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Fair Division Problems

Share rent.

Assign credit to the authors of a paper.

Distribute tasks, e.g., household chores.

Split goods among kids at Xmas.

Split an estate among heirs.

Fair Division Kurt Mehlhorn 3



Allocation of Items to Agents

Set G of m indivisible items or goods
Set A of n agents or users

uij = value (utility) of good j for agent i
Each item assigned to some agent.
xi = set of items assigned to agent i .
Value (utility) of xi for agent i : ui(xi) =

∑
j∈xi

uij
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Main Questions

What is a good allocation ?

Algorithms to find (approximately) optimal allocations?

Computational complexity of finding good allocations?
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What is a Good Allocation? Objectives

Utilitarian Social Welfare

maximize
∑
i∈A

ui(xi)

Max-Min-Fairness, Egalitarian Welfare

maximize min
i∈A

ui(xi)

Proportional Fairness, Nash Social Welfare (NSW)

maximize

(∏
i∈A

ui(xi)

)1/n

NSW is invariant under scaling.
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Algorithms for Approximating Nash Social Welfare

ALG computes a ρ-approximation if for every instance I

NSW(x∗)
NSW(ALG(I))

≤ ρ.

APX-hard, no 1.00008-approximation unless P = NP [Lee, IPL’17]

2.889-approximation via markets [Cole, Gkatzelis, STOC’15]

e-approximation via stable polynomials [Anari, Gharan, Singh, Saberi,

ITCS’17]

2-approximation via markets
[Cole, Devanur, Gkatzelis, Jain, Mai, Vazirani, Yazdanbod, EC’17]

1.45-approximation via limited envy [Barman, Krishnamurthy, Vaish, EC 2018]

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang, EC’16]

Algorithm by Barman et al. is the simplest to state and to
analyse. Took me four hours to implement.
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Extensions

Multiple copies of each item [Bei, Garg, Hoefer, Mehlhorn, SAGT’17]

Multiple copies, diminishing value [Anari, Mai, Oveis Gharan, Vazirani, SODA

2018]

Budget-additive utilities, ui(xi) = min
(

ci ,
∑

j∈xi
uij

)
[Garg, Hoefer,

M, SODA 2018]

Multiple copies, diminishing value, budget-additive [Cheung,

Chaudhury, Garg, Garg, Hoefer, M., ArXiv 2018]

The latter instance class contains the classes above and the
algorithm achieves a better approximation ratio.
The ratio is 1.45, the same as in [Barman, Krishnamurthy, Vaish, EC 2018]

Algorithm combines ideas from Barman et al. and Anari et
al. Retains simplicity.
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Divisible Goods

xij ∈ [0,1]: fraction of good j assigned to agent i .

Problem reduces to a Fisher market
Give every agent the same budget, say 1 Euro
Find prices pj for the goods such that the market clears, i.e.,

all goods are completely sold, i.e.,
∑

i xij = 1 for all j .
agents spend all their money, i.e.,

∑
j pjxij = 1.

agents behave rationally, i.e., xij > 0 ⇒ uij
pj

= αi = max` ui`
p`

αi is called the bang-per-buck (MBB) ratio of agent i .
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The Algorithm by Barman et al.

computes
an allocation x ; xi = set of goods assigned to agent i .

a price vector p; pj = price of good j .

a vector α; αi = MBB-ratio of agent i .
such that

αi = maxj uij/pj (αi is maximum-bang-per-buck ratio of i)

j ∈ xi implies uij/pj = αi (only MBB-goods are allocated)

for all agents h and i , there is a good j such that

p(xh \ j) ≤ (1 + ε)p(xi),

where p(set S of goods) =
∑

j∈S pj . (budget equal up to one
good)

The first two properties are maintained throughout the
algorithm. We work towards the third.
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j ∈ xi implies uij/pj = αi (only MBB-goods are allocated)

for all agents h and i , there is a good j such that

p(xh \ j) ≤ (1 + ε)p(xi),

where p(set S of goods) =
∑

j∈S pj . (budget equal up to one
good)

Note ui(xh \ j) ≤ αi · p(xh \ j) ≤ (1 + ε)αi · p(xi) = (1 + ε)ui(xi).
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The Algorithm by Barman et al.

Initialization: assign every item to the agent that likes it most.
for good j do

assign j to i0 = argmaxi uij , set pj ← ui0,j

for agent i do
αi = 1

Main Loop: as long as there is envy, reassign goods and adjust
prices.

A pair (i , j) of good and agent is tight if αi = uij/pj .

Tight Graph: directed bipartite graph, agents on one side,
goods on the other side.

edge (i , j) from agent i to good j : tight and i does not own j .

edge (j , i) from good j to agent i : tight and i owns j .
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The Algorithm by Barman et al.

Initialization
while true do

let i be a least spending agent (p(xi) is minimum)
if i does not envy any other agent then

break from the loop and halt
do a BFS in tight graph starting at i ;
if BFS finds an envy-reducing path starting in i then

use the shortest such path to improve the assignment
else

Let S be the set of agents that can be reached from i in tight
graph
multiply all prices of goods owned by S and divide all
MBB-values of agents in S by an increasing factor t > 1 until
(a) a new tight edge from an agent in S to a good outside S
(b) i is not envious anymore
(c) new least spender
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Envy-Reducing Path

Invariant: αi ≥ uij/pj for all j and αi = uij/pj if j ∈ xi .

A pair (i , j) of agent and good is tight if αi = uij/pj .

Tight path:
i j1 i1 j2 jh ih

= good

= agent

= tight and owns

= tight and does not own

Tight path is envy-reducing if

p(ih \ jh−1) > (1+ ε)p(xi) and p(i` \ j`−1) ≤ (1+ ε)p(xi) for ` < h.

Use of envy-reducing P = (i = i0, j1, i1, . . . , jh, ih):
Set `← h
while ` > 0 and pi`(xi` \ j`) > (1 + ε)pi(xi) do

remove j` from xi` and assign it to i`−1; `← `− 1
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Polynomial Time

Assume all utilities are powers of r = 1 + δ.

The prices of goods that are owned by agents that are envied
by some other agent are not increased. Agents that are envied
by another agent do not gain additional goods.

Total spending of least spending agent never decreases. Is
increased by factor r in price increases.

Therefore, number of price increases = O(logr max uij/min uij).

Time between price increases is polynomial: Similar to analysis
of matching algs.
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Analysis of the Approximation Factor

We have computed
an allocation x ; xi = set of goods assigned to agent i .

a price vector p; pj = price of good j .

a vector α; αi = MBB-ratio of agent i .
such that

αi = maxj uij/pj (αi is maximum-bang-per-buck ratio of i)

j ∈ xi implies uij/pj = αi (only MBB-goods are allocated)

for all agents h and i , there is a good j such that

p(xh \ j) ≤ (1 + ε)p(xi),

where p(set S of goods) =
∑

j∈S pj . (no envy up to one good)
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The Approximation Factor: Rescaling

Let xalg be the allocation computed by the algorithm.

j ∈ xalg
i → uij/pj = αi = max

k
uik/pk ∀h, i ∃j s.t. p(xh\j) ≤ (1+ε)p(xi).

Rescale: Replace uij by uij/αi . This multiplies the NSW of

every allocation by
(∏

i α
−1
i

)1/n
and hence does not change

the optimal allocation. The above becomes

j ∈ xalg
i → uij/pj = 1 = max

k
uik/pk ∀h, i ∃j s.t. p(xh\j) ≤ (1+ε)p(xi)

and hence uij = pj whenever good j is allocated to i . If j is not
allocated to i , uij ≤ pj .

j ∈ xalg
i → uij = pj , uhj ≤ pj , ∀h, i ∃j s.t. p(xh\j) ≤ (1+ε)p(xi)
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The Approximation Factor

Rename the agents s.t. p(xalg
1 ) ≥ p(xalg

2 ) ≥ . . . ≥ p(xalg
n ) =: `.

1 2 3 n

ell

1 2 3 n

ell

g3
gn−1

g2g1

Each xi , 1 ≤ i ≤ n, contains a gi such that p(xi \ gi) ≤ `.

Give additional freedom to OPT. It must allocate g1 to gn−1
integrally, can allocate the other goods fractionally. Contribution
of a good is its price.

Claim: OPT does not have to allocate gi and gh to same agent.
Assume otherwise. Then there is an agent a
with only fractional goods. Move gh to this
agent and move min(p(gh),p(xa)) in return.
This does not decrease NSW.

gh gh
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More on OPT and ALG

OPT assigns the gi ’s injectively. Wlog., OPT assigns gi to i . Let
α` = mini p(xopt

i ), let h be maximum such that p(xalg
h ) > α`.

1 n

ell
gn−1

g1

alpha ell

h

gh

1 n

ell

alpha ell
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i ), let h be maximum such that p(xalg
h ) > α`.

1 n

ell
gn−1

g1

alpha ell

h

gh

1 n

ell

alpha ell

h

g1 gh

For i ≤ h: p(xopt
i ) ≤ p(xalg

i ).

This is clear if p(xopt
i ) = α`. Otherwise, xopt

i = {gi }.
Thus

NSW(xopt) ≤

∏
i≤h

p(xalg
i ) · (α`)n−h

1/n

.
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OPT assigns the gi ’s injectively. Wlog., OPT assigns gi to i . Let
α` = mini p(xopt

i ), let h be maximum such that p(xalg
h ) > α`.

1 n

ell
gn−1

g1

alpha ell

h

gh

1

ell

g1

alpha ell

s many t many

beta ell

h

gh

NSW(xopt) ≤

∏
i≤h

p(xalg
i ) · (α`)n−h

1/n

.

We now make xalg worse. For agents i > h, we move the
heights towards the bounds ` and α`. Thus

NSW(xalg) ≥

∏
i≤h

p(xalg
i ) · (α`)s · β` · `t

1/n

.
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1 n

ell
gn−1

g1

alpha ell

h

gh

1

ell

g1

alpha ell

s many t many

beta ell

h

gh

NSW(xopt) ≤

∏
i≤h

p(xalg
i ) · (α`)n−h

1/n

.

NSW(xalg) ≥

∏
i≤h

p(xalg
i ) · (α`)s · β` · `t

1/n

.

NSW(xopt)

NSW(xalg)
≤
(

(α`)s+1+t

(α`)s · β` · `t

)1/n

=

(
αt · α

β

)1/n

.
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More on OPT and ALG

NSW(xopt)

NSW(xalg)
≤
(
αt · α

β

)1/n

≤
(

tα+ α/β

t + 1

)(t+1)/n

1 n

ell

alpha ell

1

ell

g1

alpha ell

s many t many

beta ell

h

gh

α`(s + t + 1) ≤ sα`+ β`+ t`+ h`

and hence tα+ α/β ≤ β + t + h + α/β − α ≤ t + h + 1. Thus

NSW(xopt)

NSW(xalg)
≤
(

t + h + 1
t + 1

)(t+1)/n

≤
(

n
t + 1

)(t+1)/n

≤ e1/e ≈ 1.45.
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Generalization to Multiple Copies, Diminishing value,
Budget-Additive

For each agent i and good j (kj copies of good j)

uij1 ≥ uij2 ≥ . . . ≥ uijkj .

Let m(xi , j) be the multiplicity of good j in xi . Then

ui(xi) = min(ci ,
∑

j

∑
1≤`≤m(xi ,j)

uij`).

An agent is capped if ui(xi) = ci . Only uncapped agents envy.

MBB-Invariant: uijm(xi ,j)+1/pj ≤ αi ≤ uijm(xi ,j)/pj for all i and j .

Tight path:
i j1 i1 j2 jh ih

= good

= agent

= tight and owns

= tight and does not own

(i , j) is tight: αi = left endpoint for “does not own” and αi = right
endpoint for “owns”.
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Open Problems

Is e1/e ≈ 1.45 the best approximation factor for this
algorithm? I know a lower bound of 1.44 = 31/3.

How does one compute exact solutions?

How does one compute good upper bounds on
NSW(OPT )?

What is the best approximation factor for this problem?
Upper bound is 1.45, lower bound is 1.00008.

Distributed implementation?
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