The Physarum Computer

Luca Becchetti ${ }^{1} \quad$ SODA 2012

Vincenzo Bonifaci ${ }^{1} \quad$ ICALP 2013
Michael Dirnberger
Andreas Karrenbauer
Girish Varma ${ }^{2}$

J. Theoretical Biology

шр" informatik

The Physarum Computer

Physarum, a slime mold, single cell, several nuclei
builds evolving networks

Nakagaki, Yamada,

Tóth, Nature 2000
show video

2008 Ig Nobel Prize

For achievements that first make people LAUGH then make them THINK

COGNITIVE SCIENCE PRIZE：Toshiyuki Nakagaki，Ryo Kobayashi，Atsushi Tero，Ágotá Tóth for discovering that slime molds can solve puzzles．

REFERENCE：＂Intelligence：Maze－Solving by an Amoeboid Organism，＂Toshiyuki Nakagaki，Hiroyasu Yamada，and Ágota Tóth，Nature，vol．407，September 2000，p． 470.

Outline of Talk

- The maze experiment (Nakagaki, Yamada, Tóth).
- A mathematical model for the dynamics of Physarum (Tero et al.).
- The result: convergence against the shortest path.
- Approach:
- Analytical investigation of simple systems.
- A simulator.
- Formulizing conjectures and killing them.
- Proving the surviving conjecture.
- Beyond shortest paths.
- Transportation problems.
- Linear programming (A. Johannson/J. Zou and D. Straszak/N. Vishnoi).
- Network formation.
- Ideen der Informatik
- Physarum is a network of tubes (pipes);
- Flow (of liquids and nutrients) through a tube is determined by concentration differences at endpoints of a tube, length of tube, and diameter of tube;
- Tubes adapt to the flow through them: if flow through a tube is high (low) relative to diameter of the tube, the tube grows (shrinks) in diameter.
- Mathematics is the same as for flows in an electrical network with time-dependent resistors.
-

Tero et al., J. of Theoretical Biology, 553 - 564, 2007

Mathematical Model (Tero et al.)

- $G=(V, E)$ undirected graph
- Each edge e has a positive length L_{e} (fixed) and a positive diameter $D_{e}(t)$ (dynamic).
- Send one unit of current (flow) from s_{0} to s_{1} in an electrical network where resistance of e equals

$$
R_{e}(t)=L_{e} / D_{e}(t)
$$

- $Q_{e}(t)$ is resulting flow across e at time t.
- Dynamics:

$$
\dot{D}_{e}(t)=\frac{d D_{e}(t)}{d t}=\left|Q_{e}(t)\right|-D_{e}(t)
$$

We will write D_{e} and Q_{e} instead of $D_{e}(t)$ and $Q_{e}(t)$ from now on.

- $G=(V, E)$ undirected graph
- Each edge e has a positive length L_{e} (fixed) and a positive diameter $D_{e}(t)$ (dynamic).
- Send one unit of current (flow) from s_{0} to s_{1} in an electrical network where resistance of e equals

$$
R_{e}(t)=L_{e} / D_{e}(t)
$$

- $Q_{e}(t)$ is resulting flow across e at time t.
- Dynamics:

$$
\dot{D}_{e}(t)=\frac{d D_{e}(t)}{d t}=\left|Q_{e}(t)\right|-D_{e}(t)
$$

We will write D_{e} and Q_{e} instead of $D_{e}(t)$ and $Q_{e}(t)$ from now on.

The Questions

Does the system convergence for all (!!!) initial conditions?

If so, what does it converge to? Fixpoints?
How fast does it converge?
Beyond shortest paths?
Inspiration for distributed algorithms?

Convergence against Shortest Path

Theorem (Convergence (SODA 12, J. Theoretical Biology))

Dynamics converge against shortest path, i.e.,

- potential difference between source and sink converges to length of shortest source-sink path,
- $D_{e} \rightarrow 1$ for edges on shortest source-sink path,
- $D_{e} \rightarrow 0$ for edges not on shortest source sink path
this assumes that shortest path is unique; otherwise ...

Miyaji/Onishi previously proved convergence for parallel links and Wheatstone graph.

Our Approach

- Analytical investigation of simple systems, in particular, parallel links, and
- experimental investigation (computer simulation) of larger systems,
- to form intuition about the dynamics,
- to kill conjectures,
- to support conjectures.
- Proof attempts for conjectures surviving experiments

Computer Simulation (Discrete Time)

- Electrical flows are driven by electrical potentials; let p_{u} be the potential at node u at time t. ($p_{s_{1}}=0$ always)
- $Q_{e}=D_{e}\left(p_{u}-p_{v}\right) / L_{e}$ is flow on edge $\{u, v\}$ from u to v.
- Flow conservation gives n equations.

- $b_{s_{0}}=1=-b_{s_{1}}$ and $b_{u}=0$, otherwise.
- The equations above define the p_{v} 's and the Q_{e} 's uniquely and can be computed by solving a linear system.
- Discrete Dynamics: $D_{e}(t+1)=D_{e}(t)+h \cdot\left(\left|Q_{e}(t)\right|-D_{e}(t)\right)$.

Computer Simulation (Discrete Time)

- Electrical flows are driven by electrical potentials; let p_{u} be the potential at node u at time t. ($p_{s_{1}}=0$ always)
- $Q_{e}=D_{e}\left(p_{u}-p_{v}\right) / L_{e}$ is flow on edge $\{u, v\}$ from u to v.
- Flow conservation gives n equations.

$$
\text { for all vertices } u: \sum_{v ; e=\{u, v\} \in E} D_{e}\left(p_{u}-p_{v}\right) / L_{e}=b_{u} \text {. }
$$

- $b_{s_{0}}=1=-b_{s_{1}}$ and $b_{u}=0$, otherwise.
- The equations above define the p_{v} 's and the Q_{e} 's uniquely and can be computed by solving a linear system.
- Discrete Dynamics: $D_{e}(t+1)=D_{e}(t)+h \cdot\left(\left|Q_{e}(t)\right|-D_{e}(t)\right)$.

Computer Simulation (Discrete Time)

- Electrical flows are driven by electrical potentials; let p_{u} be the potential at node u at time t.
($p_{s_{1}}=0$ always)
- $Q_{e}=D_{e}\left(p_{u}-p_{v}\right) / L_{e}$ is flow on edge $\{u, v\}$ from u to v.
- Flow conservation gives n equations.
for all vertices $u: \sum_{v ; e=\{u, v\} \in E} D_{e}\left(p_{u}-p_{v}\right) / L_{e}=b_{u}$.
- $b_{s_{0}}=1=-b_{s_{1}}$ and $b_{u}=0$, otherwise.
- The equations above define the p_{v} 's and the Q_{e} 's uniquely and can be computed by solving a linear system.
- Discrete Dynamics: $D_{e}(t+1)=D_{e}(t)+h \cdot\left(\left|Q_{e}(t)\right|-D_{e}(t)\right)$.
- Remark: linear system best solved by iterative method; simulation requires arbitrary precision arithmetic.

Computer Simulation (Discrete Time)

- Electrical flows are driven by electrical potentials; let p_{u} be the potential at node u at time t. ($p_{s_{1}}=0$ always)
- $Q_{e}=D_{e}\left(p_{u}-p_{v}\right) / L_{e}$ is flow on edge $\{u, v\}$ from u to v.
- Flow conservation gives n equations.

- $b_{s_{0}}=1=-b_{s_{1}}$ and $b_{u}=0$, otherwise.
- The equations above define the p_{v} 's and the Q_{e} 's uniquely and can be computed by solving a linear system.
- Discrete Dynamics: $D_{e}(t+1)=D_{e}(t)+h \cdot\left(\left|Q_{e}(t)\right|-D_{e}(t)\right)$.
- We simulated 1000 systems with up to 10000 nodes. Always observed convergence to shortest path. Speed of convergence is determined by length of second shortest path/length of shortest path.

Computer Simulation (Discrete Time)

- Electrical flows are driven by electrical potentials; let p_{u} be the potential at node u at time t. ($p_{s_{1}}=0$ always)
- $Q_{e}=D_{e}\left(p_{u}-p_{v}\right) / L_{e}$ is flow on edge $\{u, v\}$ from u to v.
- Flow conservation gives n equations.

$$
\text { for all vertices } u: \sum_{v ; e=\{u, v\} \in E} D_{e}\left(p_{u}-p_{v}\right) / L_{e}=b_{u} \text {. }
$$

- $b_{s_{0}}=1=-b_{s_{1}}$ and $b_{u}=0$, otherwise.
- The equations above define the p_{v} 's and the Q_{e} 's uniquely and can be computed by solving a linear system.
- Discrete Dynamics: $D_{e}(t+1)=D_{e}(t)+h \cdot\left(\left|Q_{e}(t)\right|-D_{e}(t)\right)$.
- from now on: $\Delta_{e}=p_{u}-p_{v}$ for $e=u v$; potential drop on e.

A Single Link (Miyaji/Ohnishi)

$$
\begin{aligned}
Q & =1 \quad \text { always } \\
\dot{D} & =1-D \\
D=D(t) & =1+(D(0)-1) e^{-t}
\end{aligned}
$$

Thus

$$
D(t) \rightarrow 1 \text { for } t \rightarrow \infty
$$

Diameter of e converges to 1 , resistance $\frac{L}{D}$ of e converges to L.
Thus, potential difference between source and sink converges to L (= length of shortest source-sink path)

A Single Link (Miyaji/Ohnishi)

$$
\begin{aligned}
Q & =1 \quad \text { always } \\
\dot{D} & =1-D \\
D=D(t) & =1+(D(0)-1) e^{-t}
\end{aligned}
$$

Thus

$$
D(t) \rightarrow 1 \text { for } t \rightarrow \infty
$$

Diameter of e converges to 1 , resistance $\frac{L}{D}$ of e converges to L.

Thus, potential difference between source and sink converges to L (= length of shortest source-sink path)

Two Parallel Links (Miyaji/Ohnishi)

A visualization of the dynamics. Arrows show the vector (\dot{D}_{1}, \dot{D}_{2}). Trajectories in black.

e_{i} has length $L_{i}, L_{1}<L_{2}$, and diameter D_{i}

Two Parallel Links (Miyaji/Ohnishi)

e_{i} has length $L_{i}, L_{1}<L_{2}$, and diameter D_{i}
$\Delta=\Delta(t)=$ potential difference between source and sink
$Q_{i}=\frac{D_{i}}{L_{i}} \cdot \Delta$
$\dot{D}_{i}=Q_{i}-D_{i}=\frac{D_{i}}{L_{i}} \Delta-D_{i}$
$\dot{D}_{i}=0 \quad$ iff $\quad D_{i}=0$ or $\Delta=L_{i}$.
Thus $D_{2}=0$ and $\Delta=L_{1}$ and $D_{1}=1$, or vice versa.
Fixpoints: $\dot{D}_{i}=0$ for all i :

Two Parallel Links（Miyaji／Ohnishi）

e_{i} has length $L_{i}, L_{1}<L_{2}$ ， and diameter D_{i}
$\Delta=\Delta(t)=$ potential difference between source and sink

$$
\begin{aligned}
& Q_{i}=\frac{D_{i}}{L_{i}} \cdot \Delta \\
& \dot{D}_{i}=Q_{i}-D_{i}=\frac{D_{i}}{L_{i}} \Delta-D_{i}
\end{aligned}
$$

Convergence

$L_{i} \frac{\dot{D}_{i}}{D_{i}}=\Delta-L_{i}$
$L_{i} \frac{d}{d t} \ln D_{i}=\Delta-L_{i}$
Let $V=L_{2} \ln D_{2}-L_{1} \ln D_{1}$ ．Then

$$
\begin{aligned}
\dot{V} & =L_{1}-L_{2} \\
V(t) & =V(0)+\left(L_{1}-L_{2}\right) t \\
V(t) & \rightarrow-\text { infty } \\
D_{1} & \rightarrow \infty \text { or } D_{2} \rightarrow 0 \\
D_{1} & \rightarrow \infty \text { is impossible. } \\
D_{2} & \rightarrow 0 \Rightarrow Q_{2} \rightarrow 0 \Rightarrow \\
Q_{1} & \rightarrow 1 \Rightarrow D_{1} \rightarrow 1 \Rightarrow \Delta \rightarrow L_{1}
\end{aligned}
$$

V is called a Lyapunov function．

The General Case

Fixpoints: It is easy to verify (quarter page) that the fixpoints are exactly the source-sink paths. This assumes that all paths have different length. Thus, if the system converges, it converges against some source-sink path.

Convergence:

- In order to prove convergence, one needs to find a Lyapunov function.
- In order to prove convergence against the shortest path, one needs some additional arguments.

What did Evolution Optimize?

Evolution optimized dynamics so as to achieve a global objective. Which? (Lyapunov Function)
First idea: the energy of the flow $\sum_{e} Q_{e} \Delta_{e}$ decreases over. time

Not true, even for parallel links.

Theorem

For the case of parallel links:

decrease over time

computer experiment: the obvious generalizations to general graphs (replace i by e) do not work.

What did Evolution Optimize?

Evolution optimized dynamics so as to achieve a global objective. Which? (Lyapunov Function)
First idea: the energy of the flow $\sum_{e} Q_{e} \Delta_{e}$ decreases over. time

Not true, even for parallel links.

Theorem

\square

decrease over time

computer experiment: the obvious generalizations to general graphs (replace i by e) do not work.

What did Evolution Optimize?

Evolution optimized dynamics so as to achieve a global objective. Which? (Lyapunov Function)
First idea: the energy of the flow $\sum_{e} Q_{e} \Delta_{e}$ decreases over. time

Not true, even for parallel links.

Theorem

For the case of parallel links:

$$
\sum_{i \geq 2} L_{i} \ln D_{i}-L_{1} \ln D_{1}, \sum_{i} Q_{i} L_{i}, \frac{\sum_{i} D_{i} L_{i}}{\sum_{i} D_{i}}, \text { and }\left(p_{s}-p_{t}\right) \sum_{i} D_{i} L_{i}
$$

decrease over time

> computer experiment: the obvious generalizations to general graphs (replace i by e) do not work.

What did Evolution Optimize?

Evolution optimized dynamics so as to achieve a global objective. Which? (Lyapunov Function)
First idea: the energy of the flow $\sum_{e} Q_{e} \Delta_{e}$ decreases over. time
Not true, even for parallel links.

Theorem

For the case of parallel links:

$$
\sum_{i \geq 2} L_{i} \ln D_{i}-L_{1} \ln D_{1}, \sum_{i} Q_{i} L_{i}, \frac{\sum_{i} D_{i} L_{i}}{\sum_{i} D_{i}}, \text { and }\left(p_{s}-p_{t}\right) \sum_{i} D_{i} L_{i}
$$

decrease over time

computer experiment: the obvious generalizations to general graphs (replace i by e) do not work.

A not so Obvious Generalization

$$
\frac{\sum_{i} D_{i} L_{i}}{\sum_{i} D_{i}} \Rightarrow \frac{\sum_{e} D_{e} L_{e}}{\text { minimum total diameter of a } s_{0}-s_{1} \text { cut }}
$$

LEDA came handy.

What did Evolution Optimize?

Computer experiment:

$$
V:=\frac{\sum_{e} D_{e} L_{e}}{\text { minimum total diameter of a } s_{0}-s_{1} \text { cut }} \text { decreases }
$$

Theorem (Lyapunov Function)

Derivative of V (essentially) satisfies

Proof uses min-cut-max-flow and

What did Evolution Optimize?

Computer experiment:

$$
V:=\frac{\sum_{e} D_{e} L_{e}}{\text { minimum total diameter of a } s_{0}-s_{1} \text { cut }} \quad \text { decreases }
$$

Theorem (Lyapunov Function)

$$
V+\left(\sum_{e \in \delta\left(\left\{s_{0}\right\}\right)} D_{e}-1\right)^{2} \text { decreases. }
$$

Derivative of V (essentially) satisfies

Proof uses min-cut-max-flow and

What did Evolution Optimize?

Computer experiment:

$$
V:=\frac{\sum_{e} D_{e} L_{e}}{\text { minimum total diameter of a } s_{0}-s_{1} \text { cut }} \text { decreases }
$$

Theorem (Lyapunov Function)

$$
V+\left(\sum_{e \in \delta\left(\left\{s_{0}\right\}\right)} D_{e}-1\right)^{2} \text { decreases. }
$$

Derivative of V (essentially) satisfies

$$
\dot{V} \leq-c \cdot \sum_{e}\left(D_{e}-\left|Q_{e}\right|\right)^{2} .
$$

Proof uses min-cut-max-flow and ...

Convergence against Shortest Path

Corollary (Convergence)

Dynamics converge against shortest path, i.e.,

- potential difference between source and sink converges to length of shortest source-sink path,
- $D_{e} \rightarrow 1$ for edges on shortest source-sink path,
- $D_{e} \rightarrow 0$ for edges not on shortest source sink path.
this assumes that shortest path is unique; otherwise, ...
Miyaji/Onishi previously proved convergence for parallel links and Wheatstone graph.

Discretization and Speed of Convergence

$$
D_{e}(t+1)=D_{e}(t)+h\left(\left|Q_{e}(t)\right|-D_{e}(t)\right)
$$

Theorem (Epsilon-Approximation of Shortest Path)

Let opt be the length of the shortest source-sink path.
Let $\varepsilon>0$ be arbitrary. Set $h=\varepsilon /(2 \mathrm{~mL})$, where L is largest edge length and m is the number of edges.

After $\widetilde{O}\left(n m L^{2} / \varepsilon^{3}\right)$ iterations, solution is $(1+\varepsilon)$ optimal, i.e., $V=\sum_{e} L_{e} D_{e}$ is at most $(1+\varepsilon)$ opt.

Arithmetic with $O(\log (n L / \varepsilon))$ bits suffices.

The Transportation Problem

- undirected graph $G=(V, E)$
- $b: V \rightarrow \mathbb{R}$ such that $\sum_{V} b_{V}=0$
- v supplies flow b_{v} if $b_{v}>0$
- v extracts flow $\left|b_{v}\right|$ if $b_{v}<0$
- find a cheapest flow where cost of sending f units across an edge of length L is $L \cdot f$

Physarum dynamics solves transportation problem.

D_{e} 's converge against a mincost solution of transportation problem.
proof requires a non-degeneracy assumption

Related Work: Directed Physarum

$$
\dot{D}_{e}(t)=Q_{e}(t)-D_{e}(t)
$$

No biological significance is claimed.

Results

Ito/Johansson/Nakagaki/Tero (2011) prove convergence to shortest directed source-sink path.
Johannson/Zou (2012) and D. Straszak/N. Vishnoi (2016) prove that directed dynamics solves any linear program with monotone objective function (all coefficients of c are positive)

$$
\max c^{T} x \text { subject to } A x=b \text { and } x \geq 0
$$

Linear Programming, More Details

Shortest path problem is a linear program (min cost flow), namely

$$
\min c^{T} x \text { subject to } A x=b \text { and } x \geq 0
$$

where A is the node-edge incidence matrix.
Physarum Dynamics: Let $X=\operatorname{diag}\left(x_{e} / c_{e}\right)$. Node potentials are defined by

$$
\forall u: \sum_{v ; u v \in E} \frac{x_{e}}{c_{e}}\left(p_{v}-p_{u}\right)=b_{u} \text {, i.e. } \quad p=\left(A X A^{T}\right)^{-1} b .
$$

Then

$$
Q=X A p=X A\left(A X A^{T}\right)^{-1} b
$$

and

$$
\dot{x}=Q-x .
$$

These formulae make sense for every linear program provided that $c>0$.

Adamatzky's Book


```
mminumaco
```


Physarum Machines

Andrew Adamatzky

World Scientific
many examples of Physarum computations

- shortest paths
- network design
- Delaunay diagrams
- puzzles
also Youtube-videos: search for Physarum

Open Problems

Nonuniform Physarum

$\dot{D}_{e}(t)=a_{e}\left(\left|Q_{e}(t)\right|-D_{e}(t)\right)$
a_{e} reactivity of e
We have a heuristic argument for the details of the convergence process. Have verified them in computer simulations.
No convergence proof

Network Design: Science 2010

Rall whtem wround lowpo

Observables Demo

Figure: Normalized node strength histogram for edge lengths. Abscissa shows values in pixel.

Figure: Input image and extracted graph as overlay (generated with NEFI (Dirnberger/Neumann))

My Current Projects

Understand the principles of network formation. What does the network optimize?

Nonuniform Versions of Physarum.

Can I use Physarum as an inspiration for approximation algorithms?

Ideas of Informatics (http://resources.mpi-inf.mpg.de/
departments/d1/teaching/ws14/Ideen-der-Informatik/)

- An introduction to informatics for non-specialists (Studium Generale).
- Goal: informatics litteracy.
- Presents concepts and their applications, e.g.,
- cryptography and electronic banking
- shortest path algs and navigation systems
- machine learning and image classification.
- Videos are available on my homepage.

IDEEN DER INFORMATIK

Thank You

