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Matchings

• G = (A ∪̇B,E), bipartite graph
• matching M = subset of edges no two of which share an endpoint

• matching problems are abundant: males and females, persons and
jobs, families and houses, medical students and hospitals, students
and lab sessions, professors and offices, clients and servers

• goal: find best matching (assignment) in some sense
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Optimization Criteria I
• maximum cardinality matching

maximize |M|

• maximum weight matching

• each edge e has a weight (profit, utility) w(e)

• maximize the total weigth of the matching

maximize ∑e∈M w(e)
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Optimization Criteria II
•• Economics, Social Sciences

• nodes in A (and B) rank their incident edges: I prefer x over y or I
am indifferent between x and y

• ranking = linear order without or with ties

• one side ranks
• professors rank offices, persons rank jobs,. . .

• both sides rank
• females rank males and males rank females
• medical interns rank hospitals and hospitals rank medical

interns
• students rank potential roommates (general graph)
• hospitals have capacity larger than one

• rich source of problems with practical relevance and theoretical
appeal

• many sensible optimization criteria
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Structure of Talk
• Part I: only one side ranks
• the theme will be different notions of optimality

• Part II: both sides rank
• the theme will be stability

• Part III: cardinality matching
• the theme will be average case behavior

• I got interested in 3) because I presented a paper by Motwani in class,
R. Irving and D. Abraham introduced me to 1), and a Google search for
strange time bounds (here O(m2)) got me into 2)
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One Side Ranks
• the nodes in A assign integer ranks to their indicent edges

• E = E1 ∪̇E2 . . . ∪̇Er

• Ei = edges of rank i

• no ties: Ei contains at most one edge incident to any a ∈ A.

• What are sensible notions of optimality?
• pareto-optimality
• popularity
• rank maximality
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Pareto-Optimal Matchings
• M is Pareto-optimal if there is no N in which no node is worse off and at

least one node is better off

• are maximal, but may have different cardinalities

• characterization of Pareto-optimal matchings
• maximal: if a is unmatched in M, all potential partners are matched
• trade-in-free: if a is matched in M, all better partners are also

matched
• coalition-free: no cycle of exchanges, in which no one looses and

one wins

• minimum cardinality Pareto-optimal is NP-complete
reduction from minimum maximal matching

• maximum cardinality in time O(
√

nm)
compute maximum matching and convert into POM of same card
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Popular Matchings
• M is more popular than N if the number of nodes preferring M over N is

larger than the number of nodes preferring N over M
• popular matching = no matching which is more popular

• existence is not guaranteed (“being more popular” is not a linear order
on matchings)

a1 : p1 p2 p3

a2 : p1 p2 p3

a3 : p1 p2 p3

• characterize instances with popular matching

• decide existence and compute in time O(
√

nm)

SODA 05, joint work with D. Abraham, R. Irving, and T. Kavitha
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Popular Matchings, Extensions

• Maestre (ICALP 2006): weigthed elements

• Manlove, Sng (ESA 2006): elements in B have capacities

• Mahdian (Conf. on Electronic Commerce): if |B| > c×|A| and
preference lists are random, popular matchings exist

• Kavitha, Shah (ISAAC 2006): nω algorithm

• Abraham, Kavitha (SWAT 2006): for every matching N there is a
popular matching M that is more popular than N.
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Rank Maximal Matchings and Variants
• r = maximal rank of any edge

• si(M) = number of rank i edges in M

• maximize the signature (s1,s2, . . . ,sr) maximize happiness

• maximize (s1 + s2 + . . .+ sr, s1,s2, . . . ,sr) max card, max happy

• maximize (s1 + s2 + . . .+ sr, −sr,−sr−1, . . . ,−s1) max card, min unhappy

• first problem in time O(min(r ·n1/2 ·m,n ·m)) and space O(m)
SODA 04, joint work with R. Irving, T. Kavitha, D. Michail, and K. Paluch

• all problems in essentially this time and space
unpublished, joint work with D. Michail
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Strongly Stable Matchings
• both sides rank their incident edges (ties allowed)
• a matching M is stable if there is no blocking edge

• an edge (x,y) ∈ E \M is blocking if x would prefer to
match up with y and y would not object, i.e.,
• x prefers y over its current partner or is free
• y prefers x over its current partner or is indifferent

between them or is free
• decide existence of a stable matching and compute one

• we do so in time O(nm), even if nodes in B have capacities

• previous best was O(m2) by R. Irving
• Irving’s algorithm is used to match medical students and hospitals
• open problem: deal with couples

STACS 04, joint work with T. Kavitha, D. Michail, and K. Paluch
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An Instance without a Stable Matching

x1: w1, w2 w1: x2, x1

x2: {w1, w2} w2: x2, x1

• both woman prefer x2 to x1.
• man x1 prefers w1 to w2 and x2 is indifferent between the women.

• every man ranks every woman and vice versa and hence any strongly
stable matching must match all men and all women.

• no strongly stable matching exists
• consider partner of x1.
• she prefers x2 over x1 and x1 does not object
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The Classical Algorithm (No Ties, Complete Instances)

M = /0;
while ∃ a free man m do

let e = (m,w) be the top choice of x;
if w is free or prefers x over her current partner then

dissolve the current marriage of w (if any) and add e to M;
else

discard e;
end if

end while

• once matched, women stay matched and to better and better partners
• alg constructs a complete and stable matching (man-optimal)

• complete: every women is matched ultimately
• if an engagement (m,w) is dissolved or rejected, it is not blocking

with respect to the final matching
• if an edge (m,w) is never considered, it is not . . .
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Average Case Behavior of Matching Algs

Algorithms of Hopfcroft/Karp and Micali/Vazirani compute maximum
cardinality matchings in bipartite or general graphs in time O(

√
nm)

observed behavior seems to be much better

number of phases seems to grow like logn (n ≤ 106 in experiments)

Motwani(JACM, 94): running time is O(m logn) with high probability for
random graphs in the Gn,p model provided that p ≥ (lnn)/n.

Our result: running time is O(m logn) with high probability for random graphs
in the Gn,p model provided that p ≥ c0/n.

c0 = 9.6 for bipartite graphs
35.1 for general graphs

Open problem: what happens for p with 0 ≤ p ≤ c0?

Theory of Computing Systems 05, joint work with H. Bast, G. Schäfer, and H. Tamaki
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Average Case Behavior II
• G = random graph in Gn,p model: every potential edge is present with

probability p, independent of other edges.

• expected degree is pn for bipartite graphs, p(n−1) for general graphs

• p ≥ c0/n,

• c0 = 9.6 for bipartite graphs
35.1 for general graphs

• with high probability, G has the property that every non-maximum
matching has an augmenting path of length O(logn)

• algs of Hopcroft/Karp and Micali/Vazirani compute maximum matchings
in expected time O(m logn)

because running time is O(m ·L), where L is length of longest shortest
augmenting path with respect to any non-maximum matching

• Motwani (JACM 94) proved the result for p ≥ (lnn)/n
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Notation and Basic Facts
• G = (V,E), graph
• matching = subset of edges no two of which share an endpoint
• maximum matching = matching of maximum cardinality
• M ⊆ E, matching
• matching edge = edge in M
• non-matching edge = edge outside M
• matched node = node incident to an edge in M
• free node = non-matched node
• alternating path p = (e1,e2, . . . ,ek) with ei ∈ M iff ei+1 6∈ M
• augmenting path = alternating path connecting two free nodes
• if p is augmenting, M⊕ p has one larger cardinality than M
• if M is non-maximum, there is augmenting path relative to it

• S ⊆V , Γ(S) = neighbors of the nodes in S
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Motwani’s Argument

• non-maximum matchings in expander
graphs have short augmenting paths
because alternating trees are bushy
and hence reach all nodes after logn
levels

• expander graph: |Γ(S)| ≥ (1+ ε)|S| for every node set S with |S| ≤ n/2

• for p ≥ (lnn)/n: random graphs are essentially expander graphs

• sparse random graphs are far from being expander graphs
• constant fraction of nodes is isolated
• constant fraction of nodes has degree one
• there are chains of length O(logn)

• nevertheless, our proof also uses the concept of expansion
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Two Probabilistic Lemmas
An alternating path tree is a rooted tree
of even depth, where each vertex in
Odd(T ) has exactly one child.

We use Even(T ) to denote the nodes
of even depth excluding the root. Then
|Odd(T )| = |Even(T )|.
There are suitable constants ε , β , c0 such that random graphs
G ∈ G(n,n,c/n), where c ≥ c0, with high probability have the following
properties (ε = 0.01, β = 2.6, c0 = 9.6 do):

Lemma 1 (Expansion Lemma for Trees) Each alternating path tree T with
α · logn ≤ |Even(T )| ≤ n/β expands, i.e.,

|Γ(Even(T ))| ≥ (1+ ε) · |Even(T )|

Lemma 2 (Large Sets Lemma) Every two large disjoint sets of vertices,
i.e., both of size at least n/β , have an edge between them.
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The Proof of the Main Theorem: Bipartite Case
• M non-maximum matching, p augmenting path, endpoints f1 and f2

• grow alternating trees T1 and T2 rooted at f1 and f2, respectively
• suppose we have constructed even nodes at level 2 j
• put their unreached neighbors into level 2 j +1
• stop if one of the new nodes is free or belongs to other tree
• put mates of new nodes into level 2 j +2

• grow the trees in phases: in each phase add two levels to both trees

PSfrag replacements f1

6∈ M

∈ M

Claim: process ends after a logarithmic
number of phases
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The Proof of the Main Lemma II
• if |Even(Ti)| ≥ n/β for i = 1,2, the Large Sets Lemma guarantees an

edge connecting them and the process stops

• Expansion Lemma implies that situation of preceding item is reached in
a logarithmic number of phases

• Expansion Lemma guarantees expansion of trees with at least
logarithmically many levels

• consider a phase 2 j with j ≥ α logn: then |Even(Ti)| ≥ α logn

• assume |Even(Ti)| < n/β and let T ′
i be the next tree

• then |Even(T ′
i )| ≥ (1+ ε) · |Even(Ti)| and we have exponential growth
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Why do Trees expand, if Sets do not?

Motwani used an expansion lemma for sets.
What is probability that some set does not expand, i.e., for some set S,
|S| = s, we have |T | ≤ εs where T = Γ(S)\S?

∑
t≤εs

(

n
s

)(

n− s
t

)

(1− c/n)s(n−(s+t))

• there are
(n

s

)

ways to choose S

• and
(n−s

t

)

ways to choose T

• and we want no edge from S to V \T

we concentrate on a single term and on the case where s+ t ¿ n. Then

≈
(en

s

)s(en
t

)t
e−(c/n)sn ≈

(en
s

)s(en
t

)t
e−cs

we ignore the term involving t and obtain

≈
( en

sec

)s

In order for this to be small one needs c = Ω(logn).
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And now for trees
• What happens if we require in addition that G contains a tree on S?
• We have an additional factor

ss−2(c/n)s−1

• the first factor counts the number of trees (Cayley’s theorem)
• the second factor accounts for the fact that the edges of the tree must

be present
• if we add this into our previous formula, we obtain

≈
( en

sec

)s
ss−2(c/n)s−1 ≤ (n/c)s2

(ensc
snec

)s
≤ n3

(ec
ec

)s

• and this is small if s = Ω(logn) and c a sufficiently large constant:
logarithmic size trees expand

• of course, the details are slightly more involved
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Open Problems
• is the result true for all random graphs?

• we need c ≥ c0, c0 = 9.6 for bipartite graphs, . . .
• result also holds for c < 1, since only logarithmic size connected

components
• what happens in between?
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Summary

• Part I: One side ranks: notions of optimality
• Rank-Optimal Matchings
• Pareto-Optimal Matchings
• Popular Matchings

• Part II: Both sides rank: stability

• Part III: Average Case Analysis of Matching Algorithms
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