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Overview
• Geometric Computing
• Pitfalls of Geometric Computing
• Approaches to Reliable Geometric Computing
• Controlled Perturbation

• The Principle
• Applicability and Limits
• Practicability
• Open Problems

• Sources
• L. Kettner, KM, S. Pion, S. Schirra, C. Yap: Classroom Examples of Robustness Problems in

Geometric Computations, ESA 2004, LNCS 3221, 702–713.

• S. Funke, Ch. Klein, KM, S. Schmitt: Controlled Perturbation for Delaunay Triangulations,
SODA 2005, 1047-1056.

• KM and R. Osbild: Reliable and Efficient Computational Geometry via Controlled
Perturbation (Extended Abstract), submitted

• and the papers cited therein
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Key Messages

Reliable implementation of geometric algorithms is a challenging task

Controlled Perturbation leads to reliable and efficient implementations
with little additional work.

It is applicable to a large class of geometric algorithms.

Warning: the problem is not solved for the input given, but for a slightly
perturbed input.
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Geometric Computing I
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Geometric Computing II
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Pitfalls of Geometric Computing
• algs are designed for a Real-RAM, a machine which

can compute with real numbers in the sense of
mathematics (basic arithmetic, square-roots, roots
of polynomials, sine, . . . )

• and for non-degenerate inputs (no three collinear
points, no four co-circular points)

• but real machines (pun intended) have floating point
and bounded integer arithmetic and

• real inputs are frequently degenerate

• as a consequence, implementing the algs of computational geometry is
non-trivial enterprise, (examples from preceding slide)

• the goal of realiable and efficient implementations is still elusive
• theory (exact algs, alg numbers, . . . ) and practice (LEDA, CGAL,

EXACUS) have made tremendous progress, but there is still a long way
to go
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The Orientation Predicate

•
three points p, q, and r in the plane either lie
on a common line or form a left or right turn
orient(p,q,r) = 0, +1, −1 −1

+1

• analytically

orient(p,q,r) = sign(det







1 px py

1 qx qy

1 rx ry






)

= sign((qx − px)(ry − py)− (qy − py)(rx − px)).

• det is twice the signed area of the triangle (p,q,r)

• float_orient(p,q,r) is result of evaluating orient(p,q,r) in floating point
arithmetic
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Geometry of Float-Orient

• p = (0.5,0.5), q = (12,12) and r = (24,24)

•

picture shows

float_orient((px + xu, py + yu),q,r)

for 0 ≤ x,y ≤ 255, where u = 2−53.

the line `(q,r) is shown in black

• near the line many points are mis-classified
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A Simple Convex Hull Algorithm
• alg considers the points one by one, maintains vertices of current hull in

counter-clockwise order

• Initialize L to the counter-clockwise triangle (a,b,c).
for all r ∈ S do

if there is an edge e visible from r then
ompute the sequence (vi, . . . ,v j) of edges visible from r.
replace the subsequence (vi+1, . . . ,v j−1) by r.

end if
end for

•

PSfrag replacementsr

vi

v j
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The Effect on a Simple Convex Hull Algorithm

p2 p3

p4

p2 p3

p4

p6

PSfrag replacements

p1 p5

PSfrag replacements

p1 p5

• the hull of p1 to p4 is
correctly computed

• p5 lies close to p1, lies
inside the hull of the first
four points, but float-sees
the edge (p1, p4). The
magnified schematic
view below shows that
we have a concave
corner at p5.

• point p6 sees the edges
(p1, p2) and (p4, p5), but
does not see the edge
(p5, p1).

• we obtain either the hull
shown in the figure on the
right or ...
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Solutions
• The Exact Geometric Computation Paradigm (ECG)

• implement a Real-RAM to the extent needed in computational
geometry

• the challenge is an efficient realization
• not the subject of today’s talk

• Approximation
• compute the correct result for a slightly perturbed input
• Controlled Perturbation

• actively choose the perturbed input, so that the problem
becomes simpler

• initiated by Danny Halperin and co-workers
• refined and generalized by us
• message of the day: controlled perturbation works for a large

class of geometric algorithms: predicates of bounded arity and
decision trees of depth depending only on n
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Geometry of Float-Orient

•

• picture shows

float_orient((px +xu, py+yu),q,r)

for 0 ≤ x,y ≤ 255, where
u = 2−53.

the line `(q,r) is shown in black
• near the line many points are

mis-classified

• outside a narrow strip around the curve of degeneracy, points are
classified correctly !!!

• how narrow is narrow?
• true for all geometric predicates?
• if true, can we exploit to design reliable algorithms
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How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−p

• deal with numbers as large as 4M2

• error in a single operation is at most 4M22−p

• 7 accounts for the number of operations

• forbidden region for p = a strip of half-width 28 ·M2 ·2−p/dist(q,r) about
`(q,r)

• if p lies outside the forbidden region, the evaluation of orient(p,q,r) is
floating-point safe (f-safe)
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• Punch Line: if
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Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.

• assume p1 to pn−1 are already determined: choose pn in a circle of
radius δ about qn such that pn lies outside all strips of half-width
28 ·M2 ·2−p/dist(pi, p j) about `(pi, p j) for 1 ≤ i < j ≤ n−1

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π ·γ2 +n2 · (28 ·M2 ·2−p/γ) ·2 ·π ·δ

• min for γ = (n ·56 ·M2 ·2−p ·δ )1/3,
size of FR = 2π ·n5/3 · (56M22−pδ )2/3

• want: size of FR ≤ π ·δ 2/(2n)

• why . . ./(2n) then total prob of failure less than 1/2

• Punch Line: any p ≥ 2log(M/δ )+4logn+9
works M = 1000, δ = 0.001, n = 1000, p ≥ 2 ·20+4 ·10+9 = 89
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Converting a Program to Controlled Perturbation
• guard every predicate evaluation, i.e.,

replace branch on sign of E by

if (|E| ≤ max error in evaluation of E) stop;
branch on sign of E

• and then run the following master program
• initialize δ and p to convenient values
• loop

• perturb input
• run the guarded algorithm with floating point precision p
• if the program fails, double p and rerun

• theory tells us that program is guaranteed to terminate with prob ≥ 1/2
whenever p ≥ 2log(M/δ )+4logn+9

• estimate is pessimistic: smaller p works in practice.
• program solves problem for a perturbed input, not for the original input
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Side of Oriented Circle
• can we analyse other predicates in the same way?

•
side_of _circle(p,q,r,s) = +1,0,−1 if s lies left
of , on, right of oriented circle C(p,q,r)

+1

−1

PSfrag replacements
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• analytically: side_of _circle(p,q,r,s) = sign
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• det = 2 ·∆ · (R+dist(C,s)) ·dist(C,s) and hence

• |det| ≥ 2 ·∆ ·R ·dist(C,s)

• max error in f-evaluation = 40 ·M4 ·2−p

• f-eval is correct if s lies outside an annulus of half-width
40 ·M4 ·2−p/(2 ·∆ ·R)
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Visualization: Side of Circle

you see a circle of radius one probed on a 512×512 grid. In the figure on the
right, the area of the defining triangle is about 0.001, in the figure, on the left,
the defining triangle has area about 1.
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A Visualization of Controlled Perturbation

Forbidden
Areas

Possible
Perturbations

t
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Generalization to All (??) Geometric Predicates

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

x1 to xk points (in the plane)

x = (x1, . . . ,xk−1) fixed, x = xk variable q, r fixed, p variable

Cx = {x; f (x,x) = 0}, curve of degeneracy C = { p; orient(p,q,r) = 0}

Cx is either the entire plane or a smooth curve plane or `(q,r)

Punch Line: Geometric predicates measure distance from curve of degenera-
cy and therefore forbidden region is a tubular neighborhood of this curve.

PSfrag replacements

x

x0
Cx

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.19/25



Generalization II

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

x = (x1, . . . ,xk−1) fixed, x = xk variable q, r fixed, p variable

Cx = {x; f (x,x) = 0}, curve of degeneracy C = { p; orient(p,q,r) = 0}

PSfrag replacements
x

x0
Cx

concentrate on regular x and arbitrary x, let
x0 be point closest to x on Cx and define
h(d) = f (x,x0 +d x−x0

||x−x0||
)

h(d) = 2 ·dist(q,r) ·d

h(dist(x,Cx)) = f (x,x)

h(d)≈ c ·dk for some small k (usually one),
d small, and c depending on x
f (x,x) ≈ cx ·dist(x,Cx)

k orient(p,q,r) = 2dist(q,r)dist(p, `(q,r))
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Generalization III

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

Cx = {x; f (x,x) = 0}, curve of degeneracy C = { p; orient(p,q,r) = 0}

f (x,x) ≈ cx ·dist(x,Cx)
k orient(p,q,r) = 2dist(q,r)dist(p, `(q,r))

maximal error in evaluating f is c f ·Ma ·2−p max error = 28 ·M2 ·2−p

if cx ·dist(x,Cx)
k ≥ c f ·Ma ·2−p,

f-eval is correct
if 2 ·dist(q,r) ·dist(p, `(q,r)) > 28 ·M2 ·2−p,
. . .

use recursive argument to bound cx from below bound dist(q,r) from below

controlled perturbation works for a large class of geometric algorithms: predi-
cates of bounded number of arguments and decision trees of depth depending
only on n.
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Generalization II, revisited
• predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk)

• Cx = {x; f (x,x) = 0}, curve of degeneracy

PSfrag replacements
x

x0
Cx

• let x0 be point closest to x on Cx and assume that normal at x0 exists.

• then x is in direction of curve normal ∇ f =

(

∂ f /∂x
∂ f /∂y

)

at x0 and

f (x,x) ≈ f (x,x0)+(∇ f )(x,x0) ·dist(x,x0) = (∇ f )(x,x0) ·dist(x,x0)

• if Cx has no singularity,

cx := min
x∈Cx

||(∇ f )(x,x0)|| > 0

f (x,x) ≈ cx ·dist(x,Cx)
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Summary

• controlled perturbation works for a large class of geometric algorithms:
• predicates of bounded arity
• decision trees of depth depending only on number of points in

input, but not on actual coordinates

• algs in the class: Delaunay, Voronoi, Arrangements, ....

• used successfully for arrangements of spheres and cycles and
Delaunay diagram computations

• algs outside the class
• Gaussian elimination
• roots of a polynomial by iterative method
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Summary

• good predicates have k = 1 in f (x,x) ≈ cx ·dist(x,Cx)
k

• a guideline for designing good predicates
• it works: Delaunay triangulations, arrangements of circles and spheres,
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Open Problems
•• good evaluation schemes for predicates, e.g., Clarkson’s work on determinants and Fortunes’s

work for orientation. Recall that we only want the sign and not the value.

• good versus bad formulas for the same predicate

• redo the Halperin etal and Funke etal papers according to general theory

• do all predicates of the Voronoi diagrams of line segments

• explain the fine structure of the pictures

• arrangements of circular arcs, ellipsoids, ...

• implementation for Voronoi diagrams of line segments competitive to VRONI

• can we turn the general scheme into a program transformer, a Controlled-Perturbation-CGAL

• a good talk on the subject

• final version of the SODA 05 paper

• long version of the new paper

• packing arguments and number and size of forbidden regions
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