x,y;
ran >> X >> y;
p = point(x,y);
return ran;

}

main()

{
window W(400,400);

W.display(window: :center,window: :center) ;
W.message ("left button: clear right button: stop");

random_source ran(0,100);

int but;
while ((but = W.get_mouse()) != MOUSE_BUTTON(3))
{
if (but == MOUSE_BUTTON(1)) W.clear();
point p;
ran >> p;
W.draw_point (p,blue);
}
W.screenshot ("get_mouse.ps");
return O;
}

Exercisesfor 11.11
1 The following lines of code wait for a mouse click.

int but;
do but = W.get_mouse(); while (but == NO_BUTTON);
What is the difference tbut = W.readmouse¢)?
2 Write a program that implements the input operatofor polygons.

11.12 Events

In window systems like th&11 or Windowssystem, the communication between input
devices such as the mouse or the keyboard and applicatigrgong is realized by so-called
events For example, if the mouse pointer is moved across a windmsystem generates
motion events that can be handled by an application progoakeep track of the current
position of the mouse pointer, or, if a mouse button is clikan event is generated that
carries the information which button was pressed at whatipnof the mouse pointer, or,
if a key is pressed, a keyboard event is triggered that tpfdi@ation programs which key
was pressed and what window had the input focus, i.e., slieakdve this character input.

24 Windows and Panels

Events are buffered in a@vent queusuch that applications can access them in a similar
way as character input of a+@ input stream. It is possible to read and remove the next
event from this queue, to test whether the queue is emptytcapdsh events back into the
queue.

LEDA supports only a restricted set of events. Each evempsasented by a five-tuple
with the fields type, window, value, position, and time stamp

Thetypeof an event defines the kind of input reported by this evegt, a.click on a mouse
button or pressing a key on the keyboard. Event types ardfigokby integers from the
enumeration

enum {button press_event, button release event, key_press_event,
key_release_event, motion_event, configure_event, no_event}

Thewindowof an event specifies the window to which the event referss Ehusually the
window under the mouse cursor.

Thevalueof an event is an integer whose interpretation depends otypieeof the event,
e.g., the number of a mouse button for a button press eveatb&ew for a description of
the possible values for each event type.

The position of an event gives the position of the mouse pointer in the aserdinate
system of the window at the time the event occurred.
Thetime stampf an event is the time of a global system clock at which thexewecurred.
It is measured in milliseconds.

The following event types are recognized by LEDA and can bedleal in application
programs:
buttonpresseventindicates that a mouse button has been pressed. The valhe @fént is
the number of the pressed button. The mouse buttons are nedM®USEBUTTONZ),
MOUSEBUTTON?2), andMOUSEBUTTON(3).
buttonreleaseeventindicates that a mouse button has been released. The vahe®fent
is the number of the released button.

keypresseventindicates that a keyboard key has been pressed down. Theafdhe event
is the character associated with the key or in the case of@apey (such as a cursor or
function key) a special key code.

keyreleaseeventindicates that a keyboard key has been released, value @s.abo

motioneventindicates that the mouse pointer has been moved inside éinérdy area. The
value of this event is unspecified.

configureeventindicates that the window size has changed.

Blocking Event Input: Similar to thereadmousénput operation, there isr@adeventop-
eration that removes the first event of the system’s eventajuthis operation is blocking,
i.e., if the event queue is empty, the program waits untilve eeent occurs.

int W.read_event(int& val, double& x, double& y, unsigned long& t)

11.12 Events 25

waits for an event with windowV (discarding all events with a different window field) and
returns its type, assigns the value of the eventab its position to(x, y), and the time
stamp of the event th

int W.read event(int& val, double& x, double& y,
unsigned long& t, int timeout)

is similar, but waits (if no event fow is available) for at mogimeoutmilliseconds; if no
event occurs during this period of time, the special emargvents returned.

The next program implements a click and drag input routinegtie definition of rect-
angles. In its main loop the program waits for a mouse cliak stores the corresponding
position in a variablep by calling W.readmouseép). If the right button was clicked, the
program terminates. Otherwise, we tgkas the first endpoint of the diagonal of the rect-
angle to be defined, wait until the mouse button is releasgthissome positiog, and take
g as the other endpoint of the diagonal of the rectangle. Ygftir the release of the button
is implemented by the inner loop

while (W.read_event(val,x,y) != button releaseevent) { ... }

This loop handles all events of windoWw and terminates as soon abutonreleaseevent
occurs. For every event processed the value of the everdignasl toval and the position is
assigned t@x, y), in particular for motion events, the pait, y) keeps track of the position
of the mouse pointer in the drawing areaWf In the body of the inner loop we draw
the (intermediate) rectangle with diagonal frgato (x, y) as a yellow box with a black
border on top of the current drawing. The current drawinggigtlas a pixreovinbuf and
is constructed by a call té/.getwindowpixrect() before the execution of the inner loop.
This allows us to restore the picture without the intermedi@ctangles by copying the
pixels ofwinbuf into the drawing areaW/.putpixrectwin.buf)). Of coursewinbuf has to
be destroyed after the inner loop has terminated.

In addition, we use buffering as discussed in Section 11d @revent any flickering
effects. Figure 11.8 shows a screenshot.

(event.¢=
#include <LEDA/window.h>
#include <math.h>

int main()

¢ window W(450,500,"Event Demo") ;
W.display();
W.start_buffering();
for(;;)
{

// read the first corner p of the rectangle
// terminate if the right button was clicked

point p;

26 Windows and Panels

Figure 11.8 A screenshot of the Event Demo.

if (W.read_mouse(p) == MOUSE_BUTTON(3)) break;

// draw rectangle from p to current position
// while button down

int val;
double x,y;
char*x win_buf = W.get_window_pixrect();
while (W.read_event(val,x,y) != button_release_event)
{ point q(x,y);
W.put_pixrect (win_buf);
W.draw_box(p,q,yellow) ;
W.draw_rectangle(p,q,black);
W.flush_buffer();
}

W.del_pixrect(win_buf);
}
W.stop_buffering();

W.screenshot ("event.ps") ;
return 0;

The next example program uses the timeout-variaréad eventto implement a function
that recognizedouble clicks But what is a double click?

A double click is a sequence of three button events, a buttesspevent followed by
button release event followed by a second button press,evighthe property that the time

11.12 Events 27

interval between the two button press events is shorterdlgiven time limit. Usually, the
time limit is given in milliseconds by Eimeoutparameter that can be adjusted by the user.
In our example we fix it at 500 milliseconds.

In the program we first wait for a button press event and stogecbrresponding time
stamp in a variablepress If the pressed button was the right button the program isiter
nated, otherwise, we wait for the next button release evahstore the corresponding time
stamp in a variablerelease Nowt release— t presggives the time that has passed between
the pressing and releasing of the button. If this time isdatgan our timeout parameter we
know that the next click cannot complete a double click. @#lige, we wait for the next
click but no longer thatimeout— (t release— t presg milliseconds. If and only if a click
occurs within this time interval, we have a double click.

The program indicates double clicks by drawing a red ballsimgle clicks by drawing
a yellow ball. The middle button can be used to erase the windéigure 11.9 shows a
screenshot of the program.

(dblclick.o=
#include <LEDA/window.h>

int main()
{

unsigned long timeout = 500;

window W(400,400,"Double Click Demo");
W.set_grid_dist(6);
W.set_grid_style(line_grid);
W.display(window: :center,window: :center) ;
for(;;)
{

int b;

double x0,y0,x,y;

unsigned long t, t_press, t_release;

while (W.read_event(b,x0,y0,t_press) != button_press_event);
// a button was pressed at (x0,y0) at time t_press

// the middle button erases the window
if (b == MOUSE_BUTTON(2)) { W.clear(); continue; }

// the right button terminates the program
if (b == MOUSE_BUTTON(3)) break;

while (W.read_event(b,x,y,t_release) != button_release_event);
// the button was released at time t_release

color col = yellow;

// If the button was held down no longer than timeout msecs
// we wait for the remaining msecs for a second press, if the
// the button is pressed again within this period of time we
// have a double click and we change the color to red.

if (t_release - t_press < timeout)
{ unsigned long timeout2 = timeout - (t_release - t_press);
if (W.read_event(b,x,y,t,timeout2) == button_press_event)
col = red;

28 Windows and Panels

|
EE|

Figure11.9 A screenshot of the double click program.

}

W.draw_disc(x0,y0,2.5,col);

W.draw_circle(x0,y0,2.5,black);
}
W.screenshot ("dblclick.ps");
return 0;

}

Putting Back Events. The functiort

void put_back_event();

puts the event handled last back to the system’s event geedcie that it will be processed
again by the nextead eventor readmouseor basic input operation.

The function is very useful in programs that have to handfemint types of input objects
using the basic input operators. We give an example. Wetiparthe drawing area of a
window into four quadrants and want to draw points in the fissgments in the second,
circles in the third, and polygons in the fourth quadrante kind of object to be drawn
is defined by the position of the first mouse click. The mairplobthe program waits for
a mouse click and performs, depending on the quadrant thmios the position of this
click, the corresponding input and output operation. Thfkcdity is that already the first

1 Observe that this function is a global function and not a memfinction of classvindow

11.12 Events 29

click that we use to distinguish between the different inphjects is part of the definition
of the object.

We use theputbackevent) function to push the first mouse click back into the event
queue and to make it available as the first event for the fatigwasic input operator. The
details are given in the following code. Figure 11.10 showsraenshot.

(putback.¢=
#include <LEDA/window.h>

int main()

{
window W(400,400, "Putback Event Demo");
W.init(-100,+100,-100);

W.display(window: :center ,window: : center) ;
// partition the drawing area in four quadrants

W.draw_hline(0);
W.draw_vline(0);
for(;;)
{

double x,y;

// wait for first click
int but = W.read_mouse(x,y);

// middle button erases the window
if (but == MOUSE_BUTTON(2))
{ W.clear();
W.draw_hline(0);
W.draw_vline(0);
continue;

}

// right button terminates the program
if (but == MOUSE_BUTTON(3)) break;

// now we put the mouse click back to the event queue
put_back_event () ;
// and distinguish cases according to its position
if (x < 0)
if (y > 0)
{ point p;
if (W >> p) W.draw_point(p,red);
}

else
{ segment s;
if (W >> s) W.draw_segment(s,green);
}
else
if (y > 0)
{ polygon pol;
if (W >> pol) W.draw_polygon(pol,blue);
}

else

30 Windows and Panels

Figure11.10 A screenshot of the putback program.

{ circle c;
if (W >> ¢) W.draw_circle(c,orange);
}
}

W.screenshot ("putback.ps") ;
return 0;

}

Non-Blocking Event Input: Similar to the non-blocking versions of thead mouseoper-
ation, there are non-blocking variants of tieadeventoperation.

int W.get_event(int& val, double& x, double& y)

looks for an event folW. More precisely, if there is an event for windd in the event
queue, aW.readeventoperation is performed, otherwise the integer constargventis
returned.

There is also a more general non-member variant that allewsead events of arbitrary
windows.

int read event (window*& wp, int& val, double& x, double& y)

walits for an event. When an event occurs, it returns its tgpsigns a pointer to the corre-
sponding window tavp, the value toval, and the position tox, y).

This version ofreadeventcan be used to write programs that can handle events for sev-
eral windows simultaneously. The following program opens windowsWl1andW2 The

11.13 Timers 31

main loop reads all events, determines for each event inhwdifiche two windows it oc-
curred, and puts the event back to the systems event quethe. dffent occurred ilvy, it
reads and draws a point vy, if the event occurred iV, it reads and draws a segment in
W2using the basic input and output operators discussed ifnoBekt.6.

(two_windows.¢=
#include <LEDA/window.h>

main ()

{
window W1(500,500,"Window 1: points");
Wi.display(window: :min,window: :min) ;
window W2(500,500,"Window 2: segments");
W2.display(window: :max,window: :min) ;
for(;;)
{ window* wp;
double x,y;
int val;
if (read_event(wp,val,x,y) != button_press_event) continue;
if (val == MOUSE_BUTTON(3)) break;
put_back_event () ;
if (wp == &W1) { point p; W1l >> p; Wil << p; }
if (wp == &W2) { segment s; W2 >> s; W2 << s; }
}

return O;

}

Exercisesfor 11.12

1 Write a “click and drag” program for drawing circles.

2 Write a program that displays text written on the keybodrygboir computer in a LEDA
window.

3 Implement a simple graph editor that can be used to drawatiesand edges of a graph.
Your program should allow you to move a node by clicking onnitl @lragging it with
the mouse to a new position.

11.13 Timers

Each LEDA window has dimer clock that can be used to execute periodically a user-
defined function. The function and the time interval betwiem consecutive calls of the
function are specified in the start operation

void W.start_timer(int msec,void (*func) (windowx) ;

A call of this operation starts the timer &% and makes it call the functiofunc with a
pointer toW as the actual parametdufio& W)) everymseamilliseconds.

32 Windows and Panels

15:42:43

Figure11.11 A screenshot of the dclock program.

void W.stop_timer();

stops the timer.

We show the usefulness of timers by writing a simple digitatk demo program. Fig-
ure 11.11 shows a screenshot of the clock.

(dclock.0=

#include <LEDA/window.h>
#include <time.h>

void display_time(window* wp)
{

window& W = *wp;

// get the current time
time_t clock;

time (&clock) ;

tm* T = localtime(&clock);

// and display it (centered in W)
double x = (W.xmax() - W.xmin())/2;
double y = (W.ymax() - W.ymin())/2;
W.clear();
W.draw_ctext (x,y,string("%2d:%02d:%02d4",
T->tm_hour,T->tm_min,T->tm_sec));
}
int main()
{
window W(150,50, "dclock");
.set_bg_color(greyl);
.set_font ("T32");
.set_redraw(display_time);

.display(window: :center,window: :center) ;
.start_timer (1000,display_time);

.read_mouse () ;

= = =5 = =

.screenshot ("dclock.ps");
return 0;

Exercisesfor 11.13
1 Implement an analog clock.

11.14 The Panel Section of a Window 33

2 Write a program that draws randomly colored balls are remtimes.

11.14 ThePand Section of a Window

The panel section of a window is used for displaying text ragss and for updating the
values of variables. It consists of a list of panel items alist®f panel buttons. We discuss
panel items and panel buttons in seperate subsections.

11.14.1Pan€l Items
A panel item consists of a string label and an associatedhiariof a certain type. The
value of this variable is visualized by the appearance oftdm in the window (e.g. by the
position of a slider) and can be manipulated through the g by dragging the slider
with the mouse) during ead mouseor getmouseoperation.

There are five types of items. Figure 11.12 shows the reptatsem of the items in a
panel. It also shows some menu buttons at the bottom of thel.parhe program that
generates this panel can be found EDAROOT/ demgwin/paneldemac.

Text itemshave only an associated string, but no variable. The starfgrmatted and
displayed in the panel section of the window.

Simple item&ave an associated variable of type double andstring. The item displays
the value of the variable as a string. The value can be updatadsmall sub-window
by typing text and using the cursor keys. For string itemsethexists a variant called
string menu itenthat in addition displays a menu from which strings can bectet.

Choice itemshave an associated variable of tyjm whose possible values are from
an interval of integers [0k]. With every valuei of this range there is a choice string
s associated. These strings are arranged in a horizontgl effauttons and the current
value of the variable is displayed by drawing the correspantutton as pressed down and
drawing all other buttons as non-pressed (if the value ofvtiv@able is out of the range
[0..K] no button is pressed). The value of the variable is séthy pressing the button
with labels. Pressing a button will release the previously presseaiutt is tempting to
confuse the semantics of the striggwith the integeti. LEDA will not hinder you to use
the string “seven” for the third button. Pressing the butkdtin name “seven” will assign 3
to the variable assigned with the button.

For multiple choice itemshe state (pressed or unpressed) of the button with Igbel
indicates the value of thieth bit in the binary representation of the integer valuetwf t
associated variable. Multiple choice buttons allow sevsurtions to be pressed at the same
time. For example, the value of the variable associated thighitem named “multiple
choice” in Figure 11.12is12°+0-2'+1-22+1-28 +0-2* = 13.

In both cases there exist variants that use bitnbgps . , by instead of strings to label the
choice buttons. Furthermore, there are special choicesiferrchoosing colorscplor.item)
and line stylesl{ne styleitem).

34 Windows and Panels

| |
= PANEL DEMO s

A Text ltem

The panel section of a window is used for displaying text and
for updating the values of variables. It consists of a list of
panel items and a list of buttons. All operations adding panel
items or buttons to the panel section of a window have to be
called before the window is displayed for the first time.

A Bool ltem

hoaol item I~

A Color ltem

color item | |=fl =|nf-|nfn] [ujmjaf=|c|-[u] |
A Slider ltem

slider item{1,20) & |

Simple ltems

string item | dummy

int item | 100

double itam |3, 141500

String Menu ltems
string menu i"str“ingﬂ

Choice ltems
simple choice [one _two |three | four | five |

multiple choice | 0 1 || 2 | 3 4 |
integer choice 0|20 40 | 60 | 80 |
bitrnap choice %|V’| .@"@ |

Buttons

button 0 | butten 1| button 2 | button 3| button 4 |

Figure11.12 Panel items and buttons.

Slider itemdhave associated variables of typewith values from an interval¢w.. high.
The current value is shown by the position of a slider in azwrial box. It can be changed
by moving the slider with the mouse.

Boolean itemsre used for variables of tygmol. They consist of a single small button
whose state (pressed or unpressed) represents the twblpasduesfue or falsé.

11.14 The Panel Section of a Window 35

We discuss the operations for adding panel items to a pangéation 11.14.4. It is
possible to associate a so-calleall-backor action function with a panel item. This is a
function of type

void (*action) (T x)

whereT is the type of the variable of the item. The action functiondaied after each item
manipulation (e.g. dragging a slider or pressing down aaghbutton) with thenewvalue
of the item as its argument. However, the value of the vagiaBkociated with the item is
only changedhfter the return of the action function. In this way, the old andniegv value
of the item variable is available in the action function. 't very useful as the following
program shows.

(callback.¢=
#include <LEDA/window.h>

static int i_slider = 0;
static int i_choice = 0;
static int i_multi = O;

void f_slider(int i_new)

{ cout << "slider: old = " << i_slider << ", new = " << i_new << endl; }
void f_choice(int i_new)

{ cout << '"choice: 0ld = " << i_choice << ", new = " << i_new << endl; }
void f_multi(int i_new)

{ cout << "multi: old = " << i_multi << ", new = " << i_new << endl; }
main()

{

list<string> L;
for(int i = 0; i < 8; i++) L.append(string("}d",i));

window W(300,300);

W.int_item("slider", i_slider, 0, 100, f_slider);
W.int_item("choice", i_choice, 1, 8, 1, f_choice);
W.choice_mult_item("multi", i_multi, L, f_multi);
W.display();

W.read_mouse() ;

W.screenshot ("callback.ps");

return 0;

In the main program we define three panel items, each with socaded action function.
In each case the action function prints the old value and ¢éinevialue of the variable. The
slider item has a range [0100], the choice item has eight buttons with associatedegalu
to 8 (the smallest value is one, values are increased by ndehe largest value is no larger
than eight), and the multiple choice item has eight buttabeled with strings “0”, “1”, .. .,
“7”. The button with label represents thieth bit of variablei_multi.

An action function associated with a panel item of a wind&@wnay obtain a pointer to
W by calling the static member functiavindow:: getcallLwindow().

36 Windows and Panels

The program below implements a simple color definition palteises three slider items
for adjusting thgr, g, b)-values of the color. With each slider a call-back functisma$so-
ciated that paints the window background with the currefdrc@ screenshot is shown in
Figure 11.13.

(defcolor.o=
#include <LEDA/window.h>
static int r,g,b;
void slider_red(int x){window::get_call_window()->clear (color(r,g,b));}
void slider_green(int x){window::get_call_window()->clear(color(r,g,b));}
void slider_blue(int x)window::get_call_window()->clear (color(r,g,b));}

int main()

{
window W(320,300,"define color");

color col = green2;

col.get_rgb(r,g,b);

.int_item("red ",r,0,255,slider_red);
.int_item("green",g,0,255,slider_green);
.int_item("blue ",b,0,255,slider_blue);
.set_bg_color(col);

.display(window: :center, window: :center);

.read_mouse () ;

= = 5= = =

.screenshot ("defcolor.ps");
return O;

The values of item variables may also be changed in the pmgfais haso effect on
the display until the panel is redrawn for the next time. Tédrawpaneloperation redraws
the panel area.

We use a simple progress indicator as an example. It usedex g8m to visualize the
increasing value of a counter. Figure 11.14 shows a screensh

(progress.¢=
#include <LEDA/window.h>

main()

{

int count = 0;
window W(400,100);
W.set_item_width(300);
w.int_item("progress",count,O,iOOO);
W.display(window: :center, window::center);
for(;;)
{ count = 0;

while (count < 1000)

{ W.redraw_panel();

W.flush();

11.14 The Panel Section of a Window 37

red 12 T

green 179

blue 1BD

Figure 11.13 A screenshot of the defcolor program.

progress 550 |

Figure 11.14 A screenshot of the progress program.

leda_wait (0.05);

count++;
}
if (W.read_mouse() == MOUSE_BUTTON(3)) break;
}
W.screenshot ("progress.ps");
return 0;

}

11.14.2Panel Buttons
Panel buttons are special panel items. They can be presselickyng a mouse button
when the mouse pointer is positioned inside their area. skti@s panel button during a

38 Windows and Panels

readmouseor getmousecall has the same effect as pressing a mouse button in théngraw
area: the operation terminates and the number of the préessiea is returned.

Each panel button has a label or a pixrect image (displayeti@button) and an asso-
ciated number. The number of a button is either defined by $lee or is the rank of the
button in the list of all buttons. If a button is pressed (gelected by a mouse click) during
areadmouseoperation its number is returned. Buttons can remtéon functionof type

void (*action) (int but)

Whenever a button with an associated action function isspikthis function is called with
the number of the button as its actual parameter.

Instead of an action function, a button may have an attachiedvindow, in which case
we call it amenu buttor{since in most cases such a sub-window is used to realize a)men
Whenever a menu button is pressed the attached sub-windawejou) M will open and
the result ofM.readmousé) will be returned by the currently activead mouseoperation.
Of course M again can have menu buttons, ...

11.14.3Panelsand Menus
The data typepaneland menuare two special types representing windows that have no
drawing area. Panels (windows of typane) support all panel operations of the general
windowtype described in the following section. In addition, they& a speciaP.open()
operation that displays a parfe] executes?.readmouse), closesP, and returns the result
of thereadmouseoperation. There are variants of tapenoperation allowing us to pass
parameters for the (initial) positioning of the panel (dezdisplayoperations for windows
for an explanation).

int P.open(int xpos=window::center, int ypos=window::center);

int P.open(window& W, int xpos=window::center, int ypos=window::center);

Menus (windows of typeneny are special panels that only consist of a vertical array of
buttons. They support only one kind of panel operation, tiditeon of buttons, and can be
used as sub-windows attached to (menu) buttons only.

11.14.4Adding Panél Items
The operations in this section add panel items or buttonsdganel section dfV. Note
that they have to be called before the window is displayeditsetime.

All operations return a pointer to the corresponding paeehi(typepanelitem)

The generic interface of an operation for adding a panel {tghkind XXXitem) for a
variablex of typeT is as follows:

panel_item W.XXX_item(string label, T x&, void (*action)(T));

The last parameter is optional. We give some examples. laxalinples we use ... to
indicate the optional action function argument.

11.14 The Panel Section of a Window 39

Simpleltems. The following functions add simple items with nammand associated vari-
ablex.

panel_item W.bool_ item(string s, bool& x, ...);
panel_item W.double item(string s, double& x, ...);
panel_item W.int_item(string s, int& x, ...);
panel_item W.string item(string s, string& x, ...);
panel_item W.color_item(string s, color& x, ...);

String Menu Items. The functions

panel_item W.string item(string s, string& x, list<string> L, ...);

panel_item W.string item(string s, string& x, list<string> L,int h,...);

add string menu items with nanse associated variable, and a menu list. of candidate
values forx. The first version displays the stringslofin a rectangular table of appropriate
size. The second version uses a scroll box of hdighith a vertical slider that can be used
to scroll through the list.

Choiceltems: The functions

panel_item W.int_item(string s, int& x, int 1, int h, int step);

panel_item W.choice_item(string s, int& x, const list<string>& L, ...);
panel_item W.choice_item(string s, int& x, int n, int w, int h,
char** bm, ...);
panel_item W.choicemult_ item(string s, int& x,
const list<string>& L, ...);

panel_item W.choicemult_ item(string s, int& x, int n, int w,
int h, char*x bm, ...);

define choice and multi-choice items with nagend associated variabte The first variant
defines a choice item with buttohd + step ..., the second variant defines a choice item
whose buttons are labeled by the string& irthe third variant defines a choice item with
buttons each of which is labeled by a bitmap of widttand heighh (bmis the array that
contains the bitmaps). The fourth and fifth variant are agalis to the second and third
variant, but define multi-choice items instead of choiceie

Slider Items. The function
panel_item W.int_item(string s, int& x, int 1, int h);

adds a slider item with nans associated variabk and rangel[.. h].

11.14.5Adding Buttons

The following operations add buttons to the panel sectioa window. Note that buttons
are always positioned at the bottom of the panel area. Thettbiee basic kinds of buttons:
buttons with string labels, buttons with bitmaps, and mgtwith pixrects.

40 Windows and Panels

String Buttons:
int W.button(string label, int n);

adds a new button t@/ with labels and numben.
int W.button(string label);

adds a new button t@/ with labels and number equal to its rank in the list of all buttons.
int W.button(string s, int n, void *(F) (int));

adds a button with labsl numbem, and action functior to W. FunctionF is called with
actual parametar whenever the button is pressed.

int W.button(string s, void (*F)(int));

adds a button with labed, number equal to its rank, and action functiério W. Function
F is called with the value of the button as argument wheneebthton is pressed.

int W.button(string s, int n, window& M);

adds a button with labad, numbem, and attached sub-window (menM) to W. Window
M is opened whenever the button is pressed.

int W.button(string s, window& M) ;

adds a button with labed and attached sub-windoM to W. The number returned by
readmousds the number of the button selected in sub-winddw

Bitmap Buttons. Bitmap buttons are labeled with bitmaps instead of stritgls Each
bitmap button has an associated bitm@p h, bm) that is specified in the operation for
adding the button (see below). There exist the same var{aitis and without a user-
defined number, with action function or with sub-window) asdtring buttons.

int W.button(int w, int h, char* bm, string s, int n);

int W.button(int w, int h, char* bm, string s);

int W.button(int w, int h, char* bm, string s, int n, void (*F) (int));
int W.button(int w, int h, char* bm, string s, void (*F)(int));

int W.button(int w, int h, char* bm, string s, int n, window& M);

int W.button(int w, int h, char* bm, string s, window& M);

The following program creates the panel shown in Figure3.1.1

(bm.buttons.¢=

#include <LEDA/window.h>
#include <LEDA/bitmaps/button32.h>

int main()

{
panel P("Bitmap Buttons");
P.buttons_per_line(8);
P.set_button_space(3);

for(int i=0; i < num_button32; i++)
P.button(32,32,bits_button32[i],string(name_button32[i]));

11.14 The Panel Section of a Window

41

©

CP| 4

exit F@

B C)

[]

i A

Ole|®
/

Figure11.15 A screenshot of the brbuttons program.

int button = P.open();

P.screenshot ("bm_buttons.ps");
return 0;

}

Pixrect Buttons. Pixrect buttons are labeled with pixrects instead of sttaigels. Each
button has two pixrects, the first onpr{) is used for unpressed buttons and the second
(pr2) is used for pressed-down buttons. Again we have the sanigntsms for string
buttons.

int
int
int
int
int
int

button(char*
button(char*
button(char*
button(char*
button(char*
button(char*

pri,
pril,
pri,
pril,
pril,
pri,

char*
charx*
char*
charx*
charx*
char*

pr2,
pr2,
pr2,
pr2,
pr2,
pr2,

string
string
string
string
string
string

S’
s);
S’
s,
s,
S’

int n);

int n, void (*F) (int));
void (*F) (int));

int n, window& M) ;
window& M) ;

The following program creates the panel shown in Figure@1Hor simplicity, we have
used the same pixrect for unpressed and pressed buttons.

(pm.buttons.¢=
#include <LEDA/window.h>

#include <LEDA/pixmaps/button32.h>

int main()

{

panel P("Pixrect Buttons");

P.buttons_per_line(10);
P.set_button_space(3);

for(int i =

0; i < num_button32; i++)

{ char* pr = P.create_pixrect (xpm_button32[i]);

int button = P.open();

P.button(pr,pr,name_button32[i],i);

42 Windows and Panels

Figure11.16 A screenshot of the prbuttons program.

P.screenshot ("pm_buttons.ps");
return 0;

}

CreatingaMenu Bar: There are two styles for menu buttons, i.e., buttons withttached
sub-window. In the default style menu buttons are displaaetuttons with an additional
menu-sign. In the second style the menu buttons are arrangea menu bar at the top of
the panel section. Figure 11.17 shows both styles. The call

void W.make_menu_bar ()

selects the menu button style.
The following program and the screenshots in Figure 11.ahstrate both alternatives.
With the command line argument “menu bar”, the menu bar wars chosen.

(menubar.c)=
#include <LEDA/window.h>

int main(int argc, charx* argv)
{

menu M;
M.button("button 1"); M.button("button 2"); M.button("button 3");
M.button("button 4"); M.button("button 5");

window W(400,300, "Menu Demo") ;

W.button("File" ,M); W.button("Edit",M); W.button("Help" ,M);
W.button("exit");

if (argc > 1 && string(argv[1]) == "menu_bar") W.make_menu_bar();
W.display();

W.read_mouse() ;

11.14 The Panel Section of a Window 43

O MemDem [
I\‘ File © Edit | vHelp | exit |

button 1
button 2
button 3
button 4
button §

S Membew [
&I Edit Help exitl

~ button 1
button 2
button 3
button 4
button 5

Figure 11.17 Menu buttons: The upper screenshot shows the default stgléha lower
screenshot shows the menu bar style.

W.screenshot ("menu_bar.ps");
return 0;

}

Exercisesfor 11.14

1 Implement a simple desk calculator with a graphical input.

2 Implement quicksort and use a panel to monitor the valuedl gériables.

3 Implement a simple file viewer program with a menu bar corirtgi a “File” menu with

operations for loading and saving text, and an “Option” miemwaefining global param-
eters such as the font and color of the text.

44 Windows and Panels

11.15 Displaying Three-Dimensional Objects: d3_window

The data typel3windowuses a LEDA window to visualize and animate three-dimeradion
drawings of graphs. If the graph to be shown is a planar maip ths follwing application)
the faces are drawn in different grey scales.

The following program uses @windowto visualize the convex hull of a set of three-
dimensional points. Figure 11.1 at the beginning of thisptdiashows a screenshot of the
programLEDAROOT/ demg geq/d3hulldemaoc which expands on the program below.

The convex hull algorithm

CONVEX_HULL(const list<d3_rat_point>& L, GRAPH<d3 rat_point,int>& H)

takes a lisiL of three-dimensional points and constructs the surfagehgtaof their convex
hull. H is a planar map that is embedded into three-dimensionaéspac

To visualize this graph we create a d3-windd8win whose constructor takes a window
W (that has to be displayed before), the gr&phand a node arragosof vectors that gives
for every nodev of H the positionH[v] of v in space as a three-dimensional vector.

Finally, we calld3winreadmouség) that does something very similar to theadmouse
operation for (two-dimensional) windows. It waits for a nseLclick and returns the num-
ber of the mouse button pressed. While waiting for a clicle, gnaphH is shown in a
two-dimensional projection and is, depending on the cupesition of the mouse pointer,
rotated in space. IH is a planar map (as it is in this case), the d3-window, in aidlit
computes its faces and paints them in different grey scales.

There are many parameters for controlling the appearantieeofraph, e.g., whether
faces should be painted as described above, for the centepard of rotation, for changing
colors of nodes and edges, For details, we refer theer@adhe user manual.

(d3_hull.c)=

#include <LEDA/d3_hull.h>
#include <LEDA/d3_window.h>

main()

{
// construct a random set of points L
list<d3_rat_point> L;
random_d3_rat_points_in_ball(50,75,L);

// construct the convex hull H of L
GRAPH<d3_rat_point,int> H;
CONVEX_HULL (L,H) ;

// open a window W

window W(400,400,"d3 hull demo");

W.init (-100,+100,-100);
W.display(window: :center ,window: : center) ;

// extract the node positions into an array of vectors
node_array<rat_vector> pos(H);

node v;

forall_nodes(v,H) pos[v] = H[v].to_vector();

// and display H in a d3_window for window W

11.15 Displaying Three-Dimensional Objects_widow 45

d3_window d3win(W,H,pos);
d3win.read_mouse();

W.screenshot ("d3_hull.ps");
return 0;

Exercisesfor 11.15

1 Extend the 3d convex hull program by adding a panel seabidinet window that allows
you to choose between different types of input points angéei$y the size of the input
point set. Your window should look like the window of Figurg.1.

Bibliography

[Nye93] Adrian Nye.Xlib Programming Manual
for Version 11 O'Reilly & Associates, Inc.,
Sebastopol CA, 3 edition, 1993.

46

| ndex

<< for class window, 10 reading them in a window, 10
>> for class window, 10 window, 10

graphicssee window
animation see window

menu, 38seepanel

bitmap, 15see window mouse inputsee window
buffering drawing operationsee window
button, 20 seepanel panel,see also window33-43
action function, 35, 38
clipping regionssee window adding buttons, 40
col, seecolor adding items, 39
color, 6,see also window bitmap buttons, 40
convex hulls bool item, 35
3d-hull, 43 button, 38
display of 3d-hull, 43 call back, 35
choice item, 33
d3.window, 43 item, 33
double click event, 26 menu bar, 42
menu button, 38
event,see also windoy23-31 multiple choice item, 34
buttonpressevent, 24 open, 38
buttonreleaseevent, 24 pixrect buttons, 41
configureevent, 24 simple item, 33
double click, 26 slider, 35, 40
key_pressevent, 24 text item, 33
key_releaseevent, 24 pixel, see window
motion.event, 24 pixel coordinate system, 3, 16ee window
non-blocking event input, 30 pixmap see window
position, 24 pixrect see window
put back, 28 putbackevent 28
queue, 24
read, 24, 30 read.event 31
time, 24 rgb-value of a color, 6
type, 24
value, 24 screen shosee window
window, 24

timer, 32,see window
geometric objects
drawing them in a window, 10 user coordinate system, 3, H&e window

47

48 Index

visualization,see window use of buttons, 22
use of picrect, 14
window; 2—45 use of timers, 32
<<, 10 use of<< and>>, 11
>>, 10 graphics system, 3
bitmap, 15 input, 10, 20-31
buffering drawing operations, 18 invisible color, 6
button, 20 menu, 38
clearing a window, 12 mouse cursor, 9
clipping region, 17 mouse input, 10, 20-31
color, 6, 12 opening and closing a window, 4-5
creation, 4 output, 10
d3.window, 43 panel, 33seepanel
drawing operations, 10-20 panel section, 2
drawing section, 2 parameters, 7-9
event, 23seeevent change of, 9
example programs pix_to_real, 10
3d hull, 44 pixel, 2
blocking mouse read, 21 pixel coordinate system, 3, 10
bouncing ball, 19 pixmap, 13
callback functions, 35 pixrect, 13-16
clipping, 17 real_to_pix, 10
constructing colors, 6 rgb-value of a color, 6
creating a menu bar, 42 scaling factor, 4
creating a panel, 41 screenshotll
event handling, 25 srcmode, 8
putting back an event, 29 timer, 32
recognizing a double click, 27 user coordinate system, 3, 10
slider items, 36 xlman, 2
two windows, 31 xor_mode, 8
use ofredraw, 36 xpm data string, 13

use of bitmap, 16
use of buffering, 20 xlman, 2

