
Peter Sanders

Kurt Mehlhorn

Martin Dietzfelbinger

Roman Dementiev

Sequential and Parallel

Algorithms and Data Structures

The Basic Toolbox

May 4, 2019

Springer





To all algorithmicists





Preface

An algorithm is a precise and unambiguous recipe for solving a class of problems.

If formulated as programs, they can be executed by a machine. Algorithms are at

the heart of every nontrivial computer application. Therefore, every computer sci-

entist and every professional programmer should know about the basic algorithmic

toolbox: structures that allow efficient organization and retrieval of data, key algo-

rithms for problems on graphs, and generic techniques for modeling, understanding,

and solving algorithmic problems. This book is a concise introduction to this basic

toolbox, intended for students and professionals familiar with programming and ba-

sic mathematical language. Although the presentation is concise, we have included

many examples, pictures, informal explanations, and exercises, and some linkage to

the real world. The book covers the material typically taught in undergraduate and

first-year graduate courses on algorithms.

Most chapters have the same basic structure. We begin by discussing a problem

as it occurs in a real-life situation. We illustrate the most important applications and

then introduce simple solutions as informally as possible and as formally as neces-

sary to really understand the issues at hand. When we move to more advanced and

optional issues, this approach gradually leads to a more mathematical treatment, in-

cluding theorems and proofs. Thus, the book should work for readers with a wide

range of mathematical expertise. There are also advanced sections (marked with a

*) where we recommend that readers should skip them on first reading. Exercises

provide additional examples, alternative approaches and opportunities to think about

the problems. It is highly recommended to take a look at the exercises even if there

is no time to solve them during the first reading. In order to be able to concentrate on

ideas rather than programming details, we use pictures, words, and high-level pseu-

docode to explain our algorithms. A section “Implementation Notes” links these ab-

stract ideas to clean, efficient implementations in real programming languages such

as C++ and Java. Each chapter ends with a section on further findings that provides

a glimpse at the state of the art, generalizations, and advanced solutions.

The first edition of this book treated only sequential algorithms and data struc-

tures. Today, almost every computer, be it a desktop, a notebook, or a smartphone,

has multiple cores, and sequential machines have become an exotic species. The



viii Preface

reason for this change is that sequential processors have ceased to get proportional

performance improvements from increased circuit complexity. Although the number

of transistors in an integrated circuit (still) doubles every two years (Moore’s law),

the only reasonable way to use this transistor budget is to put multiple processor

cores on a chip. The consequence is that nowadays every performance-critical appli-

cation has to be parallelized. Moreover, big data – the explosion of data set sizes in

many applications – has produced an enormous demand for algorithms that scale to

a large number of processors. This paradigm shift has profound effects on teaching

algorithms. Parallel algorithms are no longer a specialized topic reserved for a small

percentage of students. Rather, every student needs some exposure to parallel algo-

rithms, and parallel solution paradigms need to be taught early on. As a consequence,

parallel algorithms should be integrated tightly and early into algorithms courses. We

therefore decided to include parallel algorithms in the second edition of the book.

Each chapter now has some sections on parallel algorithms. The goals remain the

same as for the first edition: a careful balance between simplicity and efficiency,

between theory and practice, and between classical results and the forefront of re-

search. We use a slightly different style for the sections on parallel computing. We

include concrete programming examples because parallel programming is still more

difficult than sequential programming (the programs are available at github.com/

basic-toolbox-sample-code/basic-toolbox-sample-code/). We

also reference original work directly in the text instead of in the section on history

because the parallel part is closer to current research.

Algorithmics is a modern and active area of computer science, even at the level

of the basic toolbox. We have made sure that we present algorithms in a modern

way, including explicitly formulated invariants. We also discuss important further

aspects, such as algorithm engineering, memory hierarchies, algorithm libraries, and

certifying algorithms.

We have chosen to arrange most of the material by problem domain and not by

solution technique. The chapter on optimization techniques is an exception. We find

that an organization by problem domain allows a more concise presentation. How-

ever, it is also important that readers and students obtain a good grasp of the available

techniques. Therefore, we have structured the optimization chapter by techniques,

and an extensive index provides cross-references between different applications of

the same technique. Bold page numbers in the index indicate the pages where con-

cepts are defined.

This book can be used in multiple ways in teaching. We have used the first edition

of the book and a draft version of the second edition in undergraduate and graduate

courses on algorithmics. In a first year undergraduate course, we concentrated on the

sequential part of the book. In a second algorithms course at an advanced bachelor

level or master’s level and with students with some experience in parallel program-

ming we made most of the sequential part of the book a prerequisite and concen-

trated on the more advanced material such as the starred sections and the parts on

external memory and parallel algorithms. If a first algorithms course is taught later

in the undergraduate curriculum, the book can be used to teach parallel and sequen-

tial algorithms in an integrated way. Although we have included some material about



Preface ix

parallel programming and several concrete programming examples, the parallel part

of the book works best for readers who already have some background in parallel

programming. Another approach is to use the book to provide concrete algorithmic

content for a parallel programming course that uses another book for the program-

ming part. Last but not least, the book should be useful for independent study and

to professionals who have a basic knowledge of algorithms but less experience with

parallelism.

Follow us on an exciting tour through the world of algorithms.

Ilmenau, Saarbrücken, Karlsruhe, Heidelberg Martin Dietzfelbinger

August 2018 Kurt Mehlhorn

Peter Sanders

Roman Dementiev

A first edition of this book was published in 2008. Since then the book has been

translated into Chinese, Greek, Japanese, and German. Martin Dietzfelbinger trans-

lated the book into German. Actually, he did much more than a translation. He thor-

oughly revised the book and improved the presentation at many places. He also cor-

rected a number of mistakes. Thus, the book gained through the translation, and we

decided to make the German edition the reference for any future editions. It is only

natural that we asked Martin to become an author of the German edition and any

future editions of the book.

Saarbrücken, Karlsruhe Kurt Mehlhorn

March 2014 Peter Sanders

Soon after the publication of the German edition, we started working on the re-

vised English edition. We decided to expand the book into the parallel world for the

reasons indicated in the preface. Twenty years ago, parallel machines were exotic,

nowadays, sequential machines are exotic. However, the parallel world is much more

diverse and complex than the sequential world, and therefore algorithm-engineering

issues become more important. We concluded that we had to go all the way to im-

plementations and experimental evaluations for some of the parallel algorithms. We

invited Roman Dementiev to work with us on the algorithm engineering aspects of

parallel computing. Roman received his PhD in 2006 for a thesis on “Algorithm En-

gineering for Large Data Sets”. He now works for Intel, where he is responsible for

performance engineering of a major database system.

Ilmenau, Saarbrücken, Karlsruhe Martin Dietzfelbinger

November 2017 Kurt Mehlhorn

Peter Sanders




