
8

Graph Representation

Scientific results are mostly available in the form of articles in journals and con-

ference proceedings, and on various web1resources. These articles are not self-

contained, but cite previous articles with related content. When you read an inter-

esting article from 1975 today, you may ask yourself what the current state of the

art is. In particular, you may want to know which newer articles cite the old article.

Projects such as Google Scholar provide this functionality by analyzing the refer-

ence sections of articles and building a database of articles that efficiently supports

looking up articles that cite a given article.

We can easily model this situation by a directed graph. The graph has a node for each
article and an edge for each citation. An edge (u,v) from article u to article v means
that u cites v. When an article is processed, the outgoing edges can be constructed
directly from the list of references. In this way, every node (= article) stores all its
outgoing edges (= the articles cited by it) but not the incoming edges (the articles
citing it). If every node were also to store the incoming edges, it would be easy to
find the citing articles. One of the main tasks of Google Scholar is to construct the
reversed edges. This example shows that the cost of even a very basic elementary
operation on a graph, namely finding all edges entering a particular node, depends
heavily on the representation of the graph. If the incoming edges are stored explicitly,
the operation is easy; if the incoming edges are not stored, the operation is nontrivial.

In this chapter, we shall give an introduction to the various possibilities for repre-
senting graphs in a computer. We focus mostly on directed graphs and assume that an
undirected graph G = (V,E) is represented as the corresponding (bi)directed graph
G′ = (V,

⋃

{u,v}∈E {(u,v),(v,u)}). The top row of Fig. 8.1 shows an undirected graph
and the corresponding bidirected graph. Most of the data structures presented also
allow us to represent multiple parallel edges and self-loops. We start with a survey
of the operations that we may want to support:

• Accessing associated information. Given a node or an edge, we frequently want
to access information associated with it, for example the weight of an edge or
the distance to a node. In many representations, nodes and edges are objects,
and we can store this information directly as a member of these objects. If not

1 The picture above shows a spider web (USFWS; see commons.wikimedia.org/

wiki/Image:Water_drops_on_spider_web.jpg).

commons.wikimedia.org/wiki/Image:Water_drops_on_spider_web.jpg
commons.wikimedia.org/wiki/Image:Water_drops_on_spider_web.jpg

260 8 Graph Representation

otherwise mentioned, we assume that V = 1..n so that information associated
with nodes can be stored in arrays. When all else fails, we can always store node
or edge information in a hash table. Hence, accesses can be implemented to run
in constant time. In the remainder of this book, we abstract from the various
options for realizing access by using the data types NodeArray and EdgeArray

to indicate array-like data structures that can be indexed by nodes and by edges,
respectively.

• Navigation. Given a node, we may want to access its outgoing edges. This oper-
ation is at the heart of most graph algorithms. As we have seen in the example
above, we sometimes also want to know the incoming edges.

• Edge queries. Given a pair of nodes (u,v), we may want to know whether this
edge is in the graph. This can always be implemented using a hash table, but we
may want to have something even faster. A more specialized but important query
is to find the reverse edge (v,u) of a directed edge (u,v) ∈ E if it exists. This
operation can be implemented by storing additional pointers connecting edges
with their reversals.

• Construction, conversion and output. The representation most suitable for the
algorithmic problem at hand is not always the representation given initially. This
is not a big problem, since most graph representations can be translated into each
other in linear time.

• Update. Sometimes we want to add or remove nodes or edges. For example, the
description of some algorithms is simplified if a node is added from which all
other nodes can be reached (see, Fig. 10.10).

In Sect. 8.1 we begin with a very simple representation by a list of edges and
continue in Sects. 8.2 and 8.3 with more structured representations that allow direct
access from nodes to their incident edges. An interesting link to linear algebra comes
from the matrix representation discussed in Sect. 8.4. For graphs with special struc-
ture, the implicit representations introduced in Sect. 8.5 can give extra performance.
Parallel aspects are treated in Sect. 8.6.

8.1 Unordered Edge Sequences

Perhaps the simplest representation of a graph is as an unordered sequence of edges.
Each edge contains a pair of node indices and, possibly, associated information such
as an edge weight. Whether these node pairs represent directed or undirected edges
is merely a matter of interpretation. Sequence representation is often used for in-
put and output. It is easy to add edges or nodes in constant time. However, many
other operations, in particular navigation, take time Θ(m), which is prohibitively
slow. Only a few graph algorithms work well with the edge sequence representation;
most algorithms require easy access to the edges incident to any given node. In this
case the ordered representations discussed in the following sections are appropriate.
In Chap. 11, we shall see two minimum-spanning-tree algorithms: One works well
with an edge sequence representation and the other needs a more sophisticated data
structure.

8.3 Adjacency Lists – Dynamic Graphs 261

8.2 Adjacency Arrays – Static Graphs

To support easy access to the edges leaving any particular node, we can store the
edges leaving any node in an array. If no additional information is stored with the
edges, this array will just contain the indices of the target nodes. If the graph is static,
i.e., does not change over time, we can concatenate all these little arrays into a single
edge array E . An additional array V stores the starting positions of the subarrays,
i.e., for any node v, V [v] is the index in E of the first edge out of v. It is convenient
to add a dummy entry V [n+ 1] with V [n+ 1] = m+ 1. The edges out of any node v

are then easily accessible as E[V [v]], . . . , E[V [v+ 1]− 1]; the dummy entry ensures
that this also holds true for node n. If a node v has no outgoing edge, V [v] =V [v+1].
Figure 8.1 (middle row, left side) shows an example.

The memory consumption for storing a directed graph using adjacency arrays is
n+m+Θ(1) words. This is even more compact than the 2m words needed for an
edge sequence representation.

Adjacency array representations can be generalized to store additional informa-
tion: We may store information associated with edges in separate arrays or within
the edge array. If we also need incoming edges, we may use additional arrays V ′ and
E ′ to store the reversed graph.

Exercise 8.1. Design a linear-time algorithm for converting an edge sequence repre-
sentation of a directed graph into an adjacency array representation. You should use
only O(1) auxiliary space. Hint: View the problem as the task of sorting edges by
their source node and adapt the integer-sorting algorithm shown in Fig. 5.34.

8.3 Adjacency Lists – Dynamic Graphs

Edge arrays are a compact and efficient graph representation. Their main disadvan-
tage is that it is expensive to add or remove edges. For example, assume that we want
to insert a new edge (u,v). Even if there is room in the edge array E to accommodate
it, we still have to move the edges associated with nodes u+ 1 to n one position to
the right, which takes time O(m).

In Chap. 3, we learned how to implement dynamic sequences. We can use any
of the solutions presented there to produce a dynamic graph data structure. For each
node v, we represent the sequence Ev of outgoing (or incoming, or both outgoing
and incoming) edges by an unbounded array or by a (singly or doubly) linked list.
We inherit the advantages and disadvantages of the respective sequence representa-
tions. Unbounded arrays are more cache-efficient. Linked lists allow constant-time
insertion and deletion of edges at arbitrary positions. Most graphs arising in practice
are sparse in the sense that every node has only a few incident edges. Adjacency
lists for sparse graphs should be implemented without the dummy item introduced
in Sect. 3.2, because an additional item per node would waste Θ(n) space. In the
example in Fig. 8.1 (middle row, right side), we show circularly linked lists.

262 8 Graph Representation

2

1
2 4 1 3 4 2 4 1 2 3

1

1

3 4

2 1

2

34

4

1 nn

m

4
2

1 4

1 2

4 3

2 3

1 n

2

3

4

1 1

2

3

4

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

Fig. 8.1. The first row shows an undirected graph and the corresponding bidirected graph.
The second row shows the adjacency array and adjacency list representations of this bidirected
graph. The third row shows the linked-edge-objects representation and the adjacency matrix.
In the former, there are five edge objects. Each object stores the names of its two endpoints
and four pointers. The first two pointers point to the predecessor and successor edges of the
first endpoint and the second two pointers do the same for the second endpoint. Thus, the third
and fourth pointers of the edge (1,2) point to the edges (4,2) and (2,3) respectively.

Exercise 8.2. Suppose the edges adjacent to a node u are stored in an unbounded
array Eu, and an edge e = (u,v) is specified by giving its position in Eu. Explain how
to remove e = (u,v) in constant amortized time. Hint: You do not have to maintain
the relative order of the other edges.

Exercise 8.3. Explain how to implement the algorithm for testing whether a graph is
acyclic discussed in Sect. 2.12 so that it runs in linear time, i.e., design an appropriate
graph representation and an algorithm using it efficiently. Hint: Maintain a queue of
nodes with outdegree 0.

Bidirected graphs arise frequently. Undirected graphs are naturally presented as
bidirected graphs, and some algorithms that operate on directed graphs need access
not only to outgoing edges but also to incoming edges. In these situations, we fre-
quently want to store the information associated with an undirected edge or a directed

8.4 The Adjacency Matrix Representation 263

edge and its reversal only once. Also, we may want to have easy access from an edge
to its reversal.

We shall describe two solutions. The first solution simply associates two addi-
tional pointers with every directed edge. One points to the reversal, and the other
points to the information associated with the edge.

The second solution has only one item for each undirected edge (or pair of di-
rected edges) and makes this item a member of two adjacency lists. So, the item for
an undirected edge {u,v}would store the node names u and v (in no particular order)
and be a member of lists Eu and Ev. If we want doubly linked adjacency information,
the edge object for any edge {u,v} stores four pointers: two are used for the doubly
linked list representing Eu, and two are used for the doubly linked list representing
Ev. We may use the convention that the first two pointers are for the node listed first
in the edge item and the last two pointers for the node listed second. Any node stores
a pointer to some edge incident to it. Starting from it, all edges incident to the node
can be traversed. The bottom part of Fig. 8.1 gives an example. A small complication
lies in the fact that finding the other end of an edge now requires some work. Note
that the edge object for an edge {u,v} stores the endpoints in no particular order.
Hence, when we explore the edges out of a node u, we must inspect both endpoints
and then choose the one which is different from u. An elegant alternative is to store
u⊕ v in the edge object [235]. An exclusive OR with either endpoint then yields the
other endpoint. This representation saves space because only one node name has to
be stored for each edge instead of two. However, we now need a different convention
for how to interpret the four pointers in an edge object. We could, for example, say
that the first two pointers are for the node with the smaller name and the last two
pointers for the node with larger name.

If, in the case of a directed graph, one wants access to the incoming and the
outgoing edges, again both solutions apply. In either solution, a node must store a
pointer to one of its outgoing edges and to one of its incoming edges.

8.4 The Adjacency Matrix Representation

An n-node graph can be represented by an n×n adjacency matrix A. Ai j is 1 if (i, j)∈
E and 0 otherwise. Edge insertion or removal and edge queries work in constant time.
It takes time O(n) to obtain the edges entering or leaving a node. This is only efficient
for very dense graphs with m = Ω

(
n2
)
. The storage requirement is n2 bits. For very

dense graphs, this may be better than the n+m+O(1) words required for adjacency
arrays. However, even for dense graphs, the advantage is small if additional edge
information is needed.

Exercise 8.4. Explain how to represent an undirected graph with n nodes and without
self-loops using n(n− 1)/2 bits.

Perhaps more important than actually storing the adjacency matrix is the conceptual
link between graphs and linear algebra introduced by the adjacency matrix. On the

264 8 Graph Representation

one hand, graph-theoretic problems can be solved using methods from linear algebra.
For example, if C = Ak, then Ci j counts the number of paths from i to j with exactly
k edges.

Exercise 8.5. Explain how to store an n× n matrix A with m nonzero entries using
storage O(m+ n) such that a matrix–vector multiplication Ax can be performed in
time O(m+ n). Describe the multiplication algorithm. Expand your representation
so that products of the form xT A can also be computed in time O(m+ n).

On the other hand, graph-theoretic concepts can be useful for solving problems from
linear algebra. For example, suppose we want to solve the matrix equation Bx = c,
where B is a symmetric matrix. Now consider the corresponding adjacency matrix
A, where Ai j = 1 if and only if Bi j 6= 0. If an algorithm for computing connected
components finds that the undirected graph represented by A contains two distinct
connected components, this information can be used to reorder the rows and columns
of B such that we obtain an equivalent equation of the form

(
B1 0
0 B2

)(
x1

x2

)

=

(
c1

c2

)

.

This equation can now be solved by solving B1x1 = c1 and B2x2 = c2 separately.
In practice, the situation is more complicated, since we rarely have matrices whose
corresponding graphs are not connected. Still, more sophisticated graph-theoretic
concepts such as cuts can help to discover structure in the matrix which can then be
exploited to solve problems in linear algebra.

8.5 Implicit Representations

Many applications work with graphs of special structure. Frequently, this structure
can be exploited to obtain simpler and more efficient representations. We shall give
two examples.

The grid graph Gkℓ with node set V = [0..k− 1]× [0..ℓ− 1] and edge set

E =
{
((i, j),(i, j′)) ∈V 2 : | j− j′|= 1

}
∪
{
((i, j),(i′, j)) ∈V 2 : |i− i′|= 1

}

is completely defined by the two parameters k and ℓ. Figure 8.2 shows G3,4. Edge
weights could be stored in two two-dimensional arrays, one for the vertical edges
and one for the horizontal edges.

An interval graph is defined by a set of intervals. For each interval, we have a
node in the graph, and two nodes are adjacent if the corresponding intervals overlap.
We may use open or closed intervals.

Fig. 8.2. The grid graph G34 (left) and an interval
graph with five nodes and six edges (right).

8.6 Parallel Graph Representation 265

Exercise 8.6 (representation of interval graphs).

(a) Show that, for any set of n intervals, there is a set of intervals whose endpoints
are integers in [1..2n], and that defines the same graph.

(b) Devise an algorithm that decides whether the graph defined by a set of n intervals
is connected. Hint: Sort the endpoints of the intervals and then scan over the
endpoints in sorted order. Keep track of the number of intervals that have started
but not ended.

(c*) Devise a representation for interval graphs that needs O(n) space and supports
efficient navigation. Given an interval I, you need to find all intervals I′ inter-
secting it; I′ intersects I if I contains an endpoint of I′ or I ⊆ I′. How can you
find the former and the latter kinds of interval?

8.6 Parallel Graph Representation

Here, we discuss graph representations suitable for parallel processing. We do so first
for shared memory and then for distributed memory.

8.6.1 Shared Memory

In a shared-memory machine, one may use the same graph representation as in the
sequential case. As with other shared-memory data structures, read-only parallel ac-
cess to the graph is efficient. However, we have to discuss how to do parallel con-
struction and (bulk) updates. As already mentioned in Exercise 8.1, construction of
an adjacency array can be viewed as the problem of sorting the edges by their end-
points. Hence, we can use the parallel algorithm presented in Sect. 5.11. At least in
theory, it is relevant that we have very small keys – fewer than the elements. In this
case, a CRCW-PRAM can perform the conversion using expected linear work and
logarithmic time [260] (see also Sect. 5.17).

8.6.2 Distributed Memory

In a distributed-memory machine, one often partitions the graph by assigning each
node to one PE. Another instance of the owner computes principle. For a partitioned
graph, cut edges whose endpoints reside on different PEs require special attention.
For cut edges, the graph representation needs to be able to identify the ID of the PEs
responsible for the endpoints. During computations on a distributed graph, passing
information along cut edges implies communication. Figure 8.3 gives an example.

PE 0
PE 1
PE 2
PE 3

Fig. 8.3. A graph with 16 nodes partitioned between four
PEs such that four edges are cut.

266 8 Graph Representation

In order to minimize the communication required, it makes sense to choose the
partition carefully. Hence, there has been intensive research on graph partitioning
[59]. The best general-purpose graph-partitioning methods are quite sophisticated
multilevel algorithms beyond the scope of this book. Since these methods are also
relatively expensive, one also uses application-specific information to get a good
partition fast.

For example, suppose we want to partition a web graph whose nodes represent
web pages. We can obtain a reasonable partition by sorting the nodes by their URL.
More precisely, the key used for a URL of the form d/ f could be dR/ f , where dR

is the mirror image of d. For example, algo2.iti.kit.edu/sanders.php
could be mapped to ude.tik.iti.2ogla/sanders.php. Then we cut the
resulting ordering into balanced pieces. This partition has reasonable quality since
many links are between nearby pages in this ordering.

Similarly, in many applications the nodes have a position in a geometrical space,
for example geographical positions in road networks or three-dimensional coordi-
nates in a graph describing a mathematical simulation. Interestingly, we can use the
sorting idea from the URL example for multidimensional positions also. We map
multidimensional coordinates to a single dimension. This is done using space-filling

curves [27]. Figure 8.4 gives examples. A particularly simple such mapping is called
Z-order or Morton ordering. It maps a d-tuple of k-bit integers (x1, . . . ,xd) to dk bits
by interleaving the bits. First come the first bits of all xi’s, then their second bits, and
so on. Formally, bit i ∈ 0..k−1 of x j is mapped to bit id+ j of the output. Figure 8.5
gives an example for d = 3 and k = 4.

Handling High Degree Vertices. The node based graph partitioning described above
does not work for graphs which have nodes with very high degree. For nodes v with
degree Ω(m/p), the work involved in handling just v can exceed the average work

0

1 2

3

4 5

7

10 11

13

15

0 1

32 6

8 9 12

14

3

0

2

1

0

63

Morton

0 630 1

23

4

5 6

7 8

9 10

11

13 12

14 15

Hilbert

Fig. 8.4. Mapping two-dimensional points to a single dimension using space-filling curves.

Fig. 8.5. Mapping of bits for 3D Morton ordering (3×4 bits→ 12 bits).

algo2.iti.kit.edu/sanders.php
ude.tik.iti.2ogla/sanders.php

8.7 Implementation Notes 267

per PE – leading to severe load imbalance. These nodes can be assigned to several
PEs by partitioning their adjacency list between them. These PEs will then have to
coordinate their work.

8.7 Implementation Notes

We have seen several representations of graphs in this chapter. They are suitable
for different sets of operations on graphs, and can be tuned further for maximum
performance in any particular application. The edge sequence representation is good
only in specialized situations. Adjacency matrices are good for rather dense graphs.
Adjacency lists are good if the graph changes frequently. Very often, some variant of
adjacency arrays is fastest. This may be true even if the graph changes, because often
there are only a few changes, all changes happen in an initialization phase of a graph
algorithm, changes can be agglomerated into occasional rebuildings of the graph, or
changes can be simulated by building several related graphs.

There are many variants of the adjacency array representation. Information asso-
ciated with nodes and edges may be stored together with these objects or in separate
arrays. A rule of thumb is that information that is frequently accessed should be
stored with the nodes and edges. Rarely used data should be kept in separate arrays,
because otherwise it would often be moved to the cache without being used. How-
ever, there can be other, more complicated reasons why separate arrays may be faster.
For example, if both adjacency information and edge weights are read but only the
weights are changed, then separate arrays may be faster because the amount of data
written back to the main memory is reduced.

Unfortunately, no graph representation is best for all purposes. How can one cope
with the zoo of graph representations? First, libraries such as LEDA and the Boost
graph library offer several different graph data types, and one of them may suit your
purposes. Second, if your application is not particularly time- or space-critical, sev-
eral representations might do and there is no need to devise a custom-built repre-
sentation for the particular application. Third, we recommend that graph algorithms
should be written in the style of generic programming [119]. The algorithms should
access the graph data structure only through a small interface – a set of operations
such as iterating over the edges out of a node, accessing information associated with
an edge, and proceeding to the target node of an edge. A graph algorithm that only
accesses the graph using this interface can be run on any representation that realizes
the interface. In this way, one can experiment with different representations. Fourth,
if you have to build a custom representation for your application, make it available
to others.

8.7.1 C++

LEDA [194, 217, 235] offers a powerful graph data type that supports a large variety
of operations in constant time and is convenient to use, but is also space-consuming.

268 8 Graph Representation

Therefore LEDA also implements several more space-efficient adjacency array rep-
resentations.

The Boost graph library [50, 195] emphasizes a strict separation of representa-
tion and interface. In particular, Boost graph algorithms run on any representation
that realizes the Boost interface. Boost also offers its own graph representation class
adjacency_list. A large number of parameters allow one to choose between variants
of graphs (directed and undirected graphs and multigraphs2), types of navigation
available (in-edges, out-edges, . . .), and representations of node and edge sequences
(arrays, linked lists, sorted sequences, . . .).

LEMON (Library for Efficient Modeling and Optimization in Networks) [200]
also emphasizes the strict separation of representation and interface. LEMON offers
a variety of general graph concepts, e.g., undirected graphs, directed graphs, and
bipartite graphs, as well as special graph classes, e.g., grids and hypercubes. LEMON
offers a richer class of graph algorithms than does the Boost library.

8.7.2 Java

JGraphT [166] offers rich support for graphs. It has a clear separation between inter-
faces, algorithms, and representations. It offers a rich class of algorithms.

8.8 Historical Notes and Further Findings

Special classes of graphs may result in additional requirements on their representa-
tion. An important example is planar graphs – graphs that can be drawn in the plane
without edges crossing. Here, the ordering of the edges adjacent to a node should
be in counterclockwise order with respect to a planar drawing of the graph. In ad-
dition, the graph data structure should efficiently support iterating over the edges
along a face of the graph, a cycle that does not enclose any other node. LEDA offers
representations for planar graphs.

Recall that bipartite graphs are special graphs where the node set V = L∪ R

can be decomposed into two disjoint subsets L and R such that the edges are only
between nodes in L and nodes in R. All representations discussed here also apply
to bipartite graphs. In addition, one may want to store the two sides L and R of the
graph. A bipartite graph can be represented by an |L|× |R|matrix.

Hypergraphs H = (V,E) are generalizations of graphs, where edges can connect
more than two nodes. Hypergraphs are conveniently represented as the correspond-
ing bipartite graph BH = (E ∪V,{(e,v) : e ∈ E,v ∈V,v ∈ e}).

Cayley graphs are an interesting example of implicitly defined graphs. Recall
that a set V is a group if it has an associative multiplication operation ∗, a neutral
element, and a multiplicative inverse operation. The Cayley graph (V,E) with respect
to a set S ⊆ V has the edge set {(u,u ∗ s) : u ∈V,s ∈ S}. Cayley graphs are useful
because graph-theoretic concepts can be useful in group theory. On the other hand,

2 Multigraphs allow multiple parallel edges.

8.8 Historical Notes and Further Findings 269

group theory yields concise definitions of many graphs with interesting properties.
For example, Cayley graphs have been proposed as interconnection networks for
parallel computers [17].

In this book, we have concentrated on convenient data structures for processing

graphs. There has also been a lot of work on storing graphs in a flexible, portable,
space-efficient way. Significant compression is possible if we have a priori informa-
tion about the graph. For example, the edges of a triangulation of n points in the
plane can be represented with about 6n bits [74, 281].

