

Reliable Algorithmic Software

Kurt Mehlhorn

MPI für Informatik Saarbrücken Germany

Algorithms are at the heart of computer science;

Algorithms are at the heart of computer science;

they make systems work.

 the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.

• Algorithms are at the heart of computer science;

- the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- however, for many basic algorithmic tasks no reliable implementations are available

• Algorithms are at the heart of computer science;

- the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- however, for many basic algorithmic tasks no reliable implementations are available
- this is not just lazyness on the side of implementers, is due to a lack of understanding (= theory)

• Algorithms are at the heart of computer science;

- the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- however, for many basic algorithmic tasks no reliable implementations are available
- this is not just lazyness on the side of implementers, is due to a lack of understanding (= theory)
- The challenge is to remedy this situation

• Algorithms are at the heart of computer science;

- the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- however, for many basic algorithmic tasks no reliable implementations are available
- this is not just lazyness on the side of implementers, is due to a lack of understanding (= theory)
- The challenge is to remedy this situation
 - to work out the principles underlying reliable algorithmic software and

• Algorithms are at the heart of computer science;

- the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- however, for many basic algorithmic tasks no reliable implementations are available
- this is not just lazyness on the side of implementers, is due to a lack of understanding (= theory)
- The challenge is to remedy this situation
 - to work out the principles underlying reliable algorithmic software and
 - to create a comprehensive collection of reliable algorithmic software components.

State of the Art

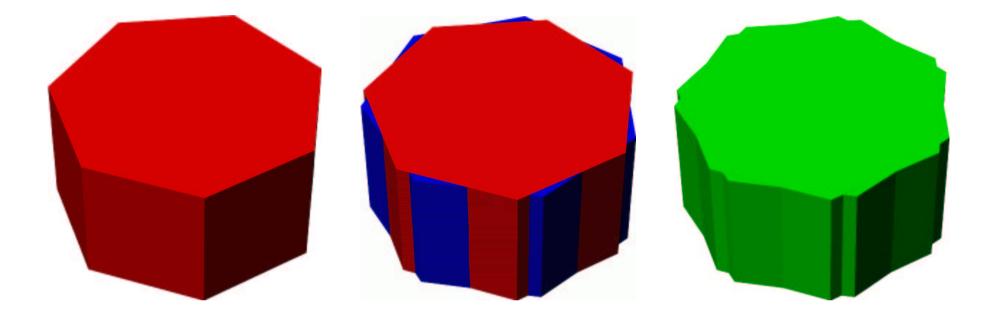
• Popular algorithmic systems: Maple, Mathematica, STL, LEDA, CGAL, ACIS, LAPACK, MATLAB, CPLEX, Xpress, ILOG solver.

Can you trust any of them?

Most manuals evade the issue and avoid sentences which could be interpreted as guarantees.

- two basic algorithmic problems with no reliable implementation
 - Computer Aided Design (CAD), Boolean Operations on Solids
 - Linear Programming
- LEDA and CGAL are reliable: Belief or Fact?
 - LEDA = library of efficient algorithms and data types
 - CGAL = computational geometry algorithms library
- details on next slides

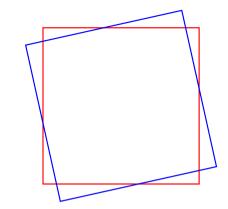
State of the Art: Boolean Operations on Solids



- The left-most picture shows a regular cylinder P, n = 7.
- The middle picture shows two copies of the cylinder: Q was obtained by rotating P by α degrees about its axis, $\alpha \approx 20^{\circ}$.
- the right-most picture shows the union of P and Q (= a cylinder whose base is a 4n-gon).

The State of the Art

- existing CAD-systems are **not** reliable
- construct a regular n-cylinder P,
- obtain Q by rotating P by α degrees,
- and compute the union of *P* and *Q*.



System	n	α	time	output
ACIS	1000	1.0e-4	5 min	correct
ACIS	1000	1.0e-6	30 sec	incorrect answer
Rhino3D	200	1.0e-2	15sec	correct
Rhino3D	400	1.0e-2	_	CRASH

• the situation is even worse for objects with curved boundaries

Linear Programming

maximize $c^T x$ subject to $Ax \le b$ $x \ge 0$

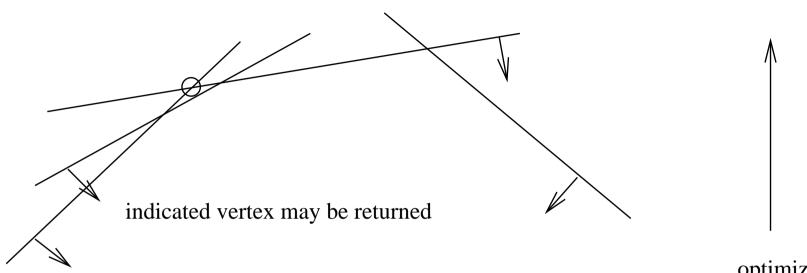
- linear programming is a most powerful algorithmic paradigm
- There is no linear programming solver that is guaranteed to solve large-scale linear programs to optimality. Every existing solver may return suboptimal or infeasible solutions. There are solvers that solve small problems to optimality.

Problem				CPLEX				Exact Verification
Name	С	R	NZ	Т	V	Res	RelObjErr	Т
degen3	1504	1818	26230	8.08	0	opt	6.91e-16	8.79
etamacro	401	688	2489	0.13	10	dfeas	1.50e-16	1.11
fffff800	525	854	6235	0.09	0	opt	0.00e+00	4.41
pilot.we	737	2789	9218	3.8	0	opt	2.93e-11	1654.64
scsd6	148	1350	5666	0.1	13	dfeas	0.00e+00	0.52
scsd8	398	2750	11334	0.48	0	opt	7.54e-16	1.52

Dhiflaoui/Funke/Kwappik/M/Seel/Schömer/Schulte/Weber: SODA 03

continuentithe exactmark-solver

Linear Programming II



optimization direction

- indicated vertex is not primal feasible since it violates a constraint
- indicated vertex is not dual feasible since it is not optimal for a subset of the constraints.

Are LEDA and CGAL Reliable?

- I believe so:
 - the authors are trustworthy individuals at least most of the time
 - most programs are carefully documented but not all of them
 - extensively tested
 - underlying algorithms have been shown correct
 - number types give illusion of a Real RAM
 - geometry kernels are model of geometry
 - program result checking is used
- in court the above is called circumstantial evidence
- Am I willing to bet on correctness?
 - yes, in case of the sophisticated algorithms
 - definitely no, in case of support (graphics, windows, IO)
- there are no formal proofs of correctness

First Summary

- no reliable implementations exist for fundamental algorithmic problems such as Linear Programming or Boolean Operations on Solids
- we are lacking principles: CPLEX and ACIS are state of the art.
- CGAL and LEDA are a step forward,

but by far not the end of the story

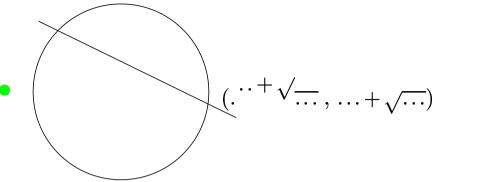
- abstract challenge:
 - work out the principles underlying reliable algorithmic software
 - create a comprehensive collection of reliable algorithmic software components.
- concrete challenges:
 - a correct and efficient CAD system
 - a correct and efficient LP solver
 - a certified LEDA
 - to meet either challenge will require new theory

- program verification
- exact computation paradigm
- program result checking
- certifying algorithms
- verification of checkers
- cooperation of verification and checking
- a posteriori analysis
- test and repair

Program Verification

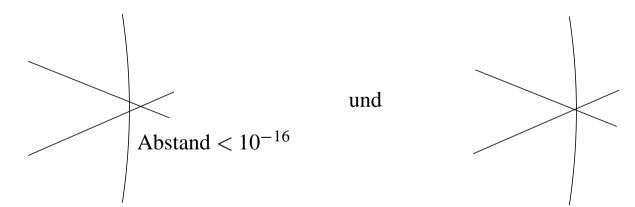
- formal program verification is the obvious approach.
- obstacles
 - the mathematics underlying the algorithms must be formalized
 - verification must be applicable to languages in which algorithmicists want to formulate their algorithms
- my opinion: the direct applicability of program verification is doubtful for some time to come
- but see below: verification of checkers

The Exact Computation Paradigm



Circle: $x^2 + y^2 = 100$ Line: $y = 1 - 0.10000001 \cdot x$

and hence cannot distinguish



but geometric programs branch on this case distinction \implies disaster

exact computation paradigm: implement an efficient Real RAM

A Separation Bound for Algebraic Expressions

- Let *E* be an expression with operators +, -, * and $\sqrt{-}$ and integer operands. Let
 - u(E) = value of E after replacing by +.
 - k(E) = number of distinct square roots in *E*.

Then (BFMS, BFMSS)

$$E = 0$$
 or $|E| \ge \frac{1}{u(E)^{2^{k(E)}-1}}$

Theorem allows us to determine signs of algebraic expressions by numerical computation with precision $(2^{k(E)} - 1) \log u(E)$.

in preceding example: compute the first 25 decimal digits of x_0 and you know how x_0 compares to 10.

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann extensions: division, higher-order roots, roots of univariate polynomials

Discussion I

How small can $A - B\sqrt{C}$ be, if non-zero? $A, B, C \in \mathbb{N}$.

$$|A - B\sqrt{C}| = \left|\frac{(A - B\sqrt{C})(A + B\sqrt{C})}{A + B\sqrt{C}}\right| = \frac{|A^2 - B^2C|}{|A + B\sqrt{C}|} \ge \frac{1}{|A + B\sqrt{C}|} \ge \frac{1}{|A| + |B|\sqrt{C}}$$

This is a special case of the theorem

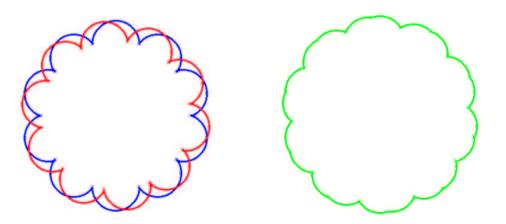
- $u(E) = |A| + |B|\sqrt{C}$
- *k* = 1

Recent Progress I

 efficient geometry kernels for linear objects in CGAL and LEDA union of *n*-gons

n	α	time	result
5000	6.175e-06	30 s	correct
20000	9.88e-07	141 s	correct
$\rightarrow \infty$	$\rightarrow 0$	$ ightarrow \infty$ Sec	correct

- CORE and LEDA offer reasonably efficient computations with radicals
- ESOLID (Manocha): exact boundary evaluation of some curved solids.
- exact boolean operations on 2-dimensional curved objects of low degree

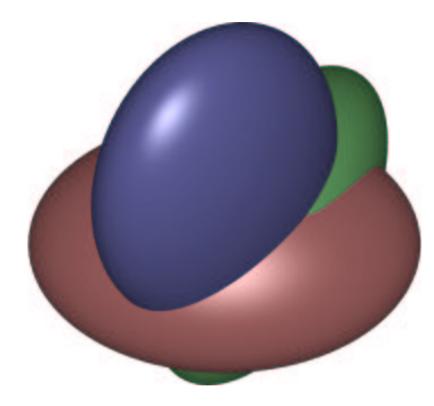


1 min for n = 1000

Berberich, Eigenwillig, Hemmer, Hert, M, Schömer: ESA 2002

Recent Progress II

arrangements of ellipsoids



Geismman, Hemmer, Schömer: CompGeo 2001 Wolpert: PhD-thesis

Program Result Checking

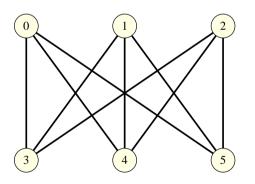
- verification = program works for every input
 result checking = program worked for a specific input
- Blum and Kannan (89): programs that check their work
- a checker for a program computing a function f takes
 - an instance *x* and an output *y*, and
 - returns true if y = f(x) and return false, otherwise
- hope: checking is simpler than computing
- example
 - multiplication problem: compute $y = x_1 \cdot x_2$, given x_1 and x_2 .
 - a (probabilistic) checker gets x₁, x₂, and y, chooses a small random prime p and
 - verifies that $(x_1 \mod p) \cdot (x_1 \mod p) \mod p = y \mod p$.
- program result checking is too restrictive to be practical

Certifying Algorithms

- certifying algorithms return additional output (= a witness) that simplifies checking.
- on input x, a certifying program for a function f returns a value y and additional information I that makes it easy to check that y = f(x).
- "easy to check" has twofold meaning:
 - there is a simple program *C* that given *x*, *y*, and *I* checks whether indeed y = f(x).
 - if y ≠ f(x) then there should be no I such that (x, y, I) passes checking.
 - simple = correctness is "obvious".
 - the running time of *C* on inputs *x*, *y*, and *I* should be no larger than the time required to compute *f*(*x*) from scratch
 - preferably much much smaller
- observe that certifying program and checker are designed together

Example of a Certifying Algorithms

- planarity testing: given a graph G, decide whether it is planar
 - Tarjan (76): planarity can be tested in linear time
 - Chiba et al (85): planar embedding of a planar graph in linear time
 - a story
 - Hundack/M/Näher (97): Kuratowski subgraph of a non-planar graph in linear time



- many more examples are discussed in LEDA book
- in the LEDA system many programs are certifying.

Verification of Checkers

- the checker should be so simple that its correctness is "obvious".
- we may hope to formally verify the correctness of the implementation of the checker
 - this is a much simpler task than verifying the solution algorithm
 - the mathematics required for the checker is usually much simpler that the one underlying the algorithm for finding solutions and witnesses
 - checkers are simple programs
 - algorithmicists may be willing to code the checkers in languages which ease verification
- **Remark:** for a correct program, verification of the checker is as good as verification of the program itself
- Harald Ganzinger and I are exploring the idea

Cooperation of Verification and Checking

- a sorting routine working on a set *S*
 - (a) must not change S and
 - (b) must produce a sorted output.
- I learned the example from Gerhard Goos
- the first property is hard to check (provably as hard as sorting)
- but usually trivial to prove, e.g., if the sorting algorithm uses a *swap*-subroutine to exchange items.
- the second property is easy to check by a linear scan over the output, but hard to prove (if the sorting algorithm is complex).
- give other examples where a combination of verification and checking does the job

A Posteriori Analysis

- there will always be inexact algorithms.
- a-posteriori analysis: analyze the quality of the solution
- example: roots of a univariate polynomial f(x) of degree n
 - given approximate solutions x_1, \ldots, x_n , compute

$$\sigma_i = rac{f(x_i)}{\prod_{j \neq i} (x_i - x_j)} \quad ext{for } 1 \le i \le n \; .$$

- Γ_i = disk in the complex plane centered at x_i with radius $n|\sigma_i|$.
- the union of the disks contains all roots of f
- a connected component consisting of k disks contains exactly k roots of f.
- the σ_i are easily computed with controlled error using multi-precision floating point arithmetic
- analogous examples in the combinatorial world, e.g., in approximation algs

Test and Repair

- use solution returned by an inexact algorithm as starting point for an exact algorithm
- example: linear programming

maximize $c^T x$ subject to Ax = b, $x \ge 0$

A is an $m \times n$ matrix with m < n and rank m (for simplicity)

- a basic solution $x = (x_B, x_N)$ is defined by a $m \times m$ non-singular sub-matrix *B* of *A*
 - x_B are the vars corresponding to cols in *B*, x_N remaining vars
 - $x_N = 0$ and $x_B = B^{-1}b$ solve a linear system
 - a basic solution is *primal feasible* if $x_B \ge 0$
 - a basic solution is *dual feasible* if $c_B^T c_N^T A_B^{-1} A_N \le 0$.
 - it is optimal, if it is primal and dual feasible.
- for medium-size linear programs, we can check (exactly !!!) for primal or dual feasibility in reasonable time (details)

Kurt Mehlhorn, MPI für Informatik

Reliable Algorithmic Software – p.23/25

An Exact LP-Solver

- use an inexact LP solver to determine an "optimal" basis B
- check the basis for optimality. If optimal, stop.
- if not, use the basis as a starting basis for an exact simplex algorithm
- seems to work reasonably well
- turn this observation into a theorem
- extend to large scale linear programs
- general challenge for optimization problems
 - design (exact) algorithms that start from a given solution x_0 towards an optimal solution.
 - the running time should depend on some natural distance measure between the initial and the optimal solution.
- go back to road map slide

An Example of a Distance Measure

- LP is given as a set of inequalities in d variables, goal is to find the top-vertex
- difficulty of a vertex = number of facets whose top vertex is above the given vertex.
- Kalai (92):
 - 1. given a vertex v, consider the d facets incident to it
 - 2. if v is the top vertex of all of them, stop
 - 3. among the facets incident to *v* whose top vertex is different from *v*, choose one at random, say *F*
 - 4. find the top vertex of *F* (by using the same algorithm recursively), call it *v*, and go to step 1.
- *T*(*d*,*n*), running time for a problem in dimension *d* and starting with a vertex of difficulty *n*. Then

$$T(d,n) \le \exp(O(\sqrt{n\log d}))$$