

Reliable Geometric Computation via Controlled Perturbation !?

Kurt Mehlhorn Max-Planck-Institute für Informatik

- Geometric Computing
- Pitfalls of Geometric Computing
- Approaches to Reliable Geometric Computing
- Controlled Perturbation
 - The Principle
 - Applicability and Limits
 - Practicability
 - Open Problems
- Sources
 - L. Kettner, KM, S. Pion, S. Schirra, C. Yap: Classroom Examples of Robustness Problems in Geometric Computations, ESA 2004, LNCS 3221, 702–713.
 - S. Funke, Ch. Klein, KM, S. Schmitt: Controlled Perturbation for Delaunay Triangulations, SODA 2005, 1047-1056.
 - KM and R. Osbild: Reliable and Efficient Computational Geometry via Controlled Perturbation (Extended Abstract), submitted
 - and the papers cited therein

Key Messages

Reliable implementation of geometric algorithms is a challenging task

Controlled Perturbation leads to reliable and efficient implementations with little additional work.

It is applicable to a large class of geometric algorithms.

Warning: the problem is not solved for the input given, but for a slightly perturbed input.

Geometric Computing I

(blue) and onon-pivial (modantk green). The first should be closed and the latter two not.

Reliable Geometric ComputationviaComputer Perturbation !? – p.4/25

Geometric Computing II

Pitfalls of Geometric Computing

- algs are designed for a Real-RAM, a machine which can compute with real numbers in the sense of mathematics (basic arithmetic, square-roots, roots of polynomials, sine, ...)
- and for non-degenerate inputs (no three collinear points, no four co-circular points)
- but real machines (pun intended) have floating point and bounded integer arithmetic and
- real inputs are frequently degenerate

Kurt Mehlhorn, MPI für Informatik

- as a consequence, implementing the algs of computational geometry is non-trivial enterprise, (examples from preceding slide)
- the goal of realiable and efficient implementations is still elusive
- theory (exact algs, alg numbers, ...) and practice (LEDA, CGAL, EXACUS) have made tremendous progress, but there is still a long way to go

The Orientation Predicate

three points p, q, and r in the plane either lie • on a common line or form a left or right turn orient(p,q,r) = 0, +1, -1

• analytically

$$orient(p,q,r) = sign(\det \begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix})$$
$$= sign((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x)).$$

- det is twice the signed area of the triangle (p,q,r)
- *float_orient*(p,q,r) is result of evaluating *orient*(p,q,r) in floating point arithmetic

Geometry of Float-Orient

•
$$p = (0.5, 0.5), q = (12, 12) \text{ and } r = (24, 24)$$

picture shows

$$float_orient((p_x + xu, p_y + yu), q, r)$$

for $0 \le x, y \le 255$, where $u = 2^{-53}$. the line $\ell(q, r)$ is shown in black

near the line many points are mis-classified

A Simple Convex Hull Algorithm

- alg considers the points one by one, maintains vertices of current hull in counter-clockwise order
- Initialize *L* to the counter-clockwise triangle (*a*, *b*, *c*).
 for all *r* ∈ *S* do

 if there is an edge *e* visible from *r* then
 ompute the sequence (*v_i*,...,*v_j*) of edges visible from *r*.
 replace the subsequence (*v_{i+1}*,...,*v_{j-1}*) by *r*.
 end if
 end for

The Effect on a Simple Convex Hull Algorithm

- the hull of p_1 to p_4 is correctly computed
- *p*₅ lies close to *p*₁, lies inside the hull of the first four points, but float-sees the edge (*p*₁, *p*₄). The magnified schematic view below shows that we have a concave corner at *p*₅.
- point p_6 sees the edges (p_1, p_2) and (p_4, p_5) , but does not see the edge (p_5, p_1) .
- we obtain either the hull shown in the figure on the right or ...

Solutions

- The Exact Geometric Computation Paradigm (ECG)
 - implement a Real-RAM to the extent needed in computational geometry
 - the challenge is an efficient realization
 - not the subject of today's talk
- Approximation
 - compute the correct result for a slightly perturbed input
 - Controlled Perturbation
 - actively choose the perturbed input, so that the problem becomes simpler
 - initiated by Danny Halperin and co-workers
 - refined and generalized by us
 - message of the day: controlled perturbation works for a large class of geometric algorithms: predicates of bounded arity and decision trees of depth depending only on n

Geometry of Float-Orient

• picture shows

 $float_orient((p_x+xu, p_y+yu), q, r)$

for $0 \le x, y \le 255$, where $u = 2^{-53}$.

the line $\ell(q,r)$ is shown in black

 near the line many points are mis-classified

• outside a narrow strip around the curve of degeneracy, points are classified correctly !!!

- how narrow is narrow?
- true for all geometric predicates?
- if true, can we exploit to design reliable algorithms

- $orient(p,q,r) = sign((q_x p_x)(r_y p_y) (q_y p_y)(r_x p_x)) = sign(E)$
- E = 2· signed area Δ of the triangle (p,q,r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^2 \cdot 2^{-p}$
 - deal with numbers as large as $4M^2$
 - error in a single operation is at most $4M^22^{-p}$
 - 7 accounts for the number of operations

- $orient(p,q,r) = sign((q_x p_x)(r_y p_y) (q_y p_y)(r_x p_x)) = sign(E)$
- $E = 2 \cdot \text{signed}$ area Δ of the triangle (p,q,r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^2 \cdot 2^{-p}$
- if $2|\Delta| > 28 \cdot M^2 \cdot 2^{-p}$, *float_orient* gives the correct result

- $orient(p,q,r) = sign((q_x p_x)(r_y p_y) (q_y p_y)(r_x p_x)) = sign(E)$
- E = 2· signed area Δ of the triangle (p,q,r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^2 \cdot 2^{-p}$
- Punch Line: if

 $dist(\ell((q,r),p)) \ge 28 \cdot M^2 \cdot 2^{-p}/dist(q,r),$

 $float_orient(p,q,r)$ gives the correct result.

on the right, q and r have one third the distance than in figure on the left

- $orient(p,q,r) = sign((q_x p_x)(r_y p_y) (q_y p_y)(r_x p_x)) = sign(E)$
- E = 2· signed area Δ of the triangle (p,q,r)
- if coordinates are bounded by M, maximal error in evaluating E with floating point arithmetic with mantissa length p is $28 \cdot M^2 \cdot 2^{-p}$
- forbidden region for p = a strip of half-width $28 \cdot M^2 \cdot 2^{-p} / dist(q, r)$ about $\ell(q, r)$
- if p lies outside the forbidden region, the evaluation of orient(p,q,r) is floating-point safe (f-safe)

- consider algorithms using only the orientation predicate
- input points q_1, \ldots, q_n : perturb into p_1, \ldots, p_n such that all evaluations for the perturbed points are f-safe.

- consider algorithms using only the orientation predicate
- input points q_1, \ldots, q_n : perturb into p_1, \ldots, p_n such that all evaluations for the perturbed points are f-safe.
- assume p_1 to p_{n-1} are already determined: choose p_n in a circle of radius δ about q_n such that p_n lies outside all strips of half-width $28 \cdot M^2 \cdot 2^{-p} / dist(p_i, p_j)$ about $\ell(p_i, p_j)$ for $1 \le i < j \le n-1$

- consider algorithms using only the orientation predicate
- input points q_1, \ldots, q_n : perturb into p_1, \ldots, p_n such that all evaluations for the perturbed points are f-safe.
- assume p_1 to p_{n-1} are already determined: choose p_n in a circle of radius δ about q_n such that p_n lies outside all strips of half-width $28 \cdot M^2 \cdot 2^{-p} / dist(p_i, p_j)$ about $\ell(p_i, p_j)$ for $1 \le i < j \le n-1$
- HUCH: strips can be arbitrarily wide
- IDEA: also guarantee $dist(p_i, p_j) > \gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^2 + n^2 \cdot (28 \cdot M^2 \cdot 2^{-p} / \gamma) \cdot 2 \cdot \pi \cdot \delta$

- consider algorithms using only the orientation predicate
- input points q_1, \ldots, q_n : perturb into p_1, \ldots, p_n such that all evaluations for the perturbed points are f-safe.
- assume p_1 to p_{n-1} are already determined: choose p_n in a circle of radius δ about q_n such that p_n lies outside all strips of half-width $28 \cdot M^2 \cdot 2^{-p} / dist(p_i, p_j)$ about $\ell(p_i, p_j)$ for $1 \le i < j \le n-1$
- IDEA: also guarantee $dist(p_i, p_j) > \gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^2 + n^2 \cdot (28 \cdot M^2 \cdot 2^{-p} / \gamma) \cdot 2 \cdot \pi \cdot \delta$
- min for $\gamma = (n \cdot 56 \cdot M^2 \cdot 2^{-p} \cdot \delta)^{1/3}$, size of FR = $2\pi \cdot n^{5/3} \cdot (56M^2 2^{-p} \delta)^{2/3}$

- consider algorithms using only the orientation predicate
- input points q_1, \ldots, q_n : perturb into p_1, \ldots, p_n such that all evaluations for the perturbed points are f-safe.
- assume p_1 to p_{n-1} are already determined: choose p_n in a circle of radius δ about q_n such that p_n lies outside all strips of half-width $28 \cdot M^2 \cdot 2^{-p} / dist(p_i, p_j)$ about $\ell(p_i, p_j)$ for $1 \le i < j \le n-1$
- IDEA: also guarantee $dist(p_i, p_j) > \gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^2 + n^2 \cdot (28 \cdot M^2 \cdot 2^{-p} / \gamma) \cdot 2 \cdot \pi \cdot \delta$
- min for $\gamma = (n \cdot 56 \cdot M^2 \cdot 2^{-p} \cdot \delta)^{1/3}$, size of FR $= 2\pi \cdot n^{5/3} \cdot (56M^2 2^{-p} \delta)^{2/3}$
- want: size of $FR \le \pi \cdot \delta^2/(2n)$

• why $\dots/(2n)$ then total prob of failure less than 1/2

- consider algorithms using only the orientation predicate
- input points q_1, \ldots, q_n : perturb into p_1, \ldots, p_n such that all evaluations for the perturbed points are f-safe.
- assume p_1 to p_{n-1} are already determined: choose p_n in a circle of radius δ about q_n such that p_n lies outside all strips of half-width $28 \cdot M^2 \cdot 2^{-p} / dist(p_i, p_j)$ about $\ell(p_i, p_j)$ for $1 \le i < j \le n-1$
- IDEA: also guarantee $dist(p_i, p_j) > \gamma$ for some γ
- then size of forbidden region $\leq n \cdot \pi \cdot \gamma^2 + n^2 \cdot (28 \cdot M^2 \cdot 2^{-p} / \gamma) \cdot 2 \cdot \pi \cdot \delta$
- min for $\gamma = (n \cdot 56 \cdot M^2 \cdot 2^{-p} \cdot \delta)^{1/3}$, size of FR $= 2\pi \cdot n^{5/3} \cdot (56M^2 2^{-p} \delta)^{2/3}$
- want: size of $FR \le \pi \cdot \delta^2/(2n)$
- why $\dots/(2n)$ then total prob of failure less than 1/2
- Punch Line: any $p \ge 2\log(M/\delta) + 4\log n + 9$ works $M = 1000, \delta = 0.001, n = 1000, p \ge 2 \cdot 20 + 4 \cdot 10 + 9 = 89$

Converting a Program to Controlled Perturbation

• guard every predicate evaluation, i.e.,

replacebranch on sign of Ebyif $(|E| \le \max \text{ error in evaluation of } E)$ stop;branch on sign of E

- and then run the following master program
 - initialize δ and p to convenient values
 - loop
 - perturb input
 - run the guarded algorithm with floating point precision *p*
 - if the program fails, double p and rerun
- theory tells us that program is guaranteed to terminate with prob $\geq 1/2$ whenever $p \geq 2\log(M/\delta) + 4\log n + 9$
- estimate is pessimistic: smaller p works in practice.
- program solves problem for a perturbed input, not for the original input

IAX-PLANCK_CESELISCHAET

Side of Oriented Circle

• can we analyse other predicates in the same way?

side_of_circle(p,q,r,s) = +1,0,-1 if s lies left of , on, right of oriented circle C(p,q,r)

• analytically:
$$side_of_circle(p,q,r,s) = sign \begin{vmatrix} 1 & x_1 & y_1 & x_1^2 + y_1^2 \\ 1 & x_2 & y_2 & x_2^2 + y_2^2 \\ 1 & x_3 & y_3 & x_3^2 + y_3^2 \\ 1 & x & y & x^2 + y^2 \end{vmatrix}$$

1 .

- $det = 2 \cdot \Delta \cdot (R + dist(C, s)) \cdot dist(C, s)$ and hence
- $|det| \ge 2 \cdot \Delta \cdot R \cdot dist(C,s)$
- max error in f-evaluation = $40 \cdot M^4 \cdot 2^{-p}$
- f-eval is correct if *s* lies outside an annulus of half-width $40 \cdot M^4 \cdot 2^{-p} / (2 \cdot \Delta \cdot R)$

Visualization: Side of Circle

you see a circle of radius one probed on a 512×512 grid. In the figure on the right, the area of the defining triangle is about 0.001, in the figure, on the left, the defining triangle has area about 1.

A Visualization of Controlled Perturbation

Generalization to All (??) Geometric Predicates

general	orientation
predicate $P(x_1,\ldots,x_k) = \operatorname{sign} f(x_1,\ldots,x_k)$	orient(p,q,r)
x_1 to x_k points (in the plane)	
$\mathbf{x} = (x_1, \dots, x_{k-1})$ fixed, $x = x_k$ variable	q, r fixed, p variable
$C_{\mathbf{x}} = \{x; f(\mathbf{x}, x) = 0\}, \text{ curve of degeneracy}$	$C = \{ p; orient(p,q,r) = 0 \}$
$C_{\mathbf{x}}$ is either the entire plane or a smooth curve	plane or $\ell(q,r)$

Punch Line: Geometric predicates measure distance from curve of degeneracy and therefore forbidden region is a tubular neighborhood of this curve.

MAX-PLANCK-CESELLSCHAET

Generalization II

general	orientation
predicate $P(x_1,\ldots,x_k) = \operatorname{sign} f(x_1,\ldots,x_k)$	orient(p,q,r)
$\mathbf{x} = (x_1, \dots, x_{k-1})$ fixed, $x = x_k$ variable	q, r fixed, p variable
$C_{\mathbf{x}} = \{x; f(\mathbf{x}, x) = 0\}, \text{ curve of degeneracy}$	$C = \{ p; orient(p,q,r) = 0 \}$
$x_{0} \qquad C_{\mathbf{x}}$ concentrate on regular \mathbf{x} and arbitrary x , let x_{0} be point closest to x on $C_{\mathbf{x}}$ and define $h(d) = f(\mathbf{x}, x_{0} + d \frac{x - x_{0}}{ x - x_{0} })$ $h(dist(x, C_{\mathbf{x}})) = f(\mathbf{x}, x)$ $h(d) \approx c \cdot d^{k}$ for some small k (usually one), d small, and c depending on \mathbf{x} $f(\mathbf{x}, x) \approx c_{\mathbf{x}} \cdot dist(x, C_{\mathbf{x}})^{k}$	$h(d) = 2 \cdot dist(q, r) \cdot d$ $orient(p,q,r) = 2dist(q,r)dist(p, \ell(q,r))$

-

Generalization III

orientation general predicate $P(x_1, \ldots, x_k) = \operatorname{sign} f(x_1, \ldots, x_k)$ orient(p,q,r) $C_{\mathbf{x}} = \{x; f(\mathbf{x}, x) = 0\},$ curve of degeneracy $C = \{ p; orient(p,q,r) = 0 \}$ $f(\mathbf{x}, x) \approx c_{\mathbf{x}} \cdot dist(x, C_{\mathbf{x}})^k$ $orient(p,q,r) = 2dist(q,r)dist(p,\ell(q,r))$ max error = $28 \cdot M^2 \cdot 2^{-p}$ maximal error in evaluating f is $c_f \cdot M^a \cdot 2^{-p}$ if $c_{\mathbf{x}} \cdot dist(x, C_{\mathbf{x}})^k \ge c_f \cdot M^a \cdot 2^{-p}$, if $2 \cdot dist(q, r) \cdot dist(p, \ell(q, r)) > 28 \cdot M^2$. f-eval is correct use recursive argument to bound $c_{\mathbf{x}}$ from below bound dist(q, r) from below

controlled perturbation works for a large class of geometric algorithms: predicates of bounded number of arguments and decision trees of depth depending only on *n*.

Generalization II, revisited

- predicate $P(x_1,\ldots,x_k) = \operatorname{sign} f(x_1,\ldots,x_k)$
- $C_{\mathbf{x}} = \{x; f(\mathbf{x}, x) = 0\}$, curve of degeneracy

- let x_0 be point closest to x on C_x and assume that normal at x_0 exists.
- then *x* is in direction of curve normal $\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$ at x_0 and

$$f(\mathbf{x}, x) \approx f(\mathbf{x}, x_0) + (\nabla f)(\mathbf{x}, x_0) \cdot dist(x, x_0) = (\nabla f)(\mathbf{x}, x_0) \cdot dist(x, x_0)$$

• if $C_{\mathbf{x}}$ has no singularity,

$$c_{\mathbf{x}} := \min_{x \in C_{\mathbf{x}}} || (\nabla f)(\mathbf{x}, x_0) || > 0$$
$$f(\mathbf{x}, x) \approx c_{\mathbf{x}} \cdot dist(x, C_{\mathbf{x}})$$

- controlled perturbation works for a large class of geometric algorithms:
 - predicates of bounded arity
 - decision trees of depth depending only on number of points in input, but not on actual coordinates
- algs in the class: Delaunay, Voronoi, Arrangements,
- used successfully for arrangements of spheres and cycles and Delaunay diagram computations
- algs outside the class
 - Gaussian elimination
 - roots of a polynomial by iterative method

Summary

- good predicates have k = 1 in $f(\mathbf{x}, x) \approx c_{\mathbf{x}} \cdot dist(x, C_{\mathbf{x}})^k$
- a guideline for designing good predicates
- it works: Delaunay triangulations, arrangements of circles and spheres,

Open Problems

- good evaluation schemes for predicates, e.g., Clarkson's work on determinants and Fortunes's work for orientation. Recall that we only want the sign and not the value.
- good versus bad formulas for the same predicate
- redo the Halperin etal and Funke etal papers according to general theory
- do all predicates of the Voronoi diagrams of line segments
- explain the fine structure of the pictures
- arrangements of circular arcs, ellipsoids, ...
- implementation for Voronoi diagrams of line segments competitive to VRONI
- can we turn the general scheme into a program transformer, a Controlled-Perturbation-CGAL
- a good talk on the subject
- final version of the SODA 05 paper
- long version of the new paper
- packing arguments and number and size of forbidden regions