
Reliable Algorithmic Software

Kurt Mehlhorn

MPI für Informatik

Saarbrücken

Germany

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.1/25

The Road Map

� Algorithms are at the heart of computer science;
they make systems work.

the theory of algorithms, i.e., their design and their analysis, is a
highly developed part of computer science.

however, for many basic algorithmic tasks no reliable
implementations are available

this is not just lazyness on the side of implementers,
is due to a lack of understanding (= theory)

The challenge is to remedy this situation
to work out the principles underlying reliable algorithmic
software and
to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.2/25

The Road Map

� Algorithms are at the heart of computer science;
they make systems work.

� the theory of algorithms, i.e., their design and their analysis, is a
highly developed part of computer science.

however, for many basic algorithmic tasks no reliable
implementations are available

this is not just lazyness on the side of implementers,
is due to a lack of understanding (= theory)

The challenge is to remedy this situation
to work out the principles underlying reliable algorithmic
software and
to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.2/25

The Road Map

� Algorithms are at the heart of computer science;
they make systems work.

� the theory of algorithms, i.e., their design and their analysis, is a
highly developed part of computer science.

� however, for many basic algorithmic tasks no reliable
implementations are available

this is not just lazyness on the side of implementers,
is due to a lack of understanding (= theory)

The challenge is to remedy this situation
to work out the principles underlying reliable algorithmic
software and
to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.2/25

The Road Map

� Algorithms are at the heart of computer science;
they make systems work.

� the theory of algorithms, i.e., their design and their analysis, is a
highly developed part of computer science.

� however, for many basic algorithmic tasks no reliable
implementations are available

� this is not just lazyness on the side of implementers,
is due to a lack of understanding (= theory)

The challenge is to remedy this situation
to work out the principles underlying reliable algorithmic
software and
to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.2/25

The Road Map

� Algorithms are at the heart of computer science;
they make systems work.

� the theory of algorithms, i.e., their design and their analysis, is a
highly developed part of computer science.

� however, for many basic algorithmic tasks no reliable
implementations are available

� this is not just lazyness on the side of implementers,
is due to a lack of understanding (= theory)

� The challenge is to remedy this situation

to work out the principles underlying reliable algorithmic
software and
to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.2/25

The Road Map

� Algorithms are at the heart of computer science;
they make systems work.

� the theory of algorithms, i.e., their design and their analysis, is a
highly developed part of computer science.

� however, for many basic algorithmic tasks no reliable
implementations are available

� this is not just lazyness on the side of implementers,
is due to a lack of understanding (= theory)

� The challenge is to remedy this situation

� to work out the principles underlying reliable algorithmic
software and

to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.2/25

The Road Map

� Algorithms are at the heart of computer science;
they make systems work.

� the theory of algorithms, i.e., their design and their analysis, is a
highly developed part of computer science.

� however, for many basic algorithmic tasks no reliable
implementations are available

� this is not just lazyness on the side of implementers,
is due to a lack of understanding (= theory)

� The challenge is to remedy this situation

� to work out the principles underlying reliable algorithmic
software and

� to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.2/25

State of the Art

� Popular algorithmic systems: Maple, Mathematica, STL, LEDA,
CGAL, ACIS, LAPACK, MATLAB, CPLEX, Xpress, ILOG solver.

Can you trust any of them?

Most manuals evade the issue and avoid sentences which could be
interpreted as guarantees.

� two basic algorithmic problems with no reliable implementation

� Computer Aided Design (CAD), Boolean Operations on Solids

� Linear Programming

� LEDA and CGAL are reliable: Belief or Fact?

� LEDA = library of efficient algorithms and data types

� CGAL = computational geometry algorithms library

� details on next slides
Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.3/25

State of the Art: Boolean Operations on Solids

� The left-most picture shows a regular cylinder P, n � 7.

� The middle picture shows two copies of the cylinder: Q was
obtained by rotating P by α degrees about its axis, α � 20

�

.

� the right-most picture shows the union of P and Q (= a cylinder
whose base is a 4n-gon).

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.4/25

The State of the Art

� existing CAD-systems are not reliable

� construct a regular n-cylinder P,

� obtain Q by rotating P by α degrees,

� and compute the union of P and Q.

System n α time output

ACIS 1000 1.0e-4 5 min correct

ACIS 1000 1.0e-6 30 sec incorrect answer

Rhino3D 200 1.0e-2 15sec correct

Rhino3D 400 1.0e-2 – CRASH

� the situation is even worse for objects with curved boundaries

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.5/25

Linear Programming

maximize cT x subject to Ax

�

b x

�

0

� linear programming is a most powerful algorithmic paradigm

� There is no linear programming solver that is guaranteed to solve
large-scale linear programs to optimality. Every existing solver may
return suboptimal or infeasible solutions. There are solvers that
solve small problems to optimality.

Problem CPLEX Exact Verification

Name C R NZ T V Res RelObjErr T

degen3 1504 1818 26230 8.08 0 opt 6.91e-16 8.79

etamacro 401 688 2489 0.13 10 dfeas 1.50e-16 1.11

fffff800 525 854 6235 0.09 0 opt 0.00e+00 4.41

pilot.we 737 2789 9218 3.8 0 opt 2.93e-11 1654.64

scsd6 148 1350 5666 0.1 13 dfeas 0.00e+00 0.52

scsd8 398 2750 11334 0.48 0 opt 7.54e-16 1.52

Dhiflaoui/Funke/Kwappik/M/Seel/Schömer/Schulte/Weber: SODA 03

continue with exact LP-solverKurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.6/25

Linear Programming II

optimization direction

indicated vertex may be returned

� indicated vertex is not primal feasible since it violates a constraint

� indicated vertex is not dual feasible since it is not optimal for a
subset of the constraints.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.7/25

Are LEDA and CGAL Reliable?

� I believe so:

� the authors are trustworthy individuals at least most of the time

� most programs are carefully documented but not all of them

� extensively tested

� underlying algorithms have been shown correct

� number types give illusion of a Real RAM

� geometry kernels are model of geometry

� program result checking is used

� in court the above is called circumstantial evidence

� Am I willing to bet on correctness?

� yes, in case of the sophisticated algorithms

� definitely no, in case of support (graphics, windows, IO)

� there are no formal proofs of correctness

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.8/25

First Summary

� no reliable implementations exist for fundamental algorithmic
problems such as Linear Programming or Boolean Operations on
Solids

� we are lacking principles: CPLEX and ACIS are state of the art.

� CGAL and LEDA are a step forward,
but by far not the end of the story

� abstract challenge:

� work out the principles underlying reliable algorithmic software

� create a comprehensive collection of reliable algorithmic
software components.

� concrete challenges:

� a correct and efficient CAD system

� a correct and efficient LP solver

� a certified LEDA

� to meet either challenge will require new theory
Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.9/25

Approaches

� program verification

� exact computation paradigm

� program result checking

� certifying algorithms

� verification of checkers

� cooperation of verification and checking

� a posteriori analysis

� test and repair

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.10/25

Program Verification

� formal program verification is the obvious approach.

� obstacles

� the mathematics underlying the algorithms must be formalized

� verification must be applicable to languages in which
algorithmicists want to formulate their algorithms

� my opinion: the direct applicability of program verification is doubtful
for some time to come

� but see below: verification of checkers

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.11/25

The Exact Computation Paradigm

� ��� � �
	

� � �� � � � 	
� � � � Circle: x2

y2 � 100
Line: y � 1 � 0 �100000001 � x

existing systems approximate the coordinates (usually, 16 digits)

x0

� 9 � 99999999999999999500000000000049 � � �

and hence cannot distinguish

und

Abstand � 10
�16

but geometric programs branch on this case distinction � � disaster

� exact computation paradigm: implement an efficient Real RAM

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.12/25

A Separation Bound for Algebraic Expressions

Let E be an expression with operators

, � , � and and integer
operands. Let

� u

�

E

� � value of E after replacing � by

.

� k

�

E

� � number of distinct square roots in E.

Then (BFMS, BFMSS)

E � 0 or

�

E

� 1

u
�

E

�2k

�

E

�
� 1

Theorem allows us to determine signs of algebraic expressions by
numerical computation with precision

�
2k

�

E

 � 1

�

logu

�

E

�

.

in preceding example: compute the first 25 decimal digits of x0 and you
know how x0 compares to 10.

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann
extensions: division, higher-order roots, roots of univariate polynomials

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.13/25

Discussion I

How small can A � B C be, if non-zero? A � B �C ! "

.

#

A �B C

�
$%$%$&$%$
�

A � B C

� �

A

B C

�

A

B C

$%$%$&$%$
�

#

A2 � B2C

#

#

A

B C

#
� 1

#

A

B C

#
� 1

#

A

#

B

#

C

This is a special case of the theorem

� u

�

E

� � #A

#

B

#

C

� k � 1

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.14/25

Recent Progress I

� efficient geometry ker-
nels for linear objects
in CGAL and LEDA

union of n-gons

n α time result

5000 6.175e-06 30 s correct

20000 9.88e-07 141 s correct

' ∞ ' 0 ' ∞ sec correct

� CORE and LEDA offer reasonably efficient computations with radicals

� ESOLID (Manocha): exact boundary evaluation of some curved
solids.

� exact boolean operations on 2-dimensional curved objects of low
degree

1 min for n � 1000

Berberich, Eigenwillig, Hemmer,

Hert, M, Schömer: ESA 2002

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.15/25

Recent Progress II

� arrangements of ellipsoids

Geismman, Hemmer, Schömer: CompGeo 2001

Wolpert: PhD-thesis

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.16/25

Program Result Checking

�

verification = program works for every input
result checking = program worked for a specific input

� Blum and Kannan (89): programs that check their work

� a checker for a program computing a function f takes

� an instance x and an output y, and

� returns true if y � f

�

x

�

and return false, otherwise

� hope: checking is simpler than computing

� example

� multiplication problem: compute y � x1

� x2, given x1 and x2.

� a (probabilistic) checker gets x1, x2, and y, chooses a small
random prime p and

� verifies that

�

x1 mod p
� � �x1 mod p

�

mod p � y mod p.

� program result checking is too restrictive to be practical

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.17/25

Certifying Algorithms

� certifying algorithms return additional output (= a witness) that
simplifies checking.

� on input x, a certifying program for a function f returns a value y and
additional information I that makes it easy to check that y � f

�

x

�

.

� “easy to check” has twofold meaning:

� there is a simple program C that given x, y, and I checks
whether indeed y � f

�

x

�

.

� if y

(� f

�

x

�

then there should be no I such that

�

x � y � I

�

passes
checking.

� simple = correctness is “obvious”.

� the running time of C on inputs x, y, and I should be no larger
than the time required to compute f

�

x

�

from scratch

� preferably much much smaller

� observe that certifying program and checker are designed together

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.18/25

Example of a Certifying Algorithms

� planarity testing: given a graph G, decide whether it is planar

� Tarjan (76): planarity can be tested in linear time

� Chiba et al (85): planar embedding of a planar graph in linear
time

� a story

� Hundack/M/Näher (97): Kuratowski subgraph of a non-planar
graph in linear time

0 1 2

3 4 5

� many more examples are discussed in LEDA book

� in the LEDA system many programs are certifying.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.19/25

Verification of Checkers

� the checker should be so simple that its correctness is “obvious”.

� we may hope to formally verify the correctness of the
implementation of the checker

this is a much simpler task than verifying the solution algorithm

� the mathematics required for the checker is usually much
simpler that the one underlying the algorithm for finding
solutions and witnesses

� checkers are simple programs

� algorithmicists may be willing to code the checkers in
languages which ease verification

� Remark: for a correct program, verification of the checker is as
good as verification of the program itself

� Harald Ganzinger and I are exploring the idea

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.20/25

Cooperation of Verification and Checking

� a sorting routine working on a set S

(a) must not change S and
(b) must produce a sorted output.

� I learned the example from Gerhard Goos

� the first property is hard to check (provably as hard as sorting)

� but usually trivial to prove, e.g.,
if the sorting algorithm uses a swap-subroutine to exchange items.

� the second property is easy to check by a linear scan over the
output, but hard to prove (if the sorting algorithm is complex).

� give other examples where a combination of verification and
checking does the job

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.21/25

A Posteriori Analysis

� there will always be inexact algorithms.

� a-posteriori analysis: analyze the quality of the solution

� example: roots of a univariate polynomial f

�

x

�

of degree n

� given approximate solutions x1, . . . , xn, compute

σi

� f

�

xi

�

∏ j

)+* i

�

xi

� x j

� for 1
�

i

�

n �

� Γi

� disk in the complex plane centered at xi with radius n

#

σi

#

.

� the union of the disks contains all roots of f

� a connected component consisting of k disks contains exactly k
roots of f .

� the σi are easily computed with controlled error using
multi-precision floating point arithmetic

� analogous examples in the combinatorial world, e.g., in
approximation algs

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.22/25

Test and Repair

� use solution returned by an inexact algorithm as starting point for an
exact algorithm

� example: linear programming

maximize cT x subject to Ax � b � x

�

0

A is an m , n matrix with m - n and rank m (for simplicity)

� a basic solution x � �xB � xN

�

is defined by a m , m non-singular
sub-matrix B of A

� xB are the vars corresponding to cols in B, xN remaining vars

� xN

� 0 and xB

� B .1b solve a linear system

� a basic solution is primal feasible if xB

�

0

� a basic solution is dual feasible if cT
B

� cT
NA

.1
B AN

�

0.

� it is optimal, if it is primal and dual feasible.

� for medium-size linear programs, we can check (exactly !!!) for
primal or dual feasibility in reasonable time (details)

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.23/25

An Exact LP-Solver

� use an inexact LP solver to determine an “optimal” basis B

� check the basis for optimality. If optimal, stop.

� if not, use the basis as a starting basis for an exact simplex
algorithm

� seems to work reasonably well

� turn this observation into a theorem

� extend to large scale linear programs

� general challenge for optimization problems

� design (exact) algorithms that start from a given solution x0

towards an optimal solution.

� the running time should depend on some natural distance
measure between the initial and the optimal solution.

� go back to road map slide

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.24/25

An Example of a Distance Measure

� LP is given as a set of inequalities in d variables, goal is to find the
top-vertex

� difficulty of a vertex = number of facets whose top vertex is above
the given vertex.

� Kalai (92):
1. given a vertex v, consider the d facets incident to it
2. if v is the top vertex of all of them, stop
3. among the facets incident to v whose top vertex is different from

v, choose one at random, say F

4. find the top vertex of F (by using the same algorithm
recursively), call it v, and go to step 1.

� T

�

d � n

�

, running time for a problem in dimension d and starting with
a vertex of difficulty n. Then

T

�

d � n

� �

exp

�

O

�

n logd

� �

T d n 1 T d 1 n 1
1
d ∑

1 i d

T d n i

back to road map slide.

Kurt Mehlhorn, MPI für Informatik Reliable Algorithmic Software – p.25/25

	The Road Map
	State of the Art
	State of the Art: Boolean Operations on Solids
	The State of the Art
	Linear Programming
	Linear Programming II
	Are LEDA and CGAL Reliable?
	First Summary
	Approaches
	Program Verification
	The Exact Computation Paradigm
	A Separation Bound for Algebraic Expressions
	Discussion I
	Recent Progress I
	Recent Progress II
	Program Result Checking
	Certifying Algorithms
	Example of a Certifying Algorithms
	Verification of Checkers
	Cooperation of Verification and Checking
	A Posteriori Analysis
	Test and Repair
	An Exact LP-Solver
	An Example of a Distance Measure

