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Overview
• Problem Definition
• Motivation
• Undirected and Directed Cycle Basis

• Algorithmic Approaches: Horton and de Pina
• Exact and Approximate

• Integral Cycle Basis
• Application to Surface Reconstruction

Slides and papers available at my home page
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Cycle Basis
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• B = {C1,C2,C3,C4 } is a directed cycle basis

• vector representation: C1 = (0,1,1,1,1,−1,0,0), entries = edge usages

• D = (1,1,1,1,0,0,0,0) = (C1 +C2 +C3 +C4)/3 computation in Q

• weight of basis: w(B) = 3w(e1)+3w(e2)+ . . .+2w(e5)+2w(e6)+ . . .

• undirected basis: C1 = (0,1,1,1,1,1,0,0) ignore directions

• D = C1 ⊕C2 ⊕C3 ⊕C4 computation in Z2
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Undirected Cycle Basis: Formal Definition

• G = (V,E) undirected graph

• cycle C = set of edges such that degree of every vertex wrt C is even

• C = (m(e1),m(e2), . . . ,m(em)) ∈ {0,1}E

• m(ei) = 1 iff ei is an element of C

• cycle space = set of all cycles
• addition of cycles = componentwise addition mod 2

= symmetric difference of edge sets

• every basis consists of N = m− (n−1) cycles
• spanning tree basis:

• let T be an arbitrary spanning tree
• for every non-tree edge e,

e + the T -path connecting the endpoints of e.
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The Directed Case
• G = (V,E) directed graph
• cycle space = vector space over Q.

• element of this vector space, C = (m(e1),m(e2), . . . ,m(em)) ∈ QE

• m(ei) multiplicity of ei

• constraint
• take |m(ei)| copies of ei

• reverse direction if m(ei) < 0
• then inflow = outflow for every vertex

1

2

−3

•• a simple cycle in the underlying undirected graph gives rise to a vector
in {−1,0,+1}E .
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The Spanning Tree Basis
• let T be an arbitrary spanning tree N = non-tree edges
• for every non-tree edge e,

Ce = e+ T - path connecting the endpoints of e
• B = {Ce; e ∈ N } is a basis,

• cycles in B are independent
• they span all cycles: for any cycle C, we have

C = ∑
e∈N∩C

λe ·Ce

λe =

{

+1 if C and Ce use e with identical orientation
−1 otherwise

Pf: C−∑e∈N∩C λe ·Ce is a cycle and contains only tree edges.
• minimum weight spanning tree basis is NP-complete (Deo et. al., 82)
• spanning tree basis is integral
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Motivation I
• analysis of cycle space has applications in electrical engineering,

biology, chemistry, periodic scheduling, surface reconstruction, graph
drawing. . .

• in these applications, it is useful to have a small basis (uniform weights)
or a minimum weight basis (non-uniform weights)

• analysis of an electrical network (Kirchhof’s laws)

• for any cycle C the sum of the voltage drops is zero

• sufficient: for every cycle C in a cycle basis ....

• number of non-zero entries in equations = size of cycle basis

• computational effort is heavily influenced by size of cycle basis

• electrical networks can be huge (up to a 100 millions of nodes)
Infineon
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Algorithmic Approach 1: Horton
• compute a sufficiently large set of cycles
• sort them by weight
• initialize B to empty set
• go through the cycles C in order of increasing weight
• add C to B if is independent of B

• use Gaussian elimination to decide independance

• in order to make the approach efficient, one needs to identify a small
set of cycles which is guaranteed to contain a minimum basis

Horton set: for any edge e = (a,b) and vertex v take the cycle Ce,v
consisting of e and the shortest paths from v to a and b.

O(nm) cycles, Gaussian elimination on a nm×m matrix

running time O(nm3) or O(nmω)
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Algorithmic Approach 2: de Pina
• construct basis iteratively, assume partial basis is {C1, . . . ,Ci }

• compute a vector S orthogonal to C1, . . . , Ci.
• find a cheapest cycle C having a non-zero component in the direction S,

i.e., 〈C,S〉 6= 0
• add C to the partial basis

• C is not the cheapest cycle independent of the partial basis
• it is the shortest vector with a component in direction S.
• correctness

• alg computes a basis
• alg computes a minimum weight basis, because every basis must

contain a cycle which has a non-zero component in direction S
• and alg adds the cheapest such cycle
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More Details
• partial basis C1, . . . , Ci, vectors in {0,1}E

• compute S ∈ {0,1}E orthogonal to C1, . . .Ci

• amounts to solving a linear system of equations, namely

〈S,C j〉 = 0 mod 2 for 1 ≤ j ≤ i

• time bound for this step is O(mω) per iteration (Gaussian
elimination) and O(m1+ω) in total

• this can be brought done to O(mω) total time, see next slide

• determine a minimum weight cycle C with 〈S,C〉 6= 0
• see next but one slide

• add it to the basis and repeat
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Faster Implementation

• maintain partial basis C1, . . . , Ci−1, vectors in {0,1}E

• plus basis Si, . . . SN of orthogonal space
• iteration becomes:

• intialize S1 to SN to unit vectors (Si to i-th unit vector)

• in i-th iteration, compute Ci such that 〈Si,Ci〉 = 1 mod 2

• update S j, j > i, as S j = S j − < S j,Ci > Si

• update step makes S j orthogonal to Ci and maintains orthogonality
to C1 to Ci−1.

• update step has time O(m2), total time O(m3).

• further speed-up: update in bulk
• update SN/2+1 to SN only after computation of C1 to CN/2

• and use this idea recursively
• now fast matrix multiplication and inversion can be used for update
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Computing Cycles
• determine a minimum weight cycle C with 〈S,C〉 6= 0 mod 2, i.e., a

minimum weight cycle using an odd number of edges in S.

• consider a graph with two copies of V , vertices v0 and v1.
• edges e ∈ S changes sides, and edges e 6∈ S do not

• more precisely: for e = (v,w) ∈ S have (v0,w1) and (v1,w0)

• and for e = (v,w) 6∈ S have (v0,w0) and (v1,w1)

• for any v, compute minimum weight path from v0 to v1.

• time O(m+n logn) for fixed v,

• time O(nm+n2 logn) per iteration, i.e., for all v

• O(nm2 +n2m logn) overall
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History

Type Authors Approach Running time

undirected Horton, 87 Horton O(m3n)

de Pina, 95 de Pina O(m3 +mn2 logn)

Golinsky/Horton, 02 Horton O(mω n)

Berger/Gritzmann/de Vries, 04 de Pina O(m3 +mn2 logn)

Kavitha/Mehlhorn/Michail/Paluch, 04 de Pina O(m2n+mn2 logn)

Mehlhorn/Michail, 07 Horton-Pina O(m2n/ logn+mn2)

directed Kavitha/Mehlhorn, 04 de Pina O(m4n) det, O(m3n) Monte Carlo

Liebchen/Rizzi, 04 Horton O(m1+ω n)

Kavitha, 05 de Pina O(m2n logn) Monte Carlo

Hariharan/Kavitha/Mehlhorn, 05 de Pina O(m3n+m2n2 logn)

Hariharan/Kavitha/Mehlhorn, 06 de Pina O(m2n+mn2 logn) Monte Carlo

Mehlhorn,Michail 07 Horton-Pina O(m3n) det, O(m2n) Monte Carlo

open problem: faster algorithms
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Implementation
• our best implementation uses a blend of de Pina and Horton’s

approach

• plus heuristics for fast cycle finding

• much, much faster than the pure algorithms

• implementation available from Dimitris Michail

• for details, see M/Michail: Implementing Minimum Cycle Basis
Algorithms (JEA)

• open problem: better implementation and/or algorithm that can handle
Infineon’s graphs
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The Directed Case
• G = (V,E) directed graph
• cycle space = vector space over Q.

• element of this vector space, C = (m(e1),m(e2), . . . ,m(em)) ∈ QE

• m(ei) multiplicity of ei

• constraint
• take |m(ei)| copies of ei

• reverse direction if m(ei) < 0
• then inflow = outflow for every vertex
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•• a simple cycle in the underlying undirected graph gives rise to a vector
in {−1,0,+1}E .
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The Directed Case: algorithmic Approaches
• in principle, as in the undirected case
• but the steps are much harder to realize as we now work over the field

Q and no longer over F2.
• entries of our matrices become large integers → cost of arithmetic

becomes non-trivial
• finding a minimum cost path with non-zero dot-product 〈C,S〉 becomes

non-trivial
• use of modular arithmetic, randomization, and a variant of Dijkstra’s

algorithm
• details, see papers
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Approximation Algorithms
• A 2k−1 approximation can be computed in time

O(kmn1+1/k +mn(1+1/k)(ω−1)) Kavitha/Mehlhorn/Michail 07

• let G′ = (V,E ′) be a 2k−1 spanner of G
size O(n1+1/k)

• for any e ∈ E \E ′: e + shortest path in E ′ connecting its endpoints

• plus minimum cycle basis of G′

• weight of each family is bounded by (2k−1)w(MCB)

• shortest cycle multiset has weight at most w(MCB)

• more involved argument: joint weight is bounded by (2k−1)w(MCB)

open problem: better approximation algorithms
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Integral Basis
• a basis is integral if every cycle is an integral linear combination . . .

• spanning tree basis is integral

• Liebchen and Rizzi: characterization theorem

PSfrag replacements

TN

cycles

• T = any spanning tree, N = non-tree edges
• basis is integral iff determinant of square

matrix is one
• value of determinant does not depend on

choice of T

• integral cycle bases are relevant for integer linear programming

• open problem: is minimum integral cycle basis in P?

Kurt Mehlhorn, MPI für Informatik Minimum Cycle Bases Algorithms and Applications – p.18/25



Approximation Alg for Integral Basis
• Fact: every graph of minimum degree 3 contains a cycle of length at

most 2logn. grow a breadth first tree

• Kavitha’s algorithm (07):
• view paths of degree two nodes as superedges
• find short cycle of 2logn superedges
• add cycle to basis and delete the heaviest superedge from the

graph

• weight of cycle is at most 2logn times
weight of deleted edges

• edges in superedge: add all but one to
spanning tree
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Surface Reconstruction

given a point cloud P in R3 reconstruct the underlying surface S

for this talk; point cloud comes from a surface of genus one
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Beyond Smooth Surfaces: Cocone Reconstruction
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Beyond Smooth Surfaces: Genus Detection I

• genus g of a closed surface = sphere + g handles
• examples are genus one surfaces, i.e., homeomorphic to a torus
• genus detection: compute 2g cycles spanning the space of non-trivial

cycles
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MCBs in Nearest Neighbor Graph
• Nearest Neighbor Graph Gk on P (k integer parameter)

• connect u and v is v is one the k points closest to u and vice versa

k = 4

PSfrag replacements

k

• easy to construct

• Theorem (Gotsman/Kaligossi/Mehlhorn/Michail/Pyrga 05): if S is smooth, P is
sufficiently dense, and k appropriately chosen:
MCB of Gk(P) consists of short (lenght at most 2k +3) and long (length
at least 4k +6) cycles. There are 2g long cycles
Moreover, the short cycles span the space of trivial cycles and the long
cycles form a homology basis.
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Beyond Smooth Surfaces: Reconstruction
• Tewari/Gotsman/Gortler have an algorithm to reconstruct genus one

surfaces if a basis for the trivial cycles of Gk(P) is known.

• our algorithm computes a basis for the trivial cycles of Gk(P)

• together the algorithms reconstruct genus one surfaces
• algorithm constructs a genus one triangulation of P
• open problem: geometric guarantee, not just topological guarantee
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Summary
• cycle basis are useful in many contexts: analysis of electrical networks,

periodic scheduling, surface reconstruction

• significant progress was made over the past five years

• many open questions
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