Reliable Geometric Computation via Controlled Perturbation !?

Kurt Mehlhorn
Max-Planck-Institute für Informatik

Overview

- Geometric Computing
- Pitfalls of Geometric Computing
- Approaches to Reliable Geometric Computing
- Controlled Perturbation
- The Principle
- Applicability and Limits
- Practicability
- Open Problems
- Sources
- L. Kettner, KM, S. Pion, S. Schirra, C. Yap: Classroom Examples of Robustness Problems in Geometric Computations, ESA 2004, LNCS 3221, 702-713.
- S. Funke, Ch. Klein, KM, S. Schmitt: Controlled Perturbation for Delaunay Triangulations, SODA 2005, 1047-1056.
- KM and R. Osbild: Reliable and Efficient Computational Geometry via Controlled Perturbation (Extended Abstract), submitted
- and the papers cited therein

Key Messages

Reliable implementation of geometric algorithms is a challenging task
Controlled Perturbation leads to reliable and efficient implementations with little additional work.

It is applicable to a large class of geometric algorithms.

Warning: the problem is not solved for the input given, but for a slightly perturbed input.

Geometric Computing I

Figure 2: Three MCB cycles on a KNNG of a point cloud: trivial
 the latter two not.

Geometric Computing II

Pitfalls of Geometric Computing

- algs are designed for a Real-RAM, a machine which can compute with real numbers in the sense of mathematics (basic arithmetic, square-roots, roots of polynomials, sine, ...)
- and for non-degenerate inputs (no three collinear points, no four co-circular points)
- but real machines (pun intended) have floating point and bounded integer arithmetic and

- real inputs are frequently degenerate
- as a consequence, implementing the algs of computational geometry is non-trivial enterprise, (examples from preceding slide)
- the goal of realiable and efficient implementations is still elusive
- theory (exact algs, alg numbers, ...) and practice (LEDA, CGAL, EXACUS) have made tremendous progress, but there is still a long way to go

The Orientation Predicate

three points p, q, and r in the plane either lie

- on a common line or form a left or right turn $\operatorname{orient}(p, q, r)=0,+1,-1$

- analytically

$$
\begin{aligned}
\operatorname{orient}(p, q, r) & =\operatorname{sign}\left(\operatorname{det}\left[\begin{array}{ccc}
1 & p_{x} & p_{y} \\
1 & q_{x} & q_{y} \\
1 & r_{x} & r_{y}
\end{array}\right]\right) \\
& =\operatorname{sign}\left(\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right)\right) .
\end{aligned}
$$

- det is twice the signed area of the triangle (p, q, r)
- float_orient (p, q, r) is result of evaluating $\operatorname{orient}(p, q, r)$ in floating point arithmetic

Geometry of Float-Orient

- $p=(0.5,0.5), q=(12,12)$ and $r=(24,24)$

picture shows
float_orient $\left(\left(p_{x}+x u, p_{y}+y u\right), q, r\right)$
for $0 \leq x, y \leq 255$, where $u=2^{-53}$.
the line $\ell(q, r)$ is shown in black
- near the line many points are mis-classified

A Simple Convex Hull Algorithm

- alg considers the points one by one, maintains vertices of current hull in counter-clockwise order

```
Initialize L to the counter-clockwise triangle (a,b,c).
for all r}\inS\mathrm{ do
    if there is an edge e visible from r}\mathrm{ then
        ompute the sequence ( }\mp@subsup{v}{i}{},\ldots,\mp@subsup{v}{j}{})\mathrm{ ) of edges visible from r
        replace the subsequence ( }\mp@subsup{v}{i+1}{\prime},\ldots,\mp@subsup{v}{j-1}{})\mathrm{ by }r\mathrm{ .
    end if
end for
```


The Effect on a Simple Convex Hull Algorithm

- the hull of p_{1} to p_{4} is correctly computed
- p_{5} lies close to p_{1}, lies inside the hull of the first four points, but float-sees the edge $\left(p_{1}, p_{4}\right)$. The magnified schematic view below shows that we have a concave corner at p_{5}.
- point p_{6} sees the edges $\left(p_{1}, p_{2}\right)$ and $\left(p_{4}, p_{5}\right)$, but does not see the edge $\left(p_{5}, p_{1}\right)$.
- we obtain either the hull shown in the figure on the right or ...

Solutions

- The Exact Geometric Computation Paradigm (ECG)
- implement a Real-RAM to the extent needed in computational geometry
- the challenge is an efficient realization
- not the subject of today's talk
- Approximation
- compute the correct result for a slightly perturbed input
- Controlled Perturbation
- actively choose the perturbed input, so that the problem becomes simpler
- initiated by Danny Halperin and co-workers
- refined and generalized by us
- message of the day: controlled perturbation works for a large class of geometric algorithms: predicates of bounded arity and decision trees of depth depending only on n

Geometry of Float-Orient

- picture shows
float_orient $\left(\left(p_{x}+x u, p_{y}+y u\right), q, r\right)$
for $0 \leq x, y \leq 255$, where
$u=2^{-53}$.
the line $\ell(q, r)$ is shown in black
- near the line many points are mis-classified
- outside a narrow strip around the curve of degeneracy, points are classified correctly !!!
- how narrow is narrow?
- true for all geometric predicates?
- if true, can we exploit to design reliable algorithms

How Narrow is Narrow?

- $\operatorname{orient}(p, q, r)=\operatorname{sign}\left(\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right)\right)=\operatorname{sign}(E)$
- $E=2 \cdot$ signed area Δ of the triangle (p, q, r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^{2} \cdot 2^{-p}$
- deal with numbers as large as $4 M^{2}$
- error in a single operation is at most $4 M^{2} 2^{-p}$
- 7 accounts for the number of operations

How Narrow is Narrow?

- $\operatorname{orient}(p, q, r)=\operatorname{sign}\left(\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right)\right)=\operatorname{sign}(E)$
- $E=2 \cdot$ signed area Δ of the triangle (p, q, r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^{2} \cdot 2^{-p}$
- if $2|\Delta|>28 \cdot M^{2} \cdot 2^{-p}$, float_orient gives the correct result
- $|\Delta|=(1 / 2) \operatorname{dist}(q, r) \cdot \operatorname{dist}(\ell(q, r), p)$

How Narrow is Narrow?

- $\operatorname{orient}(p, q, r)=\operatorname{sign}\left(\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right)\right)=\operatorname{sign}(E)$
- $E=2 \cdot$ signed area Δ of the triangle (p, q, r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^{2} \cdot 2^{-p}$
- Punch Line: if

$$
\operatorname{dist}(\ell((q, r), p)) \geq 28 \cdot M^{2} \cdot 2^{-p} / \operatorname{dist}(q, r)
$$

float_orient (p, q, r) gives the correct result.

on the right, q and r have one third the distance than in figure on the left

How Narrow is Narrow?

- $\operatorname{orient}(p, q, r)=\operatorname{sign}\left(\left(q_{x}-p_{x}\right)\left(r_{y}-p_{y}\right)-\left(q_{y}-p_{y}\right)\left(r_{x}-p_{x}\right)\right)=\operatorname{sign}(E)$
- $E=2 \cdot$ signed area Δ of the triangle (p, q, r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^{2} \cdot 2^{-p}$
- forbidden region for $p=$ a strip of half-width $28 \cdot M^{2} \cdot 2^{-p} / \operatorname{dist}(q, r)$ about $\ell(q, r)$
- if p lies outside the forbidden region, the evaluation of $\operatorname{orient}(p, q, r)$ is floating-point safe (f-safe)

Controlled Pertubation I

- consider algorithms using only the orientation predicate
- input points q_{1}, \ldots, q_{n} : perturb into p_{1}, \ldots, p_{n} such that all evaluations for the perturbed points are f-safe.

Controlled Pertubation I

- consider algorithms using only the orientation predicate
- input points q_{1}, \ldots, q_{n} : perturb into p_{1}, \ldots, p_{n} such that all evaluations for the perturbed points are f-safe.
- assume p_{1} to p_{n-1} are already determined: choose p_{n} in a circle of radius δ about q_{n} such that p_{n} lies outside all strips of half-width $28 \cdot M^{2} \cdot 2^{-p} / \operatorname{dist}\left(p_{i}, p_{j}\right)$ about $\ell\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq n-1$

Controlled Pertubation I

- consider algorithms using only the orientation predicate
- input points q_{1}, \ldots, q_{n} : perturb into p_{1}, \ldots, p_{n} such that all evaluations for the perturbed points are f-safe.
- assume p_{1} to p_{n-1} are already determined: choose p_{n} in a circle of radius δ about q_{n} such that p_{n} lies outside all strips of half-width $28 \cdot M^{2} \cdot 2^{-p} / \operatorname{dist}\left(p_{i}, p_{j}\right)$ about $\ell\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq n-1$
- HUCH: strips can be arbitrarily wide
- IDEA: also guarantee $\operatorname{dist}\left(p_{i}, p_{j}\right)>\gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^{2}+n^{2} \cdot\left(28 \cdot M^{2} \cdot 2^{-p} / \gamma\right) \cdot 2 \cdot \pi \cdot \delta$

Controlled Pertubation I

- consider algorithms using only the orientation predicate
- input points q_{1}, \ldots, q_{n} : perturb into p_{1}, \ldots, p_{n} such that all evaluations for the perturbed points are f-safe.
- assume p_{1} to p_{n-1} are already determined: choose p_{n} in a circle of radius δ about q_{n} such that p_{n} lies outside all strips of half-width $28 \cdot M^{2} \cdot 2^{-p} / \operatorname{dist}\left(p_{i}, p_{j}\right)$ about $\ell\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq n-1$
- IDEA: also guarantee $\operatorname{dist}\left(p_{i}, p_{j}\right)>\gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^{2}+n^{2} \cdot\left(28 \cdot M^{2} \cdot 2^{-p} / \gamma\right) \cdot 2 \cdot \pi \cdot \delta$
- min for $\gamma=\left(n \cdot 56 \cdot M^{2} \cdot 2^{-p} \cdot \delta\right)^{1 / 3}$, size of $\mathrm{FR}=2 \pi \cdot n^{5 / 3} \cdot\left(56 M^{2} 2^{-p} \delta\right)^{2 / 3}$

Controlled Pertubation I

- consider algorithms using only the orientation predicate
- input points q_{1}, \ldots, q_{n} : perturb into p_{1}, \ldots, p_{n} such that all evaluations for the perturbed points are f-safe.
- assume p_{1} to p_{n-1} are already determined: choose p_{n} in a circle of radius δ about q_{n} such that p_{n} lies outside all strips of half-width $28 \cdot M^{2} \cdot 2^{-p} / \operatorname{dist}\left(p_{i}, p_{j}\right)$ about $\ell\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq n-1$
- IDEA: also guarantee $\operatorname{dist}\left(p_{i}, p_{j}\right)>\gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^{2}+n^{2} \cdot\left(28 \cdot M^{2} \cdot 2^{-p} / \gamma\right) \cdot 2 \cdot \pi \cdot \delta$
- $\quad \min$ for $\gamma=\left(n \cdot 56 \cdot M^{2} \cdot 2^{-p} \cdot \delta\right)^{1 / 3}$, size of $\mathrm{FR}=2 \pi \cdot n^{5 / 3} \cdot\left(56 M^{2} 2^{-p} \delta\right)^{2 / 3}$
- want: size of $\mathrm{FR} \leq \pi \cdot \delta^{2} /(2 n)$
- why .../(2n) then total prob of failure less than $1 / 2$

Controlled Pertubation I

- consider algorithms using only the orientation predicate
- input points q_{1}, \ldots, q_{n} : perturb into p_{1}, \ldots, p_{n} such that all evaluations for the perturbed points are f-safe.
- assume p_{1} to p_{n-1} are already determined: choose p_{n} in a circle of radius δ about q_{n} such that p_{n} lies outside all strips of half-width $28 \cdot M^{2} \cdot 2^{-p} / \operatorname{dist}\left(p_{i}, p_{j}\right)$ about $\ell\left(p_{i}, p_{j}\right)$ for $1 \leq i<j \leq n-1$
- IDEA: also guarantee $\operatorname{dist}\left(p_{i}, p_{j}\right)>\gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^{2}+n^{2} \cdot\left(28 \cdot M^{2} \cdot 2^{-p} / \gamma\right) \cdot 2 \cdot \pi \cdot \delta$
- \min for $\gamma=\left(n \cdot 56 \cdot M^{2} \cdot 2^{-p} \cdot \delta\right)^{1 / 3}$, size of $\mathrm{FR}=2 \pi \cdot n^{5 / 3} \cdot\left(56 M^{2} 2^{-p} \delta\right)^{2 / 3}$
- want: size of $\mathrm{FR} \leq \pi \cdot \delta^{2} /(2 n)$
- why .../(2n)
then total prob of failure less than $1 / 2$
- Punch Line: any $p \geq 2 \log (M / \delta)+4 \log n+9$ works

$$
M=1000, \delta=0.001, n=1000, p \geq 2 \cdot 20+4 \cdot 10+9=89
$$

Converting a Program to Controlled Perturbation

- guard every predicate evaluation, i.e., replace branch on sign of E by
if $(|E| \leq$ max error in evaluation of $E)$ stop; branch on sign of E
- and then run the following master program
- initialize δ and p to convenient values
- loop
- perturb input
- run the guarded algorithm with floating point precision p
- if the program fails, double p and rerun
- theory tells us that program is guaranteed to terminate with prob $\geq 1 / 2$ whenever $p \geq 2 \log (M / \delta)+4 \log n+9$
- estimate is pessimistic: smaller p works in practice.
- program solves problem for a perturbed input, not for the original input

Side of Oriented Circle

- can we analyse other predicates in the same way?
- side_of_circle $(p, q, r, s)=+1,0,-1$ if s lies left of , on, right of oriented circle $C(p, q, r)$

- analytically: side_of_circle $(p, q, r, s)=\operatorname{sign}\left|\begin{array}{cccc}1 & x_{1} & y_{1} & x_{1}^{2}+y_{1}^{2} \\ 1 & x_{2} & y_{2} & x_{2}^{2}+y_{2}^{2} \\ 1 & x_{3} & y_{3} & x_{3}^{2}+y_{3}^{2} \\ 1 & x & y & x^{2}+y^{2}\end{array}\right|$
- $\operatorname{det}=2 \cdot \Delta \cdot(R+\operatorname{dist}(C, s)) \cdot \operatorname{dist}(C, s)$ and hence
- $|\operatorname{det}| \geq 2 \cdot \Delta \cdot R \cdot \operatorname{dist}(C, s)$
- max error in f-evaluation $=40 \cdot M^{4} \cdot 2^{-p}$
- f-eval is correct if s lies outside an annulus of half-width $40 \cdot M^{4} \cdot 2^{-p} /(2 \cdot \Delta \cdot R)$

Visualization: Side of Circle

you see a circle of radius one probed on a 512×512 grid. In the figure on the right, the area of the defining triangle is about 0.001 , in the figure, on the left, the defining triangle has area about 1.

A Visualization of Controlled Perturbation

Possible Perturbations

Forbidden
Areas

Generalization to All (??) Geometric Predicates

general
predicate $P\left(x_{1}, \ldots, x_{k}\right)=\operatorname{sign} f\left(x_{1}, \ldots, x_{k}\right)$
x_{1} to x_{k} points (in the plane)
$\mathbf{x}=\left(x_{1}, \ldots, x_{k-1}\right)$ fixed, $x=x_{k}$ variable
$C_{\mathbf{x}}=\{x ; f(\mathbf{x}, x)=0\}$, curve of degeneracy
$C_{\mathbf{x}}$ is either the entire plane or a smooth curve
orientation
orient (p, q, r)
q, r fixed, p variable
$C=\{p ; \operatorname{orient}(p, q, r)=0\}$
plane or $\ell(q, r)$

Punch Line: Geometric predicates measure distance from curve of degeneracy and therefore forbidden region is a tubular neighborhood of this curve.

Generalization II

general
predicate $P\left(x_{1}, \ldots, x_{k}\right)=\operatorname{sign} f\left(x_{1}, \ldots, x_{k}\right)$
$\mathbf{x}=\left(x_{1}, \ldots, x_{k-1}\right)$ fixed, $x=x_{k}$ variable
$C_{\mathbf{x}}=\{x ; f(\mathbf{x}, x)=0\}$, curve of degeneracy

concentrate on regular \mathbf{x} and arbitrary x, let x_{0} be point closest to x on $C_{\mathbf{x}}$ and define $h(d)=f\left(\mathbf{x}, x_{0}+d \frac{x-x_{0}}{\left\|x-x_{0}\right\|}\right)$
$h\left(\operatorname{dist}\left(x, C_{\mathbf{x}}\right)\right)=f(\mathbf{x}, x)$
$h(d) \approx c \cdot d^{k}$ for some small k (usually one), d small, and c depending on \mathbf{x}
$f(\mathbf{x}, x) \approx c_{\mathbf{x}} \cdot \operatorname{dist}\left(x, C_{\mathbf{x}}\right)^{k}$

$$
h(d)=2 \cdot \operatorname{dist}(q, r) \cdot d
$$

Generalization III

general
predicate $P\left(x_{1}, \ldots, x_{k}\right)=\operatorname{sign} f\left(x_{1}, \ldots, x_{k}\right)$
$C_{\mathbf{x}}=\{x ; f(\mathbf{x}, x)=0\}$, curve of degeneracy
$f(\mathbf{x}, x) \approx c_{\mathbf{x}} \cdot \operatorname{dist}\left(x, C_{\mathbf{x}}\right)^{k}$
maximal error in evaluating f is $c_{f} \cdot M^{a} \cdot 2^{-p}$
if $c_{\mathbf{x}} \cdot \operatorname{dist}\left(x, C_{\mathbf{x}}\right)^{k} \geq c_{f} \cdot M^{a} \cdot 2^{-p}$,
f -eval is correct
orientation
orient (p, q, r)
$C=\{p ; \operatorname{orient}(p, q, r)=0\}$
$\operatorname{orient}(p, q, r)=2 \operatorname{dist}(q, r) \operatorname{dist}(p, \ell(q, r)$
max error $=28 \cdot M^{2} \cdot 2^{-p}$
if $2 \cdot \operatorname{dist}(q, r) \cdot \operatorname{dist}(p, \ell(q, r))>28 \cdot M^{2}$.
...
bound $\operatorname{dist}(q, r)$ from below
controlled perturbation works for a large class of geometric algorithms: predicates of bounded number of arguments and decision trees of depth depending only on n.

Generalization II, revisited

- predicate $P\left(x_{1}, \ldots, x_{k}\right)=\operatorname{sign} f\left(x_{1}, \ldots, x_{k}\right)$
- $C_{\mathbf{x}}=\{x ; f(\mathbf{x}, x)=0\}$, curve of degeneracy

- let x_{0} be point closest to x on C_{x} and assume that normal at x_{0} exists.
- then x is in direction of curve normal $\nabla f=\binom{\partial f / \partial x}{\partial f / \partial y}$ at x_{0} and

$$
f(\mathbf{x}, x) \approx f\left(\mathbf{x}, x_{0}\right)+(\nabla f)\left(\mathbf{x}, x_{0}\right) \cdot \operatorname{dist}\left(x, x_{0}\right)=(\nabla f)\left(\mathbf{x}, x_{0}\right) \cdot \operatorname{dist}\left(x, x_{0}\right)
$$

- if $C_{\mathbf{x}}$ has no singularity,

$$
\begin{aligned}
c_{\mathbf{x}} & :=\min _{x \in C_{\mathbf{x}}}\left\|(\nabla f)\left(\mathbf{x}, x_{0}\right)\right\|>0 \\
f(\mathbf{x}, x) & \approx c_{\mathbf{x}} \cdot \operatorname{dist}\left(x, C_{\mathbf{x}}\right)
\end{aligned}
$$

Summary

- controlled perturbation works for a large class of geometric algorithms:
- predicates of bounded arity
- decision trees of depth depending only on number of points in input, but not on actual coordinates
- algs in the class: Delaunay, Voronoi, Arrangements,
- used successfully for arrangements of spheres and cycles and Delaunay diagram computations
- algs outside the class
- Gaussian elimination
- roots of a polynomial by iterative method

Summary

- good predicates have $k=1$ in $f(\mathbf{x}, x) \approx c_{\mathbf{x}} \cdot \operatorname{dist}\left(x, C_{\mathbf{x}}\right)^{k}$
- a guideline for designing good predicates
- it works: Delaunay triangulations, arrangements of circles and spheres,

Open Problems

- good evaluation schemes for predicates, e.g., Clarkson's work on determinants and Fortunes's work for orientation. Recall that we only want the sign and not the value.
- good versus bad formulas for the same predicate
- redo the Halperin etal and Funke etal papers according to general theory
- do all predicates of the Voronoi diagrams of line segments
- explain the fine structure of the pictures
- arrangements of circular arcs, ellipsoids, ...
- implementation for Voronoi diagrams of line segments competitive to VRONI
- can we turn the general scheme into a program transformer, a Controlled-Perturbation-CGAL
- a good talk on the subject
- final version of the SODA 05 paper
- long version of the new paper
- packing arguments and number and size of forbidden regions

