

Minimum Cycle Bases Algorithms and Applications

Kurt Mehlhorn Max-Planck-Institut für Informatik Saarbrücken joint work with

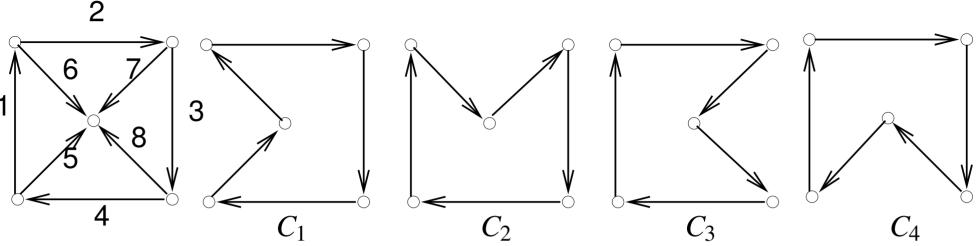
C. Gotsmann, R. Hariharan, K. Kaligosi, T. Kavitha, D. Michail, K. Paluch, E. Pyrga

Overview

- Problem Definition
- Motivation
- Undirected and Directed Cycle Basis
 - Algorithmic Approaches: Horton and de Pina
 - Exact and Approximate
- Integral Cycle Basis
- Application to Surface Reconstruction

Slides and papers available at my home page

Cycle Basis



• $\mathscr{B} = \{C_1, C_2, C_3, C_4\}$ is a directed cycle basis

- vector representation: $C_1 = (0, 1, 1, 1, 1, -1, 0, 0)$, entries = edge usages
- $D = (1, 1, 1, 1, 0, 0, 0, 0) = (C_1 + C_2 + C_3 + C_4)/3$ computation in \mathbb{Q}
- weight of basis: $w(\mathscr{B}) = 3w(e_1) + 3w(e_2) + \ldots + 2w(e_5) + 2w(e_6) + \ldots$
- undirected basis: $C_1 = (0, 1, 1, 1, 1, 0, 0)$ ignore directions
- $D = C_1 \oplus C_2 \oplus C_3 \oplus C_4$ computation in \mathbb{Z}_2

Kurt Mehlhorn, MPI für Informatik

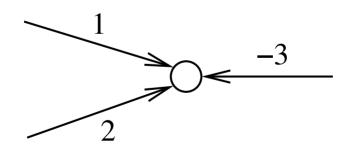
Undirected Cycle Basis: Formal Definition

- G = (V, E) undirected graph
- cycle *C* = set of edges such that degree of every vertex wrt *C* is even
- $C = (m(e_1), m(e_2), \dots, m(e_m)) \in \{0, 1\}^E$
- $m(e_i) = 1$ iff e_i is an element of C
- cycle space = set of all cycles
- addition of cycles = componentwise addition mod 2 = symmetric difference of edge sets
- every basis consists of N = m (n 1) cycles
- spanning tree basis:
 - let *T* be an arbitrary spanning tree
 - for every non-tree edge *e*,

e + the *T*-path connecting the endpoints of e.

The Directed Case

- G = (V, E) directed graph
- cycle space = vector space over \mathbb{Q} .
- element of this vector space, $C = (m(e_1), m(e_2), \dots, m(e_m)) \in \mathbb{Q}^E$
- $m(e_i)$ multiplicity of e_i
- constraint
 - take $|m(e_i)|$ copies of e_i
 - reverse direction if $m(e_i) < 0$
 - then inflow = outflow for every vertex



 a simple cycle in the underlying undirected graph gives rise to a vector in {−1,0,+1}^E.

Kurt Mehlhorn, MPI für Informatik

The Spanning Tree Basis

let T be an arbitrary spanning tree

N =non-tree edges

• for every non-tree edge *e*,

 $C_e = e + T$ - path connecting the endpoints of e

- $\mathscr{B} = \{C_e; e \in N\}$ is a basis,
 - cycles in \mathcal{B} are independent
 - they span all cycles: for any cycle C, we have

$$\begin{split} C &= \sum_{e \in N \cap C} \lambda_e \cdot C_e \\ \lambda_e &= \begin{cases} +1 & \text{if } C \text{ and } C_e \text{ use } e \text{ with identical orientation} \\ -1 & \text{otherwise} \end{cases} \end{split}$$

Pf: $C - \sum_{e \in N \cap C} \lambda_e \cdot C_e$ is a cycle and contains only tree edges.

- *minimum weight spanning tree basis* is NP-complete (Deo et. al., 82)
- spanning tree basis is *integral*

Motivation I

- analysis of cycle space has applications in electrical engineering, biology, chemistry, periodic scheduling, surface reconstruction, graph drawing...
- in these applications, it is useful to have a small basis (uniform weights) or a minimum weight basis (non-uniform weights)
- analysis of an electrical network (Kirchhof's laws)
 - for any cycle *C* the sum of the voltage drops is zero
 - sufficient: for every cycle *C* in a cycle basis
 - number of non-zero entries in equations = size of cycle basis
 - computational effort is heavily influenced by size of cycle basis
 - electrical networks can be huge (up to a 100 millions of nodes) Infineon

Algorithmic Approach 1: Horton

- compute a sufficiently large set of cycles
- sort them by weight
- initialize \mathscr{B} to empty set
- go through the cycles *C* in order of increasing weight
- add C to \mathscr{B} if is independent of \mathscr{B}
- use Gaussian elimination to decide independance
- in order to make the approach efficient, one needs to identify a small set of cycles which is guaranteed to contain a minimum basis

Algorithmic Approach 1: Horton

- compute a sufficiently large set of cycles
- sort them by weight
- initialize \mathscr{B} to empty set
- go through the cycles *C* in order of increasing weight
- add C to \mathscr{B} if is independent of \mathscr{B}
- use Gaussian elimination to decide independance
- in order to make the approach efficient, one needs to identify a small set of cycles which is guaranteed to contain a minimum basis

Horton set: for any edge e = (a, b) and vertex v take the cycle $C_{e,v}$ consisting of e and the shortest paths from v to a and b.

O(nm) cycles, Gaussian elimination on a $nm \times m$ matrix

running time $O(nm^3)$ or $O(nm^{\omega})$

Algorithmic Approach 2: de Pina

- construct basis iteratively, assume partial basis is $\{C_1, \ldots, C_i\}$
- compute a vector S orthogonal to C_1, \ldots, C_i .
- find a cheapest cycle C having a non-zero component in the direction S,
 i.e., ⟨C,S⟩ ≠ 0
- add *C* to the partial basis
- *C* is **not** the cheapest cycle independent of the partial basis
- it is the shortest vector with a component in direction *S*.
- correctness
 - alg computes a basis
 - alg computes a minimum weight basis, because every basis must contain a cycle which has a non-zero component in direction S
 - and alg adds the cheapest such cycle

More Details

- partial basis C_1, \ldots, C_i , vectors in $\{0, 1\}^E$
- compute $S \in \{0,1\}^E$ orthogonal to $C_1, \ldots C_i$
 - amounts to solving a linear system of equations, namely

 $\langle S, C_j \rangle = 0 \mod 2 \text{ for } 1 \le j \le i$

- time bound for this step is $O(m^{\omega})$ per iteration (Gaussian elimination) and $O(m^{1+\omega})$ in total
- this can be brought done to $O(m^{\omega})$ total time, see next slide
- determine a minimum weight cycle C with $\langle S, C \rangle \neq 0$
 - see next but one slide
- add it to the basis and repeat

Faster Implementation

- maintain partial basis $C_1, \ldots, C_{i-1},$ vectors in $\{0, 1\}^E$
- plus basis S_i , ... S_N of orthogonal space
- iteration becomes:
 - intialize S_1 to S_N to unit vectors (S_i to *i*-th unit vector)
 - in *i*-th iteration, compute C_i such that $\langle S_i, C_i \rangle = 1 \mod 2$
 - update S_j , j > i, as $S_j = S_j \langle S_j, C_i \rangle S_i$
 - update step makes S_j orthogonal to C_i and maintains orthogonality to C₁ to C_{i-1}.
 - update step has time $O(m^2)$, total time $O(m^3)$.
- further speed-up: update in bulk
 - update $S_{N/2+1}$ to S_N only after computation of C_1 to $C_{N/2}$
 - and use this idea recursively
 - now fast matrix multiplication and inversion can be used for update

Computing Cycles

- determine a minimum weight cycle *C* with $\langle S, C \rangle \neq 0 \mod 2$, i.e., a minimum weight cycle using an *odd* number of edges in *S*.
- consider a graph with two copies of V, vertices v^0 and v^1 .
- edges $e \in S$ changes sides, and edges $e \notin S$ do not
 - more precisely: for $e = (v, w) \in S$ have (v^0, w^1) and (v^1, w^0)
 - and for $e = (v, w) \not\in S$ have (v^0, w^0) and (v^1, w^1)
- for any v, compute minimum weight path from v^0 to v^1 .
- time $O(m + n \log n)$ for fixed v,
- time $O(nm + n^2 \log n)$ per iteration, i.e., for all v
- $O(nm^2 + n^2m\log n)$ overall

History

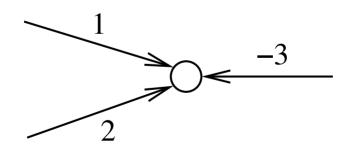
Туре	Authors	Approach	Running time
undirected	Horton, 87	Horton	$O(m^3n)$
	de Pina, 95	de Pina	$O(m^3 + mn^2 \log n)$
	Golinsky/Horton, 02	Horton	$O(m^{\omega}n)$
	Berger/Gritzmann/de Vries, 04	de Pina	$O(m^3 + mn^2 \log n)$
	Kavitha/Mehlhorn/Michail/Paluch, 04	de Pina	$O(m^2n + mn^2\log n)$
	Mehlhorn/Michail, 07	Horton-Pina	$O(m^2n/\log n + mn^2)$
directed	Kavitha/Mehlhorn, 04 Liebchen/Rizzi, 04	de Pina Horton	$O(m^4n)$ det, $O(m^3n)$ Monte Carlo $O(m^{1+\omega}n)$
	Kavitha, 05	de Pina	$O(m^2 n \log n)$ Monte Carlo
	Hariharan/Kavitha/Mehlhorn, 05	de Pina	$O(m^3n + m^2n^2\log n)$
	Hariharan/Kavitha/Mehlhorn, 06	de Pina	$O(m^2n + mn^2\log n)$ Monte Carlo
	Mehlhorn,Michail 07	Horton-Pina	$O(m^3n)$ det, $O(m^2n)$ Monte Carlo
open problem: faster algorithms			

Implementation

- our best implementation uses a blend of de Pina and Horton's approach
- plus heuristics for fast cycle finding
- much, much faster than the pure algorithms
- implementation available from Dimitris Michail
- for details, see M/Michail: Implementing Minimum Cycle Basis Algorithms (JEA)
- open problem: better implementation and/or algorithm that can handle Infineon's graphs

The Directed Case

- G = (V, E) directed graph
- cycle space = vector space over \mathbb{Q} .
- element of this vector space, $C = (m(e_1), m(e_2), \dots, m(e_m)) \in \mathbb{Q}^E$
- $m(e_i)$ multiplicity of e_i
- constraint
 - take $|m(e_i)|$ copies of e_i
 - reverse direction if $m(e_i) < 0$
 - then inflow = outflow for every vertex



 a simple cycle in the underlying undirected graph gives rise to a vector in {-1,0,+1}^E.

Kurt Mehlhorn, MPI für Informatik

The Directed Case: algorithmic Approaches

- in principle, as in the undirected case
- but the steps are much harder to realize as we now work over the field \mathbb{Q} and no longer over \mathscr{F}_2 .
- entries of our matrices become large integers → cost of arithmetic becomes non-trivial
- finding a minimum cost path with non-zero dot-product $\langle C,S\rangle$ becomes non-trivial
- use of modular arithmetic, randomization, and a variant of Dijkstra's algorithm
- details, see papers

Approximation Algorithms

- A 2k 1 approximation can be computed in time $O(kmn^{1+1/k} + mn^{(1+1/k)(\omega-1)})$ Kavitha/Mehlhorn/Michail 07
- let G' = (V, E') be a 2k 1 spanner of G

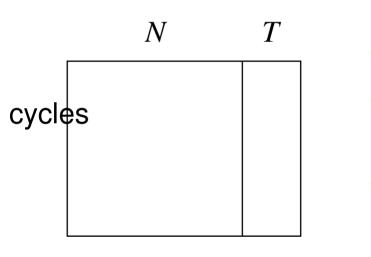
size $O(n^{1+1/k})$

- for any $e \in E \setminus E'$: e + shortest path in E' connecting its endpoints
- plus minimum cycle basis of G'
- weight of each family is bounded by (2k-1)w(MCB)
- shortest cycle multiset has weight at most *w*(*MCB*)
- more involved argument: joint weight is bounded by (2k-1)w(MCB)

open problem: better approximation algorithms

Integral Basis

- a basis is integral if every cycle is an integral linear combination ...
- spanning tree basis is integral
- Liebchen and Rizzi: characterization theorem



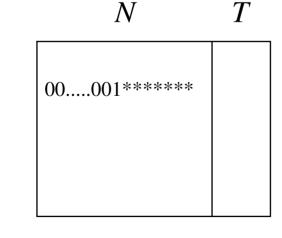
- T = any spanning tree, N = non-tree edges
- basis is integral iff determinant of square matrix is one
- value of determinant does not depend on choice of T
- integral cycle bases are relevant for integer linear programming
- open problem: is minimum integral cycle basis in *P*?

Approximation Alg for Integral Basis

- Fact: every graph of minimum degree 3 contains a cycle of length at most $2\log n$. grow a breadth first tree
- Kavitha's algorithm (07):
 - view paths of degree two nodes as superedges
 - find short cycle of $2\log n$ superedges
 - add cycle to basis and delete the heaviest superedge from the graph

 \boldsymbol{C}

- weight of cycle is at most 2 log n times weight of deleted edges
- edges in superedge: add all but one to spanning tree



Surface Reconstruction

given a point cloud P in \mathscr{R}^3 reconstruct the underlying surface S

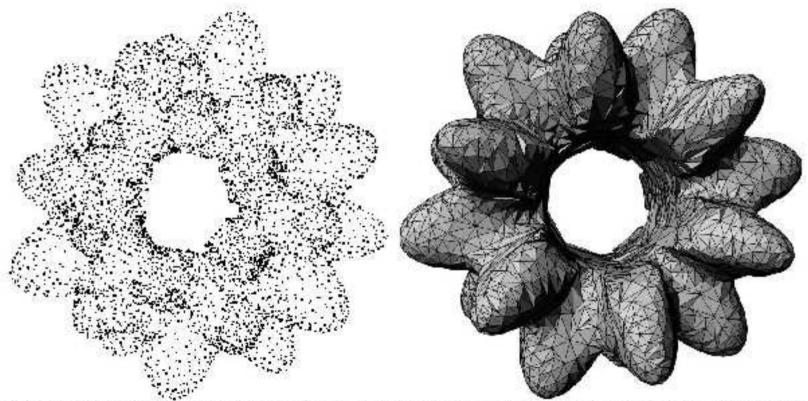
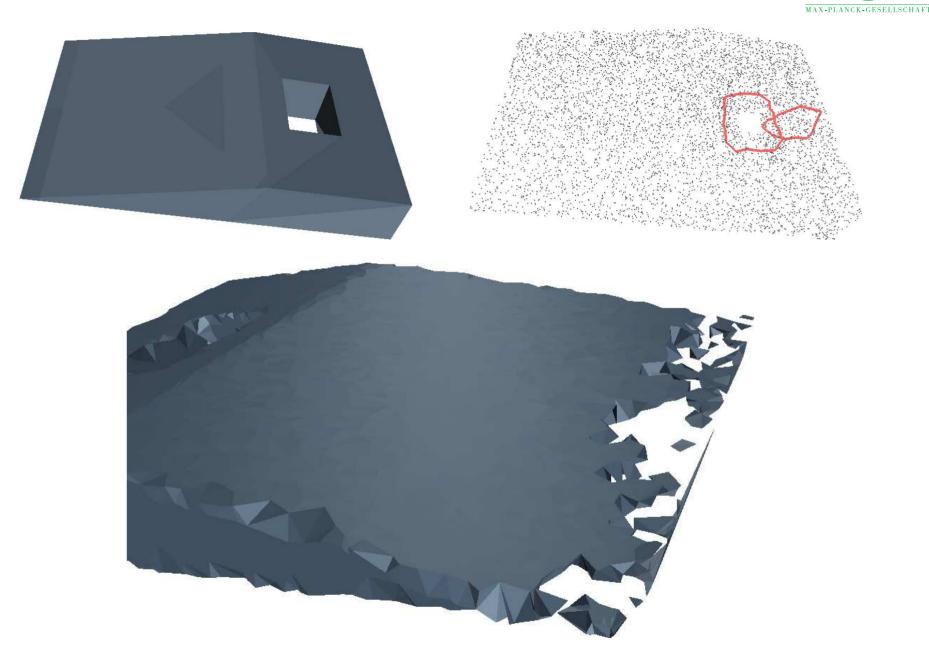


Figure 8: Reconstruction of the 7,371 point "bumpy torus" model. Parameters used were k=7, t=10, d=10 and no simulation of simplicity.

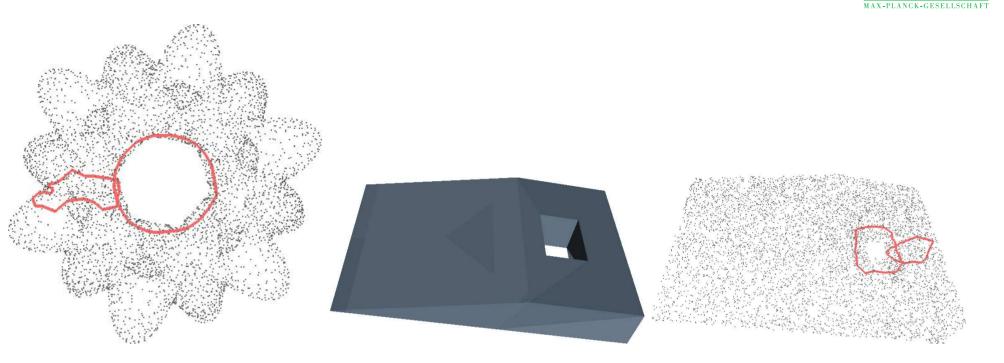
for this talk; point cloud comes from a surface of genus one

Kurt Mehlhorn, MPI für Informatik

Beyond Smooth Surfaces: Cocone Reconstruction



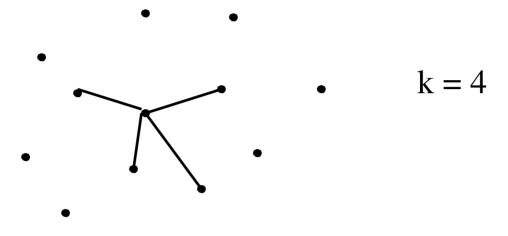
Beyond Smooth Surfaces: Genus Detection I



- genus g of a closed surface = sphere + g handles
- examples are genus one surfaces, i.e., homeomorphic to a torus
- genus detection: compute 2g cycles spanning the space of non-trivial cycles

MCBs in Nearest Neighbor Graph

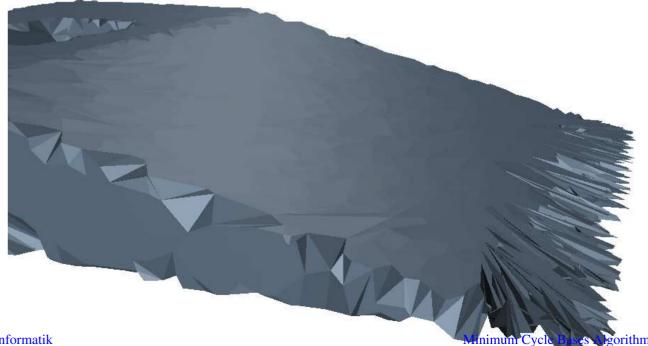
- Nearest Neighbor Graph G_k on P (k integer parameter)
 - connect *u* and *v* is *v* is one the *k* points closest to *u* and vice versa



- easy to construct
- Theorem (Gotsman/Kaligossi/Mehlhorn/Michail/Pyrga 05): if *S* is smooth, *P* is sufficiently dense, and *k* appropriately chosen:
 MCB of *G_k(P)* consists of short (lenght at most 2*k*+3) and long (length at least 4*k*+6) cycles. There are 2*g* long cycles
 Moreover, the short cycles span the space of trivial cycles and the long cycles form a homology basis.

Beyond Smooth Surfaces: Reconstruction

- Tewari/Gotsman/Gortler have an algorithm to reconstruct genus one surfaces if a basis for the trivial cycles of $G_k(P)$ is known.
- our algorithm computes a basis for the trivial cycles of $G_k(P)$
- together the algorithms reconstruct genus one surfaces
- algorithm constructs a genus one triangulation of *P*
- open problem: geometric guarantee, not just topological guarantee



- cycle basis are useful in many contexts: analysis of electrical networks, periodic scheduling, surface reconstruction
- significant progress was made over the past five years
- many open questions