
Reliable Geometric Computation
via

Controlled Perturbation !?

Kurt Mehlhorn
Max-Planck-Institute für Informatik

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.1/25

Overview
• Geometric Computing
• Pitfalls of Geometric Computing
• Approaches to Reliable Geometric Computing
• Controlled Perturbation

• The Principle
• Applicability and Limits
• Practicability
• Open Problems

• Sources
• L. Kettner, KM, S. Pion, S. Schirra, C. Yap: Classroom Examples of Robustness Problems in

Geometric Computations, ESA 2004, LNCS 3221, 702–713.

• S. Funke, Ch. Klein, KM, S. Schmitt: Controlled Perturbation for Delaunay Triangulations,
SODA 2005, 1047-1056.

• KM and R. Osbild: Reliable and Efficient Computational Geometry via Controlled
Perturbation (Extended Abstract), submitted

• and the papers cited therein

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.2/25

Key Messages

Reliable implementation of geometric algorithms is a challenging task

Controlled Perturbation leads to reliable and efficient implementations
with little additional work.

It is applicable to a large class of geometric algorithms.

Warning: the problem is not solved for the input given, but for a slightly
perturbed input.

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.3/25

Geometric Computing I

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.4/25

Geometric Computing II

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.5/25

Pitfalls of Geometric Computing
• algs are designed for a Real-RAM, a machine which

can compute with real numbers in the sense of
mathematics (basic arithmetic, square-roots, roots
of polynomials, sine, . . .)

• and for non-degenerate inputs (no three collinear
points, no four co-circular points)

• but real machines (pun intended) have floating point
and bounded integer arithmetic and

• real inputs are frequently degenerate

• as a consequence, implementing the algs of computational geometry is
non-trivial enterprise, (examples from preceding slide)

• the goal of realiable and efficient implementations is still elusive
• theory (exact algs, alg numbers, . . .) and practice (LEDA, CGAL,

EXACUS) have made tremendous progress, but there is still a long way
to go

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.6/25

The Orientation Predicate

•
three points p, q, and r in the plane either lie
on a common line or form a left or right turn
orient(p,q,r) = 0, +1, −1 −1

+1

• analytically

orient(p,q,r) = sign(det







1 px py

1 qx qy

1 rx ry






)

= sign((qx − px)(ry − py)− (qy − py)(rx − px)).

• det is twice the signed area of the triangle (p,q,r)

• float_orient(p,q,r) is result of evaluating orient(p,q,r) in floating point
arithmetic

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.7/25

Geometry of Float-Orient

• p = (0.5,0.5), q = (12,12) and r = (24,24)

•

picture shows

float_orient((px + xu, py + yu),q,r)

for 0 ≤ x,y ≤ 255, where u = 2−53.

the line `(q,r) is shown in black

• near the line many points are mis-classified

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.8/25

A Simple Convex Hull Algorithm
• alg considers the points one by one, maintains vertices of current hull in

counter-clockwise order

• Initialize L to the counter-clockwise triangle (a,b,c).
for all r ∈ S do

if there is an edge e visible from r then
ompute the sequence (vi, . . . ,v j) of edges visible from r.
replace the subsequence (vi+1, . . . ,v j−1) by r.

end if
end for

•

PSfrag replacementsr

vi

v j
Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.9/25

The Effect on a Simple Convex Hull Algorithm

p2 p3

p4

p2 p3

p4

p6

PSfrag replacements

p1 p5

PSfrag replacements

p1 p5

• the hull of p1 to p4 is
correctly computed

• p5 lies close to p1, lies
inside the hull of the first
four points, but float-sees
the edge (p1, p4). The
magnified schematic
view below shows that
we have a concave
corner at p5.

• point p6 sees the edges
(p1, p2) and (p4, p5), but
does not see the edge
(p5, p1).

• we obtain either the hull
shown in the figure on the
right or ...

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.10/25

Solutions
• The Exact Geometric Computation Paradigm (ECG)

• implement a Real-RAM to the extent needed in computational
geometry

• the challenge is an efficient realization
• not the subject of today’s talk

• Approximation
• compute the correct result for a slightly perturbed input
• Controlled Perturbation

• actively choose the perturbed input, so that the problem
becomes simpler

• initiated by Danny Halperin and co-workers
• refined and generalized by us
• message of the day: controlled perturbation works for a large

class of geometric algorithms: predicates of bounded arity and
decision trees of depth depending only on n

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.11/25

Geometry of Float-Orient

•

• picture shows

float_orient((px +xu, py+yu),q,r)

for 0 ≤ x,y ≤ 255, where
u = 2−53.

the line `(q,r) is shown in black
• near the line many points are

mis-classified

• outside a narrow strip around the curve of degeneracy, points are
classified correctly !!!

• how narrow is narrow?
• true for all geometric predicates?
• if true, can we exploit to design reliable algorithms

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.12/25

How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−p

• deal with numbers as large as 4M2

• error in a single operation is at most 4M22−p

• 7 accounts for the number of operations

• forbidden region for p = a strip of half-width 28 ·M2 ·2−p/dist(q,r) about
`(q,r)

• if p lies outside the forbidden region, the evaluation of orient(p,q,r) is
floating-point safe (f-safe)

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.13/25

How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−p

• if 2|∆| > 28 ·M2 ·2−p, float_orient gives the correct result

• |∆| = (1/2)dist(q,r) ·dist(`(q,r), p) q r

p

• forbidden region for p = a strip of half-width 28 ·M2 ·2−p/dist(q,r) about
`(q,r)

• if p lies outside the forbidden region, the evaluation of orient(p,q,r) is
floating-point safe (f-safe)

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.13/25

How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−p

• Punch Line: if
dist(`((q,r), p)) ≥ 28 ·M2 ·2−p/dist(q,r),

float_orient(p,q,r) gives the correct result.

on the right, q and r have one
third the distance than in figure
on the left

• forbidden region for p = a strip of half-width 28 ·M2 ·2−p/dist(q,r) about
`(q,r)

• if p lies outside the forbidden region, the evaluation of orient(p,q,r) is
floating-point safe (f-safe)

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.13/25

How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−p

• forbidden region for p = a strip of half-width 28 ·M2 ·2−p/dist(q,r) about
`(q,r)

• if p lies outside the forbidden region, the evaluation of orient(p,q,r) is
floating-point safe (f-safe)

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.13/25

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.

• assume p1 to pn−1 are already determined: choose pn in a circle of
radius δ about qn such that pn lies outside all strips of half-width
28 ·M2 ·2−p/dist(pi, p j) about `(pi, p j) for 1 ≤ i < j ≤ n−1

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π ·γ2 +n2 · (28 ·M2 ·2−p/γ) ·2 ·π ·δ

• min for γ = (n ·56 ·M2 ·2−p ·δ)1/3,
size of FR = 2π ·n5/3 · (56M22−pδ)2/3

• want: size of FR ≤ π ·δ 2/(2n)

• why . . ./(2n) then total prob of failure less than 1/2

• Punch Line: any p ≥ 2log(M/δ)+4logn+9
works M = 1000, δ = 0.001, n = 1000, p ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.14/25

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.
• assume p1 to pn−1 are already determined: choose pn in a circle of

radius δ about qn such that pn lies outside all strips of half-width
28 ·M2 ·2−p/dist(pi, p j) about `(pi, p j) for 1 ≤ i < j ≤ n−1

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π ·γ2 +n2 · (28 ·M2 ·2−p/γ) ·2 ·π ·δ

• min for γ = (n ·56 ·M2 ·2−p ·δ)1/3,
size of FR = 2π ·n5/3 · (56M22−pδ)2/3

• want: size of FR ≤ π ·δ 2/(2n)

• why . . ./(2n) then total prob of failure less than 1/2

• Punch Line: any p ≥ 2log(M/δ)+4logn+9
works M = 1000, δ = 0.001, n = 1000, p ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.14/25

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.
• assume p1 to pn−1 are already determined: choose pn in a circle of

radius δ about qn such that pn lies outside all strips of half-width
28 ·M2 ·2−p/dist(pi, p j) about `(pi, p j) for 1 ≤ i < j ≤ n−1

• HUCH: strips can be arbitrarily wide
• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π ·γ2 +n2 · (28 ·M2 ·2−p/γ) ·2 ·π ·δ

• min for γ = (n ·56 ·M2 ·2−p ·δ)1/3,
size of FR = 2π ·n5/3 · (56M22−pδ)2/3

• want: size of FR ≤ π ·δ 2/(2n)

• why . . ./(2n) then total prob of failure less than 1/2

• Punch Line: any p ≥ 2log(M/δ)+4logn+9
works M = 1000, δ = 0.001, n = 1000, p ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.14/25

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.
• assume p1 to pn−1 are already determined: choose pn in a circle of

radius δ about qn such that pn lies outside all strips of half-width
28 ·M2 ·2−p/dist(pi, p j) about `(pi, p j) for 1 ≤ i < j ≤ n−1

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 +n2 · (28 ·M2 ·2−p/γ) ·2 ·π ·δ

• min for γ = (n ·56 ·M2 ·2−p ·δ)1/3,
size of FR = 2π ·n5/3 · (56M22−pδ)2/3

• want: size of FR ≤ π ·δ 2/(2n)

• why . . ./(2n) then total prob of failure less than 1/2

• Punch Line: any p ≥ 2log(M/δ)+4logn+9
works M = 1000, δ = 0.001, n = 1000, p ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.14/25

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.
• assume p1 to pn−1 are already determined: choose pn in a circle of

radius δ about qn such that pn lies outside all strips of half-width
28 ·M2 ·2−p/dist(pi, p j) about `(pi, p j) for 1 ≤ i < j ≤ n−1

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 +n2 · (28 ·M2 ·2−p/γ) ·2 ·π ·δ

• min for γ = (n ·56 ·M2 ·2−p ·δ)1/3, size of FR = 2π ·n5/3 · (56M22−pδ)2/3

• want: size of FR ≤ π ·δ 2/(2n)

• why . . ./(2n) then total prob of failure less than 1/2

• Punch Line: any p ≥ 2log(M/δ)+4logn+9
works M = 1000, δ = 0.001, n = 1000, p ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.14/25

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.
• assume p1 to pn−1 are already determined: choose pn in a circle of

radius δ about qn such that pn lies outside all strips of half-width
28 ·M2 ·2−p/dist(pi, p j) about `(pi, p j) for 1 ≤ i < j ≤ n−1

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 +n2 · (28 ·M2 ·2−p/γ) ·2 ·π ·δ

• min for γ = (n ·56 ·M2 ·2−p ·δ)1/3, size of FR = 2π ·n5/3 · (56M22−pδ)2/3

• want: size of FR ≤ π ·δ 2/(2n)

• why . . ./(2n) then total prob of failure less than 1/2

• Punch Line: any p ≥ 2log(M/δ)+4logn+9
works M = 1000, δ = 0.001, n = 1000, p ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.14/25

Converting a Program to Controlled Perturbation
• guard every predicate evaluation, i.e.,

replace branch on sign of E by

if (|E| ≤ max error in evaluation of E) stop;
branch on sign of E

• and then run the following master program
• initialize δ and p to convenient values
• loop

• perturb input
• run the guarded algorithm with floating point precision p
• if the program fails, double p and rerun

• theory tells us that program is guaranteed to terminate with prob ≥ 1/2
whenever p ≥ 2log(M/δ)+4logn+9

• estimate is pessimistic: smaller p works in practice.
• program solves problem for a perturbed input, not for the original input

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.15/25

Side of Oriented Circle
• can we analyse other predicates in the same way?

•
side_of _circle(p,q,r,s) = +1,0,−1 if s lies left
of , on, right of oriented circle C(p,q,r)

+1

−1

PSfrag replacements

p

q

r

• analytically: side_of _circle(p,q,r,s) = sign

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1 x2
1 + y2

1

1 x2 y2 x2
2 + y2

2

1 x3 y3 x2
3 + y2

3

1 x y x2 + y2

∣

∣

∣

∣

∣

∣

∣

∣

∣

• det = 2 ·∆ · (R+dist(C,s)) ·dist(C,s) and hence

• |det| ≥ 2 ·∆ ·R ·dist(C,s)

• max error in f-evaluation = 40 ·M4 ·2−p

• f-eval is correct if s lies outside an annulus of half-width
40 ·M4 ·2−p/(2 ·∆ ·R)

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.16/25

Visualization: Side of Circle

you see a circle of radius one probed on a 512×512 grid. In the figure on the
right, the area of the defining triangle is about 0.001, in the figure, on the left,
the defining triangle has area about 1.

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.17/25

A Visualization of Controlled Perturbation

Forbidden
Areas

Possible
Perturbations

t

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.18/25

Generalization to All (??) Geometric Predicates

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

x1 to xk points (in the plane)

x = (x1, . . . ,xk−1) fixed, x = xk variable q, r fixed, p variable

Cx = {x; f (x,x) = 0}, curve of degeneracy C = { p; orient(p,q,r) = 0}

Cx is either the entire plane or a smooth curve plane or `(q,r)

Punch Line: Geometric predicates measure distance from curve of degenera-
cy and therefore forbidden region is a tubular neighborhood of this curve.

PSfrag replacements

x

x0
Cx

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.19/25

Generalization II

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

x = (x1, . . . ,xk−1) fixed, x = xk variable q, r fixed, p variable

Cx = {x; f (x,x) = 0}, curve of degeneracy C = { p; orient(p,q,r) = 0}

PSfrag replacements
x

x0
Cx

concentrate on regular x and arbitrary x, let
x0 be point closest to x on Cx and define
h(d) = f (x,x0 +d x−x0

||x−x0||
)

h(d) = 2 ·dist(q,r) ·d

h(dist(x,Cx)) = f (x,x)

h(d)≈ c ·dk for some small k (usually one),
d small, and c depending on x
f (x,x) ≈ cx ·dist(x,Cx)

k orient(p,q,r) = 2dist(q,r)dist(p, `(q,r))

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.20/25

Generalization III

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

Cx = {x; f (x,x) = 0}, curve of degeneracy C = { p; orient(p,q,r) = 0}

f (x,x) ≈ cx ·dist(x,Cx)
k orient(p,q,r) = 2dist(q,r)dist(p, `(q,r))

maximal error in evaluating f is c f ·Ma ·2−p max error = 28 ·M2 ·2−p

if cx ·dist(x,Cx)
k ≥ c f ·Ma ·2−p,

f-eval is correct
if 2 ·dist(q,r) ·dist(p, `(q,r)) > 28 ·M2 ·2−p,
. . .

use recursive argument to bound cx from below bound dist(q,r) from below

controlled perturbation works for a large class of geometric algorithms: predi-
cates of bounded number of arguments and decision trees of depth depending
only on n.

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.21/25

Generalization II, revisited
• predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk)

• Cx = {x; f (x,x) = 0}, curve of degeneracy

PSfrag replacements
x

x0
Cx

• let x0 be point closest to x on Cx and assume that normal at x0 exists.

• then x is in direction of curve normal ∇ f =

(

∂ f /∂x
∂ f /∂y

)

at x0 and

f (x,x) ≈ f (x,x0)+(∇ f)(x,x0) ·dist(x,x0) = (∇ f)(x,x0) ·dist(x,x0)

• if Cx has no singularity,

cx := min
x∈Cx

||(∇ f)(x,x0)|| > 0

f (x,x) ≈ cx ·dist(x,Cx)
Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.22/25

Summary

• controlled perturbation works for a large class of geometric algorithms:
• predicates of bounded arity
• decision trees of depth depending only on number of points in

input, but not on actual coordinates

• algs in the class: Delaunay, Voronoi, Arrangements,

• used successfully for arrangements of spheres and cycles and
Delaunay diagram computations

• algs outside the class
• Gaussian elimination
• roots of a polynomial by iterative method

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.23/25

Summary

• good predicates have k = 1 in f (x,x) ≈ cx ·dist(x,Cx)
k

• a guideline for designing good predicates
• it works: Delaunay triangulations, arrangements of circles and spheres,

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.24/25

Open Problems
•• good evaluation schemes for predicates, e.g., Clarkson’s work on determinants and Fortunes’s

work for orientation. Recall that we only want the sign and not the value.

• good versus bad formulas for the same predicate

• redo the Halperin etal and Funke etal papers according to general theory

• do all predicates of the Voronoi diagrams of line segments

• explain the fine structure of the pictures

• arrangements of circular arcs, ellipsoids, ...

• implementation for Voronoi diagrams of line segments competitive to VRONI

• can we turn the general scheme into a program transformer, a Controlled-Perturbation-CGAL

• a good talk on the subject

• final version of the SODA 05 paper

• long version of the new paper

• packing arguments and number and size of forbidden regions

Kurt Mehlhorn, MPI für Informatik Reliable Geometric ComputationviaControlled Perturbation !? – p.25/25

	Overview
	Key Messages
	Geometric Computing I
	Geometric Computing II
	Pitfalls of Geometric Computing
	The Orientation Predicate
	Geometry of Float-Orient
	A Simple Convex Hull Algorithm
	The Effect on a Simple Convex Hull Algorithm
	Solutions
	Geometry of Float-Orient
	How Narrow is Narrow?
	Controlled Pertubation I
	Converting a Program to Controlled Perturbation
	Side of Oriented Circle
	Visualization: Side of Circle
	A Visualization of Controlled Perturbation
	Generalization to All (??)
Geometric Predicates
	Generalization II
	Generalization III
	Generalization II, revisited
	Summary
	Summary
	Open Problems

