

Selfish Routing

Price of Anarchy and Coordination Mechanisms

Kurt Mehlhorn

joint work with Spyros Angelopoulos, Giorgos Christodoulou, and Evangelia Pyrga

Max Planck Institute for Informatics and Saarland University

September 20, 2010

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

Outline

Introduction

Price of Anarchy

Question

Answer?

Theorem

Construction

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
•0000	000	000	0000	00	0000000

Price of Anarchy and Coordination Mechanisms

Global Optimum versus Selfish Behavior

consider a situation with many independent agents, e.g., traffic

Nash equilibrium = each agent optimizes its own fate

Global optimum = a solution of minimum cost

```
\begin{array}{l} \mbox{Price of Anarchy} = \max \frac{\mbox{Cost of a Nash Equilibrium}}{\mbox{Cost of Global Optimum}} \\ \mbox{Koutsoupias/Papadimitriou (99)} \end{array}
```

Coordination Mechanism = increase of costs that makes selfish agents behave differently

	IntroductionPrice of Anarch○●○○○○○○	ny Question	Answer?	Theorem 00	Construction
--	-------------------------------------	-------------	---------	---------------	--------------

Routing

Basic Notation I

- G = (V, E), a network, s = source, t = sink
- want to send r units of flow from s to t
- f = a flow of rate r
- *f_e* = flow across edge e

The cost of a flow

$$C(f) = \sum_{e} \text{cost of } e \text{ at flow } f_e \cdot f_e$$

Observe: Cost (latency) of an edge depends on flow across it

|--|

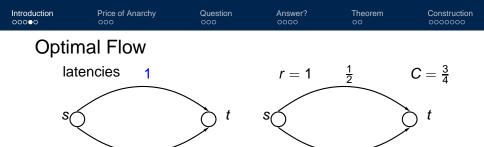
Routing

Basic Notation II

- $l_e(x)$ = latency (cost) of *e* as a function of flow over *e*
- affine cost functions: $\ell_e(x) = a_e x + b_e$ with $a_e \ge 0$ and $b_e \ge 0$

The cost of a flow

$$C(f) = \sum_{e} \ell_{e}(f_{e})f_{e}$$

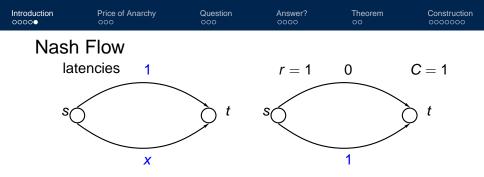


- cost of upper link(x) = 0 · x + 1, cost of lower link(x) = 1 · x + 0
- $f^* = f^*(r)$ = optimum flow for rate r = flow of minimum cost
- here: $C(f^*) = 1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$

X

- opt-flow minimizes $f_1 \cdot f_1 + 1 \cdot f_2$ subject to $r = f_1 + f_2$, $f_i \ge 0$ marginal costs are identical; here $\frac{d}{dx}x^2|_{x=1/2} = \frac{d}{dx}x|_{x=1/2}$
- selfish agents will deviate from optimum flow

 $\frac{1}{2}$



Nash flow = no gain by deviating infinitesimally, i.e., all used edges have the same latency

•
$$f^N = f^N(r) = Nash$$
 flow for rate r

• here: $C(f^N) = 1 \cdot 0 + 1 \cdot 1 = 1$

informatil

Price of Anarchy

$$PoA = \max_{r>0} \frac{C(f^N(r))}{C(f^*(r))} \ge \frac{C(f^N(1))}{C(f^*(1))} = \frac{1}{3/4} = \frac{4}{3}$$

7/26

Kurt Mehlhorn

Introduction 00000	Price of Anarchy ●oo	Question 000	Answer?	Theorem 00	Construction
Rem	arks				

- $C(f^N(r))$ and $C(f^*(r))$ are piecewise quadratic functions in r
- PoA is quotient of piecewise quadratic functions in r

Introduction
○○○○Price of Anarchy
O●○Question
QuestionAnswer?
O●○Theorem
O●○Construction
O●○

Roughgarden/Tardos (02): aff. costs, $PoA \le 4/3$

proof for two links: assume Nash and Opt both use both links let $L = \ell_1(f_1^N) = \ell_2(f_2^N)$ and assume $f_1^* \le f_1^N$

$$\begin{split} C^{N} - C^{*} &= L(f_{1}^{N} + f_{2}^{N}) - \ell_{1}(f_{1}^{*})f_{1}^{*} - \ell_{2}(f_{2}^{*})f_{2}^{*} \\ &= L(f_{1}^{*} + f_{2}^{*}) - \ell_{1}(f_{1}^{*})f_{1}^{*} - \ell_{2}(f_{2}^{*})f_{2}^{*} \\ &= \left(\ell_{1}(f_{1}^{N}) - \ell_{1}(f_{1}^{*})\right)f_{1}^{*} + \left(\ell_{2}(f_{2}^{N}) - \ell_{1}(f_{2}^{*})\right)f_{2}^{*} \\ &\leq \left(\ell_{1}(f_{1}^{N}) - \ell_{1}(f_{1}^{*})\right)f_{1}^{*} \\ &\leq \frac{\ell_{1}(f_{1}^{N})f_{1}^{N}}{4} \leq \frac{C^{N}}{4} \end{split}$$

and hence $\ (1-rac{1}{4})C^N \leq C^*$. Thus $C^N \leq rac{4}{3}C^*$.

 Introduction
 Price of Anarchy
 Question
 Answer?
 Theorem
 Construction

 0000
 0●0
 000
 000
 000
 000
 0000
 000000

Roughgarden/Tardos (02): aff. costs, $PoA \le 4/3$

proof for two links: assume Nash and Opt both use both links let $L = \ell_1(f_1^N) = \ell_2(f_2^N)$ and assume $f_1^* \le f_1^N$

$$\begin{split} C^{N} - C^{*} &= L(f_{1}^{N} + f_{2}^{N}) - \ell_{1}(f_{1}^{*})f_{1}^{*} - \ell_{2}(f_{2}^{*})f_{2}^{*} \\ &= L(f_{1}^{*} + f_{2}^{*}) - \ell_{1}(f_{1}^{*})f_{1}^{*} - \ell_{2}(f_{2}^{*})f_{2}^{*} \\ &= \left(\ell_{1}(f_{1}^{N}) - \ell_{1}(f_{1}^{*})\right)f_{1}^{*} + \left(\ell_{2}(f_{2}^{N}) - \ell_{1}(f_{2}^{*})\right)f_{2}^{*} \\ &\leq \left(\ell_{1}(f_{1}^{N}) - \ell_{1}(f_{1}^{*})\right)f_{1}^{*} \\ &\leq \frac{\ell_{1}(f_{1}^{N})f_{1}^{N}}{4} \leq \frac{C^{N}}{4} \end{split}$$
 next slide.

and hence $(1-\frac{1}{4})C^N \leq C^*$. Thus $C^N \leq \frac{4}{3}C^*$.

 Introduction
 Price of Anarchy
 Question
 Answer?
 Theorem
 Construction

 0000
 0●0
 000
 0000
 000
 0000
 00000

Roughgarden/Tardos (02): aff. costs, $PoA \le 4/3$

proof for two links: assume Nash and Opt both use both links let $L = \ell_1(f_1^N) = \ell_2(f_2^N)$ and assume $f_1^* \le f_1^N$

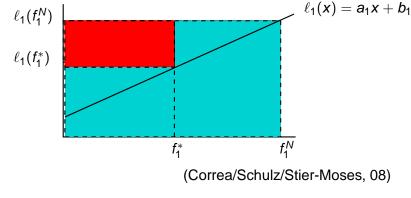
$$\begin{split} C^{N} - C^{*} &= L(f_{1}^{N} + f_{2}^{N}) - \ell_{1}(f_{1}^{*})f_{1}^{*} - \ell_{2}(f_{2}^{*})f_{2}^{*} \\ &= L(f_{1}^{*} + f_{2}^{*}) - \ell_{1}(f_{1}^{*})f_{1}^{*} - \ell_{2}(f_{2}^{*})f_{2}^{*} \\ &= \left(\ell_{1}(f_{1}^{N}) - \ell_{1}(f_{1}^{*})\right)f_{1}^{*} + \left(\ell_{2}(f_{2}^{N}) - \ell_{1}(f_{2}^{*})\right)f_{2}^{*} \\ &\leq \left(\ell_{1}(f_{1}^{N}) - \ell_{1}(f_{1}^{*})\right)f_{1}^{*} \\ &\leq \frac{\ell_{1}(f_{1}^{N})f_{1}^{N}}{4} \leq \frac{C^{N}}{4} \end{split}$$
 next slide.

and hence $(1-\frac{1}{4})C^N \leq C^*$. Thus $C^N \leq \frac{4}{3}C^*$.

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

The Key Inequality

$$\left(\ell_1(f_1^N) - \ell_1(f_1^*)\right) f_1^* \le \frac{\ell_1(f_1^N) f_1^N}{4}$$



Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	•00	0000	00	0000000

The Question

Summary

For affine costs, the price of anarchy can be as large as 4/3, but is never larger.

Question

Can we reduce the price of anarchy by a coordination mechanism? In particular, by taxes or tolls? In other words

- underlying network is unchanged
- we increase the cost (latency) of some edges.
- this leads to a change of behavior of selfish agents
- such that total cost goes down
- although cost of new Nash flow is computed with respect to increased costs!!!!

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

Question rephrased

Can making edges more expensive reduce the overall cost by leading to "better" behavior of selfish agents?

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

Engineered Price of Anarchy (ePoA)

- replace ℓ_e by $\hat{\ell}_e$ with $\hat{\ell}_e(x) \ge \ell_e(x)$ for all x.
- Ĉ^N = Ĉ^N(r) = cost of Nash flow of rate *r* for ℓ̂ computed with respect to ℓ̂
 Are there ℓ̂ such that for all *r*

$$ePoA(r) = \frac{\hat{C}^N(r)}{C^*(r)} < \frac{4}{3}?$$

 Observe: Ĉ^N is with respect to increased costs, C* is with respect to original costs. We want a solution that works for all *r*.

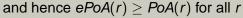
IntroductionPrice of Anarchy00000000	Question 000	Answer? ●000	Theorem 00	Construction
--------------------------------------	-----------------	-----------------	---------------	--------------

The Answer is clearly NO

Obviously, increasing edge costs can never decrease total cost

A Negative Result

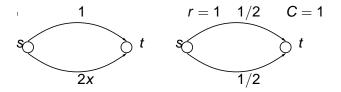
If the $\hat{\ell}$ are continuous, then $\hat{C}^N(r) \ge C^N(r)$ for all r



Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

A Non-Solution: Marginal Cost Pricing

$$\hat{\ell}(x) = rac{d}{dx}\ell(x)x = 2a_ex + b_e$$



Nash flow for marginal cost latencies = optimal flow for original latencies

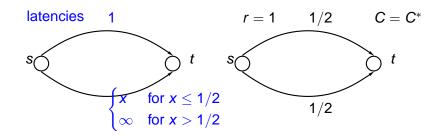
■ but
$$\hat{C}^{N}(1) = 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 1$$
 and hence *ePoA*(1) ≥ 4/3

• $\hat{C}^{N}(\epsilon) = 2\epsilon^{2} = 2C^{*}(\epsilon)$ and hence $ePoA(\epsilon) = 2$.

max planck institut informatik

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

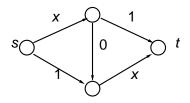
The Answer might be Yes



- Nash flow = Optimal flow for all r and
- $\hat{C}^N = C^*$ for all r
- Thus ePoA = 1

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

Braess' Paradox



• At rate r = 1,

- Opt routes 1/2 each along upper and lower path: $C^*(1) = 3/2$
- Nash routes 1 along path $x \rightarrow 0 \rightarrow x$: $C^N(1) = 2$
- − deleting the edge of cost zero, i.e., setting its cost to ∞, makes the optimum flow a Nash flow, i.e., $\hat{C}^{N}(1) = 3/2$
- generally, $\hat{\ell}(x) = 0$ for $x \leq 2/3$ and ∞ ow

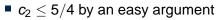
In Stuttgart, after investments into the road network in 1969, the traffic situation did not improve until a section of newly-built road was closed for traffic again.

Introduction 00000	Price of Anarchy	Question 000	Answer?	Theorem ●○	Construction

A Theorem

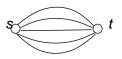
For any network of *k* parallel links, there are modified latency functions $\hat{\ell}_1$ to $\hat{\ell}_k$ with $\hat{\ell}_i \ge \ell_i$ such that

$$rac{\hat{C}^N(r)}{C^*(r)} \leq c_k < rac{4}{3} \quad ext{for all } r.$$



• $c_2 \leq 1.192$ by an involved argument

•
$$c_k \rightarrow 4/3$$
 for $k \rightarrow \infty$



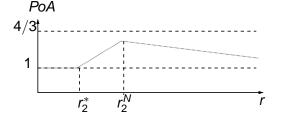
	Price of Anarchy	Question 000	Answer? 0000	Theorem ○●	Construction
--	------------------	-----------------	-----------------	---------------	--------------

Open Problems

- improved upper bounds
 - improve upper bound for c_2 ?
 - is there a construction with $c_k \le c < 4/3$ for all k
- lower bounds: we know $c_2 \ge 1.02$.
- general networks instead of parallel links
- more general cost functions, e.g., polynomial cost functions
- atomic flow, i.e., flow consists of units of fixed size instead of infinitesimal units

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	•000000

Two Links, $b_1 < b_2$



$$PoA \leq rac{4+4R}{3+4R}$$

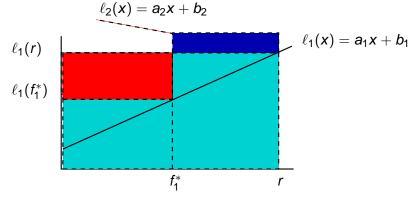
where
$$R = a_2/a_1$$

- Nash starts to use the second link at $r = r_2^N = \frac{b_2 b_1}{a_1}$
- worst-case PoA is at this rate, flows are:

Nash:
$$(r, 0)$$
 Opt: $(f_1^*, f_2^*) = (f_1^*, r - f_1^*)$

The Key Inequality Revised

flows are: Nash: (r, 0) Opt: $(f_1^*, f_2^*) = (f_1^*, r - f_1^*)$



Opt saves the red area, but pays the blue area. $\frac{\text{red}-\text{blue}}{\text{cvan}} \leq \dots$

Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	000000

Two Links: Engineered Price of Anarchy

$$PoA \leq rac{4+4R}{3+4R}$$
 where $R = rac{a_2}{a_1}$

The benign case: $R \ge 1/4$

Then $PoA \leq \frac{5}{4}$

We do nothing, i.e. $\hat{\ell}_i = \ell_i$ for all i = 1, 2.

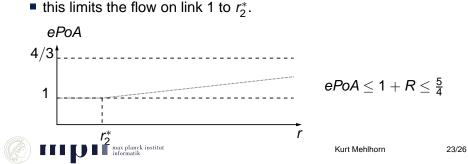
The non-benign case: R < 1/4

see next slide

Non-benign Case: $R = a_2/a_1 < 1/4$

- second link is much more efficient than first
- Nash is hurt since it uses second link only at r_2^N .
- we modify ℓ_1 as follows (ℓ_2 stays unchanged)

$$\hat{\ell}_1(x) = egin{cases} \ell_1(x) & ext{ for } x \leq r_2^* \ \infty & ext{ for } x > r_2^* \end{cases}$$



Introduction	Price of Anarchy	Question	Answer?	Theorem	Construction
00000	000	000	0000	00	0000000

2 Links: Advanced Solution

- in the non-benign case (with modified threshold)
- we modify ℓ_1 as follows (ℓ_2 stays unchanged)

$$\hat{\ell}_1(x) = egin{cases} \ell_1(x) & ext{ for } x \leq x_1 ext{ or } x > x_2 \ \ell_1(x_2) & ext{ for } x_1 < x \leq x_2 \end{cases}$$

this forces Nash to use second link early, but also allows Nash to use both links at high rates

Introduction Price of Anarchy Question Answer? Theorem Constru- 00000 000 000 000 000 000 0000	
---	--

k Links

- highest link is unchanged
- consider any link which is not the highest:
- if there is no higher link that is much more efficient, we leave it unchanged
- if there is a higher link that is much more efficient, we modify the cost function such that the higher link is used earlier.

Introduction 00000	Price of Anarchy	Question 000	Answer?	Theorem 00	Construction ○○○○○○●

Conclusion

- first study of coordination mechanisms for routing games
- we show that coordination mechanisms improve price of anarchy for networks of parallel links.
- many open problems
 - improved upper bounds
 - what is c₂?
 - is there a construction with $c_k < 4/3 \epsilon$ for all k
 - lower bounds: is ePoA > 1 for the case of two links?
 - general networks instead of parallel links
 - more general cost functions, e.g., polynomial cost functions
 - atomic flow, i.e., flow consists of units of fixed size instead of infinitesimal units

