
PI Informatik Kurt Mehlhorn

Implementing Geometric Algorithms

LEDA and CGAL

Susan Hert Kurt Mehlhorn

Max-Planck-Institute for Computer Science

Saarbrücken

Germany

PI Informatik Kurt Mehlhorn

Overview

• Introduction (20 min)

• Systems I: LEDA and CGAL (20 min)

• Demos (30 min)

• Arithmetic and Exact Kernels (60 min)

• Degeneracy and Algorithmic Issues (75 min)

• Simple Algorithms (randomized algs) (45 min)

• Result Checking (30 min)

• Systems II and Summary

PI Informatik Kurt Mehlhorn

The Voronoi Diagram of Line Segments

Voronoi diagram = points
with at least two nearest
neighbors

VD consists of parts of

• perpendicular bisectors
of points, and

• angular bisectors of
lines, and

• parabolas

PI Informatik Kurt Mehlhorn

Some Remarks

• About 10 years ago, I asked a student to implement an algorithm for Voronoi
diagrams of line segments

– he was a good student, has a PhD by now

• we found several algs in the literature

– divide and conquer

– sweep

– randomized incremental

• all algs use a certain geometric primitive: the incircle test

PI Informatik Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

• v is defined by l1, l2, and p, i.e., dist(v, p) = dist(v, l1) = dist(v, l2)

PI Informatik Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

• v is defined by l1, l2, and p, i.e., dist(v, p) = dist(v, l1) = dist(v, l2)

PI Informatik Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

l3

• v is defined by l1, l2, and p, i.e., dist(v, p) = dist(v, l1) = dist(v, l2)

• Add l3. Is v still a Voronoi vertex?

• If dist(v, p) < dist(v, l3), YES

PI Informatik Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v

l3

• v is defined by l1, l2, and p, i.e., dist(v, p) = dist(v, l1) = dist(v, l2)

• Add l3. Is v still a Voronoi vertex?

• If dist(v, p) = dist(v, l3), YES, BUT...

PI Informatik Kurt Mehlhorn

A Typical Test: The Incircle Test

l1

l2

p

v
l3

• v is defined by l1, l2, and p, i.e., dist(v, p) = dist(v, l1) = dist(v, l2)

• Add l3. Is v still a Voronoi vertex?

• If dist(v, p) > dist(v, l3), NO

PI Informatik Kurt Mehlhorn

Experiences

• None of the papers discussed the case YES, BUT...

– They all started with: We assume our input to be in general position.

– We discuss this issue in the section on Degeneracy

• None of the papers mentioned that it might be difficult to make the case
distinction, i.e., to

compare dist(v, p) and dist(v, l3) .

PI Informatik Kurt Mehlhorn

Algebraic Formulation

• li: ai · x+ bi · y + ci = 0, 1 ≤ i ≤ 3

• p = (0, 0)

xv =
int+

√
2c1c2(

√
N + C)

√
N − (a1a2 + b1b2)

yv =
int+

√
2c1c2(

√
N − C)

√
N − (a1a2 + b1b2)

where

N = N1 ·N2 Ni = a2
i + b2i C = a1a2 − b1b2

x2
v + y2

v ?
(a3 · xv + b3 · yv + c3)2

a2
3 + b23

Experiences

• None of the papers discussed the case YES, BUT...

• None of the papers mentioned that it might be difficult to make the case
distinction, i.e., to

compare dist(v, p) and dist(v, l3) .

– we implemented the algorithm using floating point arithmetic

– and found a few examples where the program worked

– cf. section on arithmetic and exact kernels

• None of the papers mentioned that alg is complex

– cf. section on simple algorithms

• None of the papers mentioned that implementors make mistakes

– cf. section on result checking

• We had nothing to build on

– cf. section on systems (LEDA and CGAL).

PI Informatik Kurt Mehlhorn

Overview

• Introduction (20 min)

• Systems I: LEDA and CGAL (20 min)

• Demos (30 min)

• Arithmetic and Exact Kernels (60 min)

• Degeneracy and Algorithmic Issues (75 min)

• Simple Algorithms (randomized algs) (45 min)

• Result Checking (30 min)

• Systems II and Summary

Message of Tutorial

• Computational Geometry has addressed implementation issues over the past
10 years and

• has found (partial) solutions

CGAL and LEDA make the solutions available to YOU

PI Informatik Kurt Mehlhorn

What is LEDA?

• A library of combinatorial and geometric data types and algorithms

– covers a large part of combinatorial and geometric computing
(AHU, CLR, Mehlh, PS, Ko, Ki, BKOS, O’Rourke)

– easy to use

– extendible

– correct

– efficient

• provides algorithmic intelligence for applications in GIS, VLSI-design,
scheduling, traffic planning, solid modelling, graphics, facility planning,
computational biology, . . .

• a platform on which to build applications

• a tool for teaching algorithms and algorithm engineering

• extended by AGD, LEDA-SM, CGAL

PI Informatik Kurt Mehlhorn

Modules in LEDA

• Basic Data Types: random source, stack, queue, map, list, set, dictionary,
priority queue, . . .

• Advanced Data Types: partition, sorted sequence, pq-trees, dynamic trees,
range trees, interval trees, segment trees, . . .

• Numbers: bigints, bigfloat, rationals, algebraic numbers, linear algebra

• Graphs and Graph Algorithms: graphs, node and edge arrays, iterators,
shortest paths, maximum flow, min cost flow, matching (weighted,
unweighted, bipartite, general), assignment, components and connectivity,
planarity, layout, . . .

• Exact Geometry Kernels: points, lines, circles, . . .

• Geometric Algorithms: polygons and boolean operations on polygons (2d),
convex hulls (dd), Delaunay diagrams (dd), Voronoi diagrams, sweep-line
method (2d), curve reconstruction . . .

• Visualization and I/O: windows, graphwin, geowin

PI Informatik Kurt Mehlhorn

Sample Applications

Application Algorithmic Intelligence

traffic planning
(Daimler-Chrysler)

graph algorithms, max
flow, shortest path

geographic information
systems, overlay of map
(MUS)

intersection of polygons,
point location

data mining
(Silicon Graphics)

data structures, graph al-
gorithms

VLSI-design
(Ford)

graph algorithms, Steiner
trees, scan-line algorithms

PI Informatik Kurt Mehlhorn

LEDA users

• academic users (= users that pay little)

– 1500 installations in more than 50 countries

– ≤ 50% of our users are in CS

– ≤ 20% of our users are in algorithms

• commercial users
MCI, USA; CAD Design, USA; Comptel, Finnland; France Telecom, Frankreich; E-Plus

Mobilfunk, Düsseldorf; Dolphin Software, Holland; ATR Telecommunications, Japan; Sun

Microsystems, USA; Mentor Graphics, USA; Siemens AG; Lufthansa Systems, Kelsterbach;

Daimler Benz, Berlin; Ford, USA; Aerospace, Muenchen; Silicon Graphics, USA; Digital

Equipment, USA; Sony Corporation, Japan; Dainippon Screen, Japan; Minolta, Japan;

Shinko, Japan; Chevron Petroleum, USA; Prediction Company, USA; Commerz Financial

Products, Frankfurt; IBM, Japan; and many others

PI Informatik Kurt Mehlhorn

Demos

• 3d-convex hulls: handles one- and two-dimensional input sets

• boolean operations on polygons

• Delaunay triangulations, Voronoi diagrams, curve reconstruction

• range queries

• additional demos: depending on time and audience

PI Informatik Susan Hert

Computational Geometry Algorithms Library

http://www.cgal.org

• ETH Zürich

• Freie Universität Berlin

• INRIA Sophia-Antipolis

• MPI Saarbrücken

• Tel Aviv University

• Universität Trier

• Utrecht University

ESPRIT projects CGAL and GALIA.

PI Informatik Susan Hert

Design Goals

• Efficiency

• Ease of use

Segment_2 s1(Point_2(0,0), Point_2(1,2));

Segment_2 s2(Point_2(1,0), Point_2(0,1));

if (do_intersect(s1, s2)) ...

• Correctness

– produce the specified result

– produce results robustly

• Flexibility

– more than one algorithm

– more than one kind of input and/or output

PI Informatik Susan Hert

Geometry Kernels

Provide:

• classes for elementary geometric objects in 2D, 3D, (and dD soon):

Point 2, Direction 2, Isocuboid 3, Sphere 3, ...

• predicates:

orientation 2, compare x, side of bounded sphere, ...

• intersection computation and detection

do intersect, intersect

• distance computation and comparison

squared distance, cmp signed dist to plane, ...

PI Informatik Susan Hert

Geometric Data Structures

• Search Structures

• Planar Maps

• Triangulations

• Halfedge Data Structure

• Polyhedral Surfaces

• ...

PI Informatik Susan Hert

Geometric Algorithms

• Convex Hulls

• Voronoi Diagrams

• Point Location

• Optimization

• ...

• Alpha Shapes

• Delaunay Triangulations

• Nearest Neighbor Queries

• Polygon Partitioning

• ...

PI Informatik Susan Hert

Support Library

• Number Types: Interval arithmetic, Quotient, Filtered exact, ...

• Visualization: Geomview, LEDA Windows, GeoWin, ...

• Generators: polygons, convex sets, points in sphere, points on sphere, ...

• STL Extensions: circulators, creators, in-place lists, ...

• ...

PI Informatik Susan Hert

Algorithms & Data Structures

(Kernel +)
Traits

Representation

Arithmetic

Generic Programming

PI Informatik Susan Hert

Generic Algorithm Example

Point

Left_turn

Less_xy

Convex Hull

PI Informatik Susan Hert

Geometry Kernels
Parameterized by a number type

Cartesian (x, y)

Homogeneous (hx, hy, hw)

Number type may be, for example:
Filtered exact, leda rational, leda real, ...

PI Informatik Susan Hert

Users

• Users from academia and industry

• Users from graphics, vision, GIS, robotics, CAD/CAM, Aerospace, ...

• Over 1500 downloads of latest release

• Over 700 members of cgal-discuss-l mailing list

PI Informatik Kurt Mehlhorn

Arithmetic and Exact Geometry Kernels

• Exact geometry kernels provide software objects that behave like their
mathematic counterparts

• LEDA and CGAL provide exact and efficient kernels for “rational” geometry

• “rational geometry” = only +, − ×, and /.

• rational geometry carries a long way:

– points, lines, hyperpoints, hyperplanes, circles,

– convex hulls, triangulations, Delaunay and Voronoi, geometric
optimization, polygons, geometric search structures,

• non-rational geometry is evolving

• exact kernels are based on number types integer , rational , bigfloat ,
filtered integer , real ,

PI Informatik Kurt Mehlhorn

A High-Level View of Geometric Computing

• takes numerical data, e.g., a set of n points given by their Cartesian
coordinates.

• computes a combinatorial object, e.g., the Voronoi diagram or the convex
hull, defined by the objects.

• branches based on geometric predicates, e.g., orientation(p, q, r) or
in circle(p, q, r, s).

• tests are usually not independent

• may reach “impossible” states, if predicates are evaluated incorrectly, e.g.,

– a point outside a polygon sees no edge of the polygon

– a point outside a polygon sees all edges of the polygon

• algorithm will crash or compute nonsense.

PI Informatik Kurt Mehlhorn

Boolean Operations on Polygons

• construct a regular n-gon P , (or cylinder)

• obtain Q from P by a rotation by α degrees about its center,

• compute the union of P and Q (= a 4n gon).

System n α time ouput

ACIS 1000 1.0e-4 5 min correct

ACIS 1000 1.0e-5 4.5 min correct

ACIS 1000 1.0e-6 30 sec problem too difficult

Microstation95 100 1.0e-2 2 sec correct

Microstation95 100 0.5e-2 3 sec incorrect answer

Rhino3D 200 1.0e-2 15sec correct

Rhino3D 400 1.0e-2 – CRASH

CGAL/LEDA 5000 6.175e-06 30 sec correct

CGAL/LEDA 5000 1.581e-09 34 sec correct

CGAL/LEDA 20000 9.88e-07 141 sec correct

PI Informatik Kurt Mehlhorn

Floating Point Arithmetic Destroys Geometry

The intersection point of two lines lies on both lines.

• create four points a, b, c, and d with random integer coordinates in [0 .. 104]

• create the lines l1(a, b) and l2(c, d)

• increment count if l1 and l2 are parallel or p = l1 ∩ l2 lies on l1

• repeat experiment 105 times

count = 0; max_coord = 10000;

for (i = 0; i < 100000; i++)

{ point a, b, c, d, p;

random_point(a,max_coord); // same for b, c, and d

line l1(a,b), l2(c,d); // create lines

if (!l1.intersection(l2,p) || l1.contains(p)) count++;

// if l1 and l2 are parallel or intersection point lies on l1

}

cout << count; // outputs 33178

PI Informatik Kurt Mehlhorn

and with LEDA’s Exact Geometry Kernel

count = 0; max_coord = 10000;

for (i = 0; i < 100000; i++)

{ rat_point a, b, c, d, p; // !!!!

random_point(a,max_coord);

rat_line l1(a,b), l2(c,d); // !!!!

if (!l1.intersection(l2,p) || l1.contains(p)) count++;

}

cout << count; // outputs 100000

• CGAL’s and LEDA’s exact geometry kernel guarantee that software
objects behave like their mathematical counterparts

• overhead in running time is a small constant factor

PI Informatik Kurt Mehlhorn

Exact Evaluation of Predicates

• amounts to computing the sign of expressions, e.g.,

orientation(p, q, r) = sign

∣∣∣∣∣∣∣∣
1 1 1

xp xq xr

yp yq yr

∣∣∣∣∣∣∣∣
• sign evaluation

– for rational expressions
∗ floating point filter
∗ exact evaluation with rational arithmetic as fall back

– for algebraic expressions:
∗ separation bounds
∗ sign test = numerical evaluation + separation bounds

• high level predicates:

– which face contains the point p?

PI Informatik Kurt Mehlhorn

Floating Point Filter

To determine sign(E)

• evaluate with floating point arithmetic: Ẽ

• compute an error bound B

• if (|Ẽ| > B) return the sign of Ẽ

• otherwise, evaluate E with exact arithmetic and return the sign obtained

Insight: sign determination is possible with approximate value computation

• all geometric predicates in LEDA and CGAL are filtered in this way.

• generation of filters is automated (expression compiler by Stefan Funke)

• experience: exact evaluation is rarely needed

PI Informatik Kurt Mehlhorn

Error Bound Computation

• we use a clever variant of interval arithmetic

• B = 2−53 · indE ·mesE
• indE is precomputed from the structure of E.

• mesE is computed on-line

E Ẽ mesE indE

a, integer fl(a) |fl(a)| 1

a, float int fl(a) |fl(a)| 0

A+B Ã⊕ B̃ mesA ⊕mesB 1 + max(indA, indB) · δ
A−B Ãª B̃ mesA ⊕mesB 1 + max(indA, indB) · δ
A ·B Ã¯ B̃ mesA ¯mesB (*)

(∗) = 1 + (indA + indB + 2−53 · indA · indB) · δ δ = 1 + 2−53

• standard interval arithmetic is an alternative, slightly slower

PI Informatik Kurt Mehlhorn

Efficacy of Floating Point Filter

Orientation Side of circle

d number exact % number exact %

8 130431 0 0.00 64176 0 0.00

10 147814 0 0.00 77409 136 0.18

12 149233 0 0.00 78693 105 0.13

22 149057 0 0.00 78695 113 0.14

32 149059 0 0.00 78695 115 0.15

42 149059 0 0.00 78695 115 0.15

∞ 149059 0 0.00 78695 115 0.15

Delaunay diagram computation for 10000 random points in the unit square.

d = precision (number of binary places) used for the Cartesian coordinates

number of tests, number (percentage) of tests requiring exact arithmetic

PI Informatik Kurt Mehlhorn

Efficiency of Floating Point Filter

d Float kernel Rat kernel RK without filter

8 2.58 3.59 16.33

10 2.8 3.98 18.36

12 2.83 4.04 18.63

22 2.82 4.02 20.51

32 2.86 3.96 20.77

42 2.83 4.01 26.02

∞ 2.83 3.99 33.2

10000 random points in the unit square

d = the precision (number of binary places) used for the Cartesian coordinates

running time in seconds for floating point kernel, for rational kernel with floating
point filter, for rational kernel without floating point kernel

PI Informatik Kurt Mehlhorn

Sign Tests of Algebraic Expressions

determine the sign of algebraic numbers given by algebraic expression dags

Examples:

• determine sign of
√

17 +
√

21−
√√

17 +
√

21 + 2
√

361

• compare 17+
√

21
19 and 18+

√
22

20

Motivation

• evaluation of geometric predicates (incircle, side-of) amounts to sign
determination

• non-linear objects and distances lead to expressions involving roots

• want a general method for evaluating geometric predicates

• Alternative: methods for specific predicates

BMS (ESA 94), Devillers/Fronville/Mourrain/Teillaud (SoCG 2000))

PI Informatik Kurt Mehlhorn

The Intersecting Circular Arcs Demo

Input: A set of circular arcs

• circular arcs are parts of circles

• endpoints = intersections between circles and lines

Output: The arrangement defined by the arcs

The Separation Bound Approach

• a separation bound for a class of expressions is an easily computable function
sep mapping expressions into positive real numbers such that

for every expression E: val(E) 6= 0 =⇒ |val(E)| ≥ sep(E)

• separation bound yields sign test based on numerical computation

ε← 1;
while (true)
{ compute an approximation Ẽ with |val(E)− Ẽ| < ε;

if (|Ẽ| ≥ ε) return sign(Ẽ);
if (ε < sep(E)/2) return “sign is zero”; // since |val(E)| ≤ ε+ ε < sep(E)
ε← ε/2;

}

• worst case complexity is determined by separation bound:

maximal precision required is logarithm of separation bound (bit bound)

• easy cases are decided quickly (a big plus of the separation bound approach)

PI Informatik Kurt Mehlhorn

The Separation Bound Approach

• a separation bound for a class of expressions is an easily computable function
sep mapping expressions into positive real numbers such that

for every expression E: val(E) 6= 0 =⇒ |val(E)| ≥ sep(E)

• Mignotte (82), Canny (87), Yap/Dube (95), BFMS (97), Scheinermann (00),
Li/Yap (01), BFMS (01)

• separation bound approach to sign determination is used in

– number type Expr in the CORE-package (Dube/Li/Yap)

– number type real in LEDA

PI Informatik Kurt Mehlhorn

The BFMS-bound for Division-Free Expressions

Let E be an expression with integer operands and operators +, −, ∗ and √ .
Define

• u(E) = value of E after replacing − by +.

• k(E) = number of distinct square roots in E.

Then

E = 0 or u(E)1−2k(E) ≤ |E| ≤ u(E)

A Consequence

If E 6= 0 then one of the first 2k(E) log u(E) binary places of E is nonzero and
hence determines its sign.

PI Informatik Kurt Mehlhorn

Example I

x = some integer with L binary places

A = (
√
x+ 1 +

√
x) · (

√
x+ 1−

√
x)

B = A− 1

Then

u(B) ≈ u(A) ≈ 4x and thus log u(B) = log u(A) ≈ 2 + L

and hence to decide whether B = 0 it suffices to look at the first

4L

binary places of B.

PI Informatik Kurt Mehlhorn

The LEDA Program Corresponding to Example I

The theorem is packaged in the LEDA data type real . It provides exact
arithmetic for arithmetic expressions involving square roots.

real x = ... some integer ...;

real sx = sqrt(x);

real sxp = sqrt(x+1);

real A = (sxp + sx) * (sxp - sx); // = 1

real B = A - 1; // = 0

cout << A.sign(); // 1

cout << B.sign(); // 0

If x has 100 binary places this takes less than .1 seconds. Run demo.

Reals have been used successfully in several geometric programs, e.g., Voronoi
diagrams of line segments, arrangements of circular arcs, . . .

PI Informatik Kurt Mehlhorn

Example 2

A =

√
. . .
√

(. . . (22)...)2 + 1− 2

To decide that A 6= 0 it suffices to look at the first 2k log 4 binary places of A.

Remark: First nonzero bit of A is about 2k places after binary point.

PI Informatik Kurt Mehlhorn

More Discussion

• k(E) = 0: E = 0 or E ≥ 1.

• The bound is almost sharp√
. . .
√

(. . . (22) . . .)2 + 1− 2

(4, ...)1−2k ≤ E ≤ 2−2k

• Our bound is always at least as good as the bounds by Mignotte (75) and
Canny (85) and sometimes much better.

For example, for the expression of the previous item:

our bound Canny’s bound

general k 2k log 4 2k · 4k

k = 10 2000 20 000 000

However, Canny’s bound also applies to more general situations.

Proof of BFMS-Bound for Division-Free Expressions

E = an expression, integral operands, operations +,−, ∗, k√ for integral k ≥ 2.

D(E) = product of the indices of the radical operations in E. (the index k
√

is k.)

u(E)

integer N |N |
E1 ± E2 u(E1) + u(E2)

E1 · E2 u(E1) · u(E2)

k
√
E1

k
√
u(E1)

Then val(E) = 0 or(
u(E)D(E)−1

)−1

≤ |val(E)| ≤ u(E).

• u(E) is an upper bound on the value of E and all its conjugates

• the product of val(E) times all its conjugates is an integer

(namely the constant coefficient of the minimal polynomial)

• thus

val(E) · u(E)D(E)−1 ≥ 1

PI Informatik Susan Hert

Algorithms vs. Implementations

Fact #1: Input to algorithms is quite often assumed to be void of degeneracies:

and many others . . .

overlapping objectscommon intersectioncollinear points

cocircular points vertex adjacencies

PI Informatik Susan Hert

Algorithms vs. Implementations

Fact #2: Input to programs that implement these algorithms is often NOT void
of degeneracies.

Result: Programs may produce

• incorrect results,

• imprecise results,

• or NO results (i.e., the program crashes),

which are generally unacceptable outcomes.

PI Informatik Susan Hert

Robust Algorithmic Approaches

• Treat each degenerate case separately.

• Perturb input to achieve general position .

• Reformulate general-position algorithms so degeneracies are not special .

• Assure topological consistency of geometric structures .

PI Informatik Susan Hert

Example: Walking through a Triangulation

Given:

• a triangulation

• a point P contained in a triangle ∆P

• a second point T

Find:

• the triangle ∆T containing T .

T
P

����

�
�
�
�

��

��
�
�
�
�

�� ���� ��
��
��
����

����

�
�
�
�

����

��
��
��
��
��

����

��
��
��
��

PI Informatik Susan Hert

General-Position Approach

∆e T

P�
�
�
�

��
��
��
��

���� �
�
�
�
�
�
�
�����

���� ���� �
�
�
��

�
�
�

����

��

��

��
��
��
����

��
��
��
��

• Assume no three points are collinear.

• Walk along segment s = PT maintaining the following invariants:

– Edge e is an edge whose relative interior is intersected by s.

– Triangle ∆ is incident to e and lies in the same halfspace as T with
respect to e.

PI Informatik Susan Hert

General-Position Algorithm

1. if T ∈ ∆P , done;

2. e = edge of ∆P intersected by s;

3. ∆ = other triangle incident to e;

4. while (T 6∈ ∆) {
e = other edge of ∆ intersected by s;
∆ = other triangle incident to e;
}

∆e T

P�
�
�
�

����

�� �
�
�
�
�
�
�
��

�
�
�

���� ���� ��
��
��
����

��
��
��
��

��
��
��
��

��

�
�
�
���

��
��
��

��

PI Informatik Susan Hert

Possible Problems

T is on an edge of the triangulation. s passes through a vertex

T
��
��
��
��

��
��

��

�
�
�
�

∆e
P
��
��
��
��

����

��
��
��
��
��
��
��
���

�
�
�

��

��

��

��
��
��
��

����

other edge?

other edge?

No problem. Change the test
T 6∈ ∆

to include the boundary of ∆:
T 6∈ ∆

Problem.
e = other edge of ∆ . . .

Which is the “other edge”?

PI Informatik Susan Hert

The Special Cases Approach

Change the algorithm to include the following:

If s passes through a vertex then . . .

If s contains an edge of the triangulation then . . .

Notice:

• Detailing all the special cases is generally difficult and leads to complicated
code.

• Difficulty of maintaining invariants of a general-position algorithm in the face
of degeneracies can lead to errors.

Conclusion: The special cases approach is generally not a good idea.

PI Informatik Susan Hert

A Randomized Approach

v∆

��
��
��
��

��

��
��
��
��

�
�
�
�

��
��
��
���

�
�
�

��

��

����

��

��

��

����

����

��
��
��
��

e
∆

P = (x , yrand rand) e

��
��
��
��

��

1. Choose starting point P at random from ∆P .

2. Run the general-position algorithm.

3. If a vertex v is crossed, restart at step 1.

PI Informatik Susan Hert

A Randomized Approach

Claim: With high probability a random choice of P will work.

Why?

• Each vertex eliminates a segment in ∆P

• Finite number of vertices

• ∆P has positive area and the segments have 0 area.

⇒ Almost all points in ∆P will work

Conclusion: Theoretical claim is true, but in practice . . . ???

PI Informatik Susan Hert

A Perturbation Approach

1. Move the input by an infinitesimal amount so the degeneracies disappear.

PP
T T

����

��

��

�
�
�
�����

�� �� ��
��
��
������

����

��
��
��
��

��

��
��

��

��

����

�
�
�
� �

�
�
�

��

�
�
�
�

�� �� �
�
�
���

����

�
�
�
�

��

��
��

��

��

2. Run the general-position algorithm on the perturbed input.

3. Extract the results for the original input.

PI Informatik Susan Hert

Valid Perturbations

Valid perturbations remove the 0 branches from the computation tree.

f
1

f
2

0
>0<0

<0 >0
0

• Each predicate in the computation tree is implemented as a function that
determines the sign of a polynomial.

• Instead of moving the input points, one actually need only “perturb” the
predicates that operate on the input.

PI Informatik Susan Hert

Perturbing a Predicate

P
e T��

��
��
����

��
����

��

V

Example: The orientation of V = (Vx, Vy) with respect to the directed line from
P = (Px, Py) to T = (Tx, Ty) is determined by evaluating sign(D):

D = det

1 1 1

Px Tx Vx

Py Ty Vy

PI Informatik Susan Hert

Perturbing a Predicate

For a small positive ε, create new points:

P ′ = (Px + πP (ε), Py + πP (ε))

T ′ = (Tx + πT (ε), Ty + πT (ε))

V ′ = (Vx + πV (ε), Vy + πV (ε))

Then the orientation predicate should determine sign(D′):

D′ = det

1 1 1

P ′x T ′x V ′x

P ′y T ′y V ′y

 = D + g(ε)

where g(ε) is a polynomial in ε.

PI Informatik Susan Hert

Perturbing a Predicate

Orientation of perturbed points determined by:

sign(D′) = sign(D + g(ε))

For sufficiently small ε, we have:

• for non-degenerate cases (D 6= 0)

sign(D′) = sign(D)

• for degenerate cases (D = 0)

sign(D′) = sign(first non-zero coefficent of g(ε))

Notice: ε does not actually appear in the computation.

PI Informatik Susan Hert

Perturbations – When Do They Work?

• The pertubation functions π(ε) must guarantee that

D′ 6= 0

– linear functions work with high probability

– choice of functions π(ε) is main difference among different perturbation
techniques

• When original program computes a continuous mapping from input to
output, pertubed computation computes correct result.

PI Informatik Susan Hert

Perturbations – The Costs

• When original mapping is not continuous, output may not be correct:

T
��
��
��
��

��

��
�
�
�
�

�
�
�
� ��

��
��
��
��

�
�
�
�

��

��
��
��
��

��

��
��
��
����

��
��

����
P

but one hopes it is close to correct.

• Sometimes significant postprocessing required to recover correct result for
original input .

• Evaluation of perturbed predicates involves more comparisons.

• Sometimes perturbing input makes problem more complicated .

PI Informatik Susan Hert

Perturbations – The Benefits

• General-position algorithm can be applied without modification.

• Rapid prototyping possibilities.

• For certain problems, a correct result is guaranteed even in the face of
degeneracies.

Conclusion: Perturbation is a powerful technique in certain circumstances.

PI Informatik Susan Hert

Refined Invariants Approach

Idea: Define invariants that can easily be maintained in the face of degeneracies.

e

P
e

����

���� ��
��
��
��
����

��
��
��
��

�
�
�
�

��

��
next

����

∆

��
��
��
��

Original Invariant: Edge e is an edge whose relative interior is intersected by s.

Problems:

• next e satisyfing this may not be and edge of ∆

• including endpoints of e in invariant means next e is not well defined

PI Informatik Susan Hert

Refined Invariants Approach

∆?

∆?
e T

��

�
�
�
�

��
��
��
��

����

�
�
�
�

���� ��
��
��
�� ��

Original Invariant: Triangle ∆ is incident to e and lies in the same halfspace as
T with respect to e.

Problem:

• when e and s overlap ∆ not well defined

PI Informatik Susan Hert

Refined Invariants

∆
e

T

P�
�
�
�

��
��
��
��

�
�
�
�

�� ����

�������� ���� ����
��
��
��
��

����

�
�
�
�

����

����
�
�
�
�

��

Maintain an oriented edge e and a triangle ∆ such that:

• ∆ is the triangle to the left of e

• T lies to the left of e and P lies to the right of e

• s intersects the half-closure of e (i.e., relative interior or the source)

PI Informatik Susan Hert

The Refined Algorithm

1. if T ∈ ∆P , done;

2. e = half-edge of ∆P intersected by s;

3. ∆ = triangle incident to reverse(e);

4. while (T 6∈ ∆) {
c = vertex opposite e
if (c right of s) then
e = reverse(e2)
∆ = triangle right of e2

else
e = reverse(e1)
∆ = triangle right of e1

}

e

e
c

e1

e2

∆

∆

e2

e1

c

c

e1

e2

e

∆

PI Informatik Susan Hert

The Refined Algorithm

P

e T∆ ��
��
��
��

�
�
�
�����

��
��
��
��
��
��
��
����

�
�
�
� ��

��

�
�
�
�

��
��
��
��

����
����

�
�
�
�

c
�
�
�
�

e1

e2

PI Informatik Susan Hert

The Refined Algorithm

∆e
T

P

�
�
�
�

�
�
�
� ����

��
��
��
��
��
��
��
����

��
��
��
��

�
�
�
���

��

�
�
�
�

��
��
��
��

����

e1

����

�
�
�
�

e2
c

PI Informatik Susan Hert

The Refined Algorithm

∆e
T

P

�
�
�
�

�
�
�
� ����

��
��
��
��
��
��
��
����

��
��
��
��

�
�
�
���

��

�
�
�
�

��
��
��
��

����

e2

����

�
�
�
�

e1
c

PI Informatik Susan Hert

The Refined Algorithm

e

P
T∆

�
�
�
�

�
�
�
� ��

��
��
��

����

��
��
��
��
��
��
��
����

�
�
�
���

��

�
�
�
�

��
��
��
��

����
����

e2 c
�
�
�
�

e1

PI Informatik Susan Hert

The Refined Algorithm

e

∆P
T

�
�
�
�

����

��
��
��
��
��
��
��
����

��
��
��
��

�
�
�
���

��

�
�
�
�

��
��
��
��

�
�
�
�

����
����

�
�
�
�

ce2

e1

PI Informatik Susan Hert

The Refined Algorithm

∆

P
T

�
�
�
�

�
�
�
�

�
�
�
�

����

��
��
��
��
��
��
��
����

��
��
��
��

�
�
�
���

��

�
�
�
�

��
��
��
��

����
����

c

e2
e1

e

PI Informatik Susan Hert

The Refined Algorithm

∆

P
T

��
��
��
��

��
��
��
�� ��

��
��
��

��

����

�
�
�
�����

�
�
�
�

��
�
�
�
�

����

��

��

����
��
��
��
��

�
�
�
�

e

e1

e2

c

PI Informatik Susan Hert

The Refined Algorithm

∆P
T

�
�
�
�

�
�
�
�

�
�
�
�

����

��
��
��
��
��
��
��
����

��
��
��
��

�
�
�
���

��

�
�
�
�

��
��
��
��

����
����

e

PI Informatik Susan Hert

The Refined Algorithm

∆

∆ ∆

∆
∆

∆

P
T∆

∆
�
�
�
�

4

����

��
��
��
��
��
��
��
����

����

��
��
��
��

�
�
�
�

��

��
��
��
��
��

1

�
�
�
�

2

����

30
5

�
�
�
�

6

7

�
�
�
�

Observe:

• Walk through triangles as if the input line were perturbed downward a bit.

• Edge e is never collinear with s.

PI Informatik Susan Hert

The Refined Algorithm – Why Does It Work?

e

e∆

c
∆e e

c

next

next

• Always move closer to T because the next e

– intersects s closer to T

– OR makes a smaller angle with s.

• Degeneracy (3 collinear points) included in the invariant:

– s intersects the half-closure of e

PI Informatik Susan Hert

Refined Invariants Approach

• Careful consideration of degeneracies incorporated into the invariants.

• The refined algorithm:

– can be equally as simple as the general-position algorithm

– works for all input without fail.

• Must be applied to each problem separately.

Conclusion: With better invariants, one can achieve absolutely robust
algorithms that are easy to implement.

PI Informatik Susan Hert

Topological Consistency Approach

Idea:

• Consider structure (topology) before numerics

• Use numerics only to choose between multiple consistent structures.

Results:

• Algorithms that always produce some output no matter how imprecise the
numerics.

• Output converges to correct result as precision increases.

PI Informatik Susan Hert

Incremental Construction of Voronoi Diagram

For each point p:

• Construct regionRp for new point p
from bisectors with existing points.

• Remove the edges contained in Rp

Facts:

• The edges removed form a tree.

• The edges removed from each re-
gion are connected.

p

PI Informatik Susan Hert

Topologically Consistent Construction
View Voronoi diagram as a graph.

• find a “seed vertex” v

• from v find a set of connected ver-
tices V0

• generate new nodes in graph on the
cut edges for the subtree induced by
V0

Use numerics to decide which vertices
to remove.

p

v

PI Informatik Susan Hert

Topologically Consistent Algorithms

• Enforce structural invariants in their construction

• Shift emphasis from (often faulty) numerics to combinatorics

• Degeneracies are not special since these are defined by numerics

• Equally as correct as non-topologically oriented algorithms

• Results degrade nicely in the presence of imprecision.

Conclusion: Imposing structural invariants can make algorithms even more
robust.

PI Informatik Susan Hert

Handling Degeneracies in CGAL and LEDA

• Algorithms are implemented to handle all degeneracies.

• Geometry kernels provide exact predicates upon which to build robust
algorithms.

• Flexibility of CGAL allows user

– to provide a kernel of perturbed predicates

– to employ a number type to implement perturbations .

– to observe behavior of topologically consistent algorithms with various
levels of numerical precision.

PI Informatik Kurt Mehlhorn

Some Famous Geometric Algorithms are Quite Complicated

• Linear time triangulation of simple polygons, deterministic O(n log n) sweep

• simpler deterministic algs have inferior running time

• we may want to live with the inferior running time

• randomization frequently leads to simple and efficient algorithms

PI Informatik Kurt Mehlhorn

Convex Hull Problem

Input: a set of points S

Output: a boundary description of the convex hull CH (S) of S

In 3d, determine vertices, edges, and facets and their incidences

PI Informatik Kurt Mehlhorn

Convex Hulls by Incremental Construction (CMS, CGTA 93)

• consider the points in arbitrary order and maintain a triangulation of the
current hull

• construct hull of the first point (= a point)

• in order to add a point p

– if p is a dimension jump, make p an additional vertex of every simplex

– otherwise, determine whether p is inside the current hull (see next slide)

– if not, determine all facets visible from p

– add a simplex with tip p for every visible facet

p

=⇒

p

PI Informatik Kurt Mehlhorn

Details of the Walk

• o is a point in the interior of the first simplex

• walk through the triangulation along the segment op

• if walk hits a hull facet, p is outside the current hull

• find all visible hull facets by walking on surface of hull

• section on degeneracy discussed how to make the walk robust

po

PI Informatik Kurt Mehlhorn

Running Time in Two Dimensions

• the running time of incremental construction is O(n2), since we walk through
at most i triangles when we insert the i-th point and

∑
1≤i≤n i ≤ n2

• in the worst case the running time of incremental construction is quadratic

a

b

xixn x1

• if the points are inserted in random order, the running time is O(n logn).

PI Informatik Kurt Mehlhorn

Expected Running Time of IC

Theorem 1 The expected running time of the incremental algorithm for convex
hulls is O(n logn) if all insertion orders are equally likely.

Assumption of the theorem is satisfied,

• when the points in S are generated according to a probability distribution for
points in the plane.

• when the points in S are randomly permuted before the incremental
construction process is started: Randomized incremental construction (RIC).

• RIC was invented by Ken Clarkson and Peter Shor in the late 80s

• very powerful paradigm

• the books by Boissonnat-Yvinec and Mulmuley center around the method

• Remarks: running time of RIC is O(n) in the best case; this is the case
when number of extreme points of S and every random subset of S is small

Analysis of Walk, A Special Case

a

b

xixn x1

assume: a and b are inserted first, x1 is inserted last, and x2, . . . , xn are inserted
in random order

• let o be a point on the segment ab

• how many constructed edges will the segment ox1 intersect?

• edges (a, xi) and (xi, b) are constructed iff xi is inserted before x1, . . . xi−1

• probability for this to happen is 1/i.

• expected time of walk for x0 is∑
1≤i≤n

1
i

= O(log n)

IC versus RIC

IC RIC

K n # extreme pts Random Sorted Random Sorted

S 4000 18 0.09 0.27 0.11 0.13

S 8000 23 0.16 0.76 0.22 0.21

S 16000 29 0.33 2.53 0.42 0.41

D 4000 59 0.1 0.45 0.11 0.1

D 8000 66 0.17 1.26 0.23 0.2

D 16000 87 0.43 3.48 0.5 0.41

C 4000 4000 0.32 15.57 0.34 0.37

C 8000 7995 0.7 65.93 0.75 0.71

C 16000 1.599e+04 1.47 253.4 1.53 1.57

S = n points in the square with side length 2R, R = 16000

D = n points in the disk with radius R centered at the origin

C = n points (approximately) on the circle with radius R centered at the origin

random = points in random order

sorted = lexicographically sorted input

RIC randomly permutes input and then calls IC

PI Informatik Kurt Mehlhorn

Sweep versus RIC

Sweep RIC

K n # extreme pts Random Sorted Random Sorted

S 20000 25 1.68 1.54 0.55 0.55

S 40000 29 3.6 3.26 1.26 1.43

S 80000 31 7.72 6.98 2.06 2.07

D 20000 106 1.75 1.59 0.55 0.56

D 40000 109 3.76 3.33 1.17 1.25

D 80000 152 8 7.02 2.42 2.58

C 20000 1.999e+04 1.82 1.67 2.13 2.12

C 40000 3.994e+04 3.96 3.57 4.46 4.41

C 80000 7.979e+04 8.6 7.78 10.31 10.04

columns and rows have the same meaning as on preceding slide

observe how well RIC does on inputs where the number of extreme points is small.

PI Informatik Kurt Mehlhorn

Are Our Programs Correct?

• we start from correct algorithms

• we have a sound basis: exact geometry kernels and exact number types

• we document and test, and our large user community tests

• many programs provide proof that their output is correct

and

checkers check proof.

• Example: is A · x = b solvable?

Output: yes no

Proof: x0 such that A · x0 = b c such that cT ·A = 0

cT · b 6= 0

PI Informatik Kurt Mehlhorn

Results

• theory: we developed checkers for

– convex hulls in d-space, Voronoi diagrams, line segment intersection, . . .

– data structures, e.g., dictionaries and priority queues, . . .

– graph algorithms, e.g., planarity, flow, components, . . .

• practice:

– many of them have been implemented.

– are part of LEDA and CGAL

– have greatly increased reliability of the systems

PI Informatik Kurt Mehlhorn

Planarity Test

Input: A graph G

Question: Is G planar?

Answer: yes/no

Do you find this convincing? Run planarity demo

Proof: a planar drawing or a Kuratowski subgraph

Remark: Proof is readily checked.

Further Example: Run matching demo

PI Informatik Kurt Mehlhorn

Checking Convex Hulls

Given a simplicial, piecewise linear closed hypersurface F in d-space decide
whether F is the surface of a convex polytope.

o

p

F is convex iff it passes the following three tests

1. check local convexity at every ridge

2. 0 = center of gravity of all vertices

check whether 0 is on the negative side of all facets

3. p = center of gravity of vertices of some facet f

check whether ray ~0p intersects closure of facet different from f

PI Informatik Kurt Mehlhorn

Discussion

• one ray in third test

• test is fast (linear in size of F) and simple

1. = scalar product

2. = sign of linear function

3. = linear system solving
– Let f ′ be any facet and let h′ be a supporting hyperplane.
– q = r ∩ h′ is a point.
– q is a convex combination of vertices of f ′ and this combination is

unique (since f ′ is a simplex). Thus, solve

q =
d∑
j=1

λj · vj

and check whether 0 ≤ λj ≤ 1 for all j.

PI Informatik Kurt Mehlhorn

Sufficiency of Test is Non-Trivial Claim

• ray for third test cannot be chosen arbitrarily, since in Rd, d ≥ 3, ray may
“escape” through lower-dimensional feature.

o

PI Informatik Kurt Mehlhorn

Experiments

• the structure of the convex hull program

1. incremental hull construction

2. geometric primitives in d-space

3. exact linear algebra over the integers

4. arbitrary precision integers

• added checking to all but the lowest layer

• running time increases by ≤ 10%

PI Informatik Kurt Mehlhorn

Conclusions

• Checking allows one to test on all inputs and not only on inputs for which
the output is known.

• checked programs are reliable

– either give the correct answer

– or catch the error themselves

• surprisingly many programs can be checked

• designing checkers is non-trivial

– convex hull

– priority queue

• KM usually designs the checker first

