
Intro Examples Advantages Universality Verification Summary

Set-Up

set up non-certifying and certifying planarity demo. Let the
non-certifying demo run during introduction

Kurt Mehlhorn 1/22

Certifying Algorithms
Algorithmics meets Software Engineering

Kurt Mehlhorn
Max Planck Institute for Informatics and Saarland University

July 7, 2014

Intro Examples Advantages Universality Verification Summary

Outline of Talk

problem definition and certifying algorithms
examples of certifying algorithms

– testing bipartiteness
– matchings in graphs
– planarity testing
– convex hulls
– further examples

advantages of certifying algorithms
universality
formal verification and certifying algorithms
summary

Kurt Mehlhorn 3/22

Intro Examples Advantages Universality Verification Summary

The Problem

Program for f
x y

A user feeds x to the program, the program returns y .

How can the user be sure that, indeed,

y = f (x)?

The user has no way to know.

Kurt Mehlhorn 4/22

Intro Examples Advantages Universality Verification Summary

Warning Examples
LEDA 2.0 planarity test was incorrect
Rhino3d (a CAD systems) fails to com-
pute correct intersection of two cylinders
and two spheres
CPLEX (a linear programming solver) fails on benchmark
problem etamacro.

Mathematica 4.2 (a mathematics systems) fails to solve a small
integer linear program

In[1] := ConstrainedMin[x , {x==1,x==2} , {x}]
Out[1] = {2, {x->2}}

In[1] := ConstrainedMax[x , {x==1,x==2} , {x}]
ConstrainedMax::"lpsub": "The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}

Kurt Mehlhorn 5/22

Intro Examples Advantages Universality Verification Summary

The Proposal

Programs must justify (prove) their answers
in a way

that is easily checked by their users.

Kurt Mehlhorn 6/22

Intro Examples Advantages Universality Verification Summary

A Certifying Program for a Function f

Certifying
program for f Checker C

x
x y

w

accept (x , y ,w)

reject

On input x , a certifying program returns
the function value y and a certificate (witness) w

w proves y = f (x) even to a dummy,

and there is a simple program C, the checker, that verifies the
validity of the proof.

Kurt Mehlhorn 7/22

Intro Examples Advantages Universality Verification Summary

A First Example: Testing Bipartiteness of Graphs
A graph is bipartite if its vertices can
be colored black and white such that
the endpoints of each edge have
distinct colors. YES NO ??

Conventional algorithm outputs YES or NO

Certifying Algorithm outputs

a two-coloring in the YES-case

an odd cycle in the NO-case

Remark: simple modification of the standard algorithm suffices

Kurt Mehlhorn 8/22

Intro Examples Advantages Universality Verification Summary

A First Example: Testing Bipartiteness of Graphs
A graph is bipartite if its vertices can
be colored black and white such that
the endpoints of each edge have
distinct colors. YES NO ??

Conventional algorithm outputs YES or NO

Certifying Algorithm outputs

a two-coloring in the YES-case

an odd cycle in the NO-case

Remark: simple modification of the standard algorithm suffices

Kurt Mehlhorn 8/22

Intro Examples Advantages Universality Verification Summary

History

I do not claim that I invented the concept; it is an old concept

– al-Kwarizmi: multiplication
– extended Euclid: gcd
– primal-dual algorithms in combinatorial optimization
– Blum et al.: Programs that check their work

I do claim that Näher and I were the first (1995) to adopt the
concept as the design principle for a large library project: LEDA

(Library of Efficient Data Types and Algorithms)

Kratsch/McConnell/M/Spinrad (SODA 2003) coin name

McConnell/M/Näher/Schweitzer (2010): 80 page survey

Kurt Mehlhorn 9/22

Intro Examples Advantages Universality Verification Summary

Examples

Planarity Testing
Maximum Cardinality Matchings

Further Examples

Kurt Mehlhorn 10/22

Intro Examples Advantages Universality Verification Summary

Example II: Planarity Testing

Given a graph G, decide whether it is planar
Tarjan (76): planarity can be tested in linear time
A story and a demo
Combinatorial planar embedding is a witness for planarity

Chiba et al (85): planar embedding of a planar G in linear time

Kuratowski subgraph is a witness for non-planarity
Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear time, LEDAbook, Chapter 9

Kurt Mehlhorn 11/22

Intro Examples Advantages Universality Verification Summary

Example III: Maximum Cardinality Matchings

A matching M is a set of edges no two of which share an
endpoint

The blue edges form a matching of maximum cardinality; this is
non-obvious as two vertices are unmatched.

A conventional algorithm outputs the set of blue edges.

Kurt Mehlhorn 12/22

Intro Examples Advantages Universality Verification Summary

Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Theorem: Let M be a matching in a graph G and let `
be a labelling of the vertices with non-negative integers such that
for each edge e = (u, v) either `(u) = `(v) ≥ 2 or
1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

Kurt Mehlhorn 13/22

Intro Examples Advantages Universality Verification Summary

Maximum Cardinality Matching: A Certifying Alg
Edmonds’ Theorem: Let M be a matching in a graph G and let `
be a labelling of the vertices with non-negative integers such that
for each edge e = (u, v) either `(u) = `(v) ≥ 2 or
1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

|M| = 6

m1 = 4, m2 = 3, m3 = 3.

|M| = 6 = 4 + b3/2c+ b3/2c
and hence M has maximum
cardinality.

Kurt Mehlhorn 13/22

Intro Examples Advantages Universality Verification Summary

Maximum Cardinality Matching: A Certifying Alg
Edmonds’ Theorem: Let M be a matching in a graph G and let `
be a labelling of the vertices with non-negative integers such that
for each edge e = (u, v) either `(u) = `(v) ≥ 2 or
1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

Let M1 be the edges in M having at least one endpoint labelled
1 and, for i ≥ 2, let Mi be the edges in M having both endpoints
labelled i .

M = M1 ∪M2 ∪M3 ∪ . . .

|M1| ≤ n1 and |Mi | ≤ ni/2 for i ≥ 2.

Kurt Mehlhorn 13/22

Intro Examples Advantages Universality Verification Summary

Further Examples

Convex Hulls

Schmidt: Three-Connectivity of Graphs

Georgiadis/Tarjan: Dominators in Digraphs

Wang: Arrangements of Algebraic Curves

Mehlhorn/Sagraloff/Wang: Root Isolation for Real Polynomials

Althaus/Dumitriu: Certifying feasibility and objective value of
linear programs

Hauenstein/Sottile: alphaCertified: certifying solutions to
polynomial systems

Cook et al: Traveling Salesman Tours

Dictionaries

Kurt Mehlhorn 14/22

Intro Examples Advantages Universality Verification Summary

The Advantages of Certifying Algorithms

Certifying algs can be tested on
– any input
– and not just on inputs for which the result is known.

Certifying algorithms are reliable:
– Either give the correct answer
– or notice that they have erred ⇒ confinement of error

Computation as a service
– There is no need to understand the program, understanding the

witness property and the checking program suffices.
– One may even keep the program secret and only publish the

checker

Kurt Mehlhorn 15/22

Intro Examples Advantages Universality Verification Summary

The Advantages of Certifying Algorithms

Certifying algs can be tested on
– any input
– and not just on inputs for which the result is known.

Certifying algorithms are reliable:
– Either give the correct answer
– or notice that they have erred ⇒ confinement of error

Computation as a service
– There is no need to understand the program, understanding the

witness property and the checking program suffices.
– One may even keep the program secret and only publish the

checker

Kurt Mehlhorn 15/22

Intro Examples Advantages Universality Verification Summary

The Advantages of Certifying Algorithms

Certifying algs can be tested on
– any input
– and not just on inputs for which the result is known.

Certifying algorithms are reliable:
– Either give the correct answer
– or notice that they have erred ⇒ confinement of error

Computation as a service
– There is no need to understand the program, understanding the

witness property and the checking program suffices.
– One may even keep the program secret and only publish the

checker

Kurt Mehlhorn 15/22

Intro Examples Advantages Universality Verification Summary

Odds and Ends

General techniques

– Linear programming duality
– Characterization theorems
– Program composition

Probabilistic programs and checkers

Reactive Systems (data structures)
does apply to problems in NP (and beyond), e.g., SAT

– output a satisfying assignment of satisfiable inputs
– ouput a resolution proof for unsatisfiability otherwise

Kurt Mehlhorn 16/22

Intro Examples Advantages Universality Verification Summary

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

Thm: Every deterministic program can be made certifying
without asymptotic loss of efficiency

(at least in principle)

I still believe that the opposite should be true; however, for
every formalization that I tried, I could prove the theorem.

Kurt Mehlhorn 17/22

Intro Examples Advantages Universality Verification Summary

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

Thm: Every deterministic program can be made certifying
without asymptotic loss of efficiency

(at least in principle)

I still believe that the opposite should be true; however, for
every formalization that I tried, I could prove the theorem.

Kurt Mehlhorn 17/22

Intro Examples Advantages Universality Verification Summary

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

Thm: Every deterministic program can be made certifying
without asymptotic loss of efficiency

(at least in principle)

I still believe that the opposite should be true; however, for
every formalization that I tried, I could prove the theorem.

Kurt Mehlhorn 17/22

Intro Examples Advantages Universality Verification Summary

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

Thm: Every deterministic program can be made certifying
without asymptotic loss of efficiency

(at least in principle)

I still believe that the opposite should be true; however, for
every formalization that I tried, I could prove the theorem.

Kurt Mehlhorn 17/22

Intro Examples Advantages Universality Verification Summary

Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

Thm: Every deterministic program can be made certifying
without asymptotic loss of efficiency

(at least in principle)

I still believe that the opposite should be true; however, for
every formalization that I tried, I could prove the theorem.

Kurt Mehlhorn 17/22

Intro Examples Advantages Universality Verification Summary

The Maximum Cardinality Matching Checker
Edmonds’ Theorem: Let M be a matching in a graph G = (V , E) and let ` : V → N such that for each edge
e = (u, v) of G either `(u) = `(v) ≥ 2 or 1 ∈ { `(u), `(v) }. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i .

The Checker Program has input G, M, and `:
checks that M ⊆ E ,

checks that M is a matching,

checks that ` satisfies the hypothesis of the theorem, and

checks that |M| = n1 +
∑

i≥2 bni/2c
set c[v] = 0 for all v ∈ V ;
for all e = (u, v) ∈ M: increment c[u] and c[v];

if some counter reaches 2, M is not a matching. Our checkers are written in C!!!

Kurt Mehlhorn 18/22

Intro Examples Advantages Universality Verification Summary

Who Checks the Checker?
How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

formal mathematics

proof are
machine-checked

only kernel needs to be
trusted

Kurt Mehlhorn 19/22

Intro Examples Advantages Universality Verification Summary

Who Checks the Checker?
How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

formal mathematics

proof are
machine-checked

only kernel needs to be
trusted

Kurt Mehlhorn 19/22

Intro Examples Advantages Universality Verification Summary

Who Checks the Checker?
How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

formal mathematics

proof are
machine-checked

only kernel needs to be
trusted

definition disjoint-edges :: (α, β) pre-graph ⇒ β ⇒ β ⇒ bool where
disjoint-edges G e1 e2 = (

start G e1 6= start G e2 ∧ start G e1 6= target G e2 ∧
target G e1 6= start G e2 ∧ target G e1 6= target G e2)

definition matching :: (α, β) pre-graph ⇒ β set ⇒ bool where
matching G M = (

M ⊆ edges G ∧
(∀e1 ∈ M. ∀e2 ∈ M. e1 6= e2 −→ disjoint-edges G e1 e2))

definition edge-as-set :: β ⇒ α set where
edge-as-set e ≡ {tail G e, head G e}

lemma matching disjointness:
assumes matching G M
assumes e1 ∈ M assumes e2 ∈ M assumes e1 6= e2
shows edge-as-set e1 ∩ edge-as-set e2 = {}
using assms
by (auto simp add: edge-as-set def disjoint-edges def matching def)

Kurt Mehlhorn 19/22

Intro Examples Advantages Universality Verification Summary

What do we Formally Verify and How?
Edmonds’ theorem

Checker always halts and either rejects or accepts.

Checker accepts a triple (G,M, `) iff is satisfies the
assumptions of Edmonds’ theorem.

we prove Edmonds’ theorem in Isabelle

we translate checkers from C to I-Monads with AutoCorres
(NICTA)

I-Monads is a programming language defined in Isabelle

we prove items 2 and 3 for the resulting I-Monads program in
Isabelle

since NICTA-tools are verified, this verifies the C-code of the
checker

Kurt Mehlhorn 20/22

Intro Examples Advantages Universality Verification Summary

What do we Formally Verify and How?
Edmonds’ theorem

Checker always halts and either rejects or accepts.

Checker accepts a triple (G,M, `) iff is satisfies the
assumptions of Edmonds’ theorem.

we prove Edmonds’ theorem in Isabelle

we translate checkers from C to I-Monads with AutoCorres
(NICTA)

I-Monads is a programming language defined in Isabelle

we prove items 2 and 3 for the resulting I-Monads program in
Isabelle

since NICTA-tools are verified, this verifies the C-code of the
checker

Kurt Mehlhorn 20/22

Intro Examples Advantages Universality Verification Summary

Formal Verification: Summary

Formal Instance Correctness
If a formally verified checker accepts a triple (x , y ,w),

we have a formal proof that y is the correct output for input x .

a high level of trust (only Isabelle kernel needs to be trusted)

a way to build large libraries of trusted algorithms
Alkassar/Böhme/M/Rizkallah: Verification of Certifying Computations, JAR 2014

Noshinski/Rizkallah/M: Verification of Certifying Computations through AutoCorres and Simpl,
NASA Formal Methods Symposium 2014

Kurt Mehlhorn 21/22

Intro Examples Advantages Universality Verification Summary

Summary
Only certifying algs are good algs
Certifying algs have many advantages over
standard algs:

– every run is a test
– notice when they erred
– can be relied on without knowing code
– are a way to computation as a service

Formal verification of checkers and formal
proof of witness property are feasible

Most programs in the LEDA system are
certifying.

When you design your next algorithm,
make it certifying.

Kurt Mehlhorn 22/22

Intro Examples Advantages Universality Verification Summary

Summary
Only certifying algs are good algs
Certifying algs have many advantages over
standard algs:

– every run is a test
– notice when they erred
– can be relied on without knowing code
– are a way to computation as a service

Formal verification of checkers and formal
proof of witness property are feasible

Most programs in the LEDA system are
certifying.

When you design your next algorithm,
make it certifying.

Kurt Mehlhorn 22/22

Intro Examples Advantages Universality Verification Summary

Summary
Only certifying algs are good algs
Certifying algs have many advantages over
standard algs:

– every run is a test
– notice when they erred
– can be relied on without knowing code
– are a way to computation as a service

Formal verification of checkers and formal
proof of witness property are feasible

Most programs in the LEDA system are
certifying.

When you design your next algorithm,
make it certifying.

Kurt Mehlhorn 22/22

Intro Examples Advantages Universality Verification Summary

Summary
Only certifying algs are good algs
Certifying algs have many advantages over
standard algs:

– every run is a test
– notice when they erred
– can be relied on without knowing code
– are a way to computation as a service

Formal verification of checkers and formal
proof of witness property are feasible

Most programs in the LEDA system are
certifying.

When you design your next algorithm,
make it certifying.

Kurt Mehlhorn 22/22

Intro Examples Advantages Universality Verification Summary

Summary
Only certifying algs are good algs
Certifying algs have many advantages over
standard algs:

– every run is a test
– notice when they erred
– can be relied on without knowing code
– are a way to computation as a service

Formal verification of checkers and formal
proof of witness property are feasible

Most programs in the LEDA system are
certifying.

When you design your next algorithm,
make it certifying.

Kurt Mehlhorn 22/22

	Intro
	Examples
	Advantages
	Universality
	Verification
	Summary

