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Overview
This is a difficult talk to give. Usually, . . . . The talk
is based on a collaboration with two experts in
interactive theorem proving.

At MFCS ’89, I announced that Stefan Näher and I
would build LEDA, a library of efficient data types
and algorithms. The library would be
encompassing, easy-to-use, efficient and correct.

However, some of our implementations were
incorrect, e.g., planarity test. Since then I am also
very much interested in correct implementations.

LEDA (MFCS 1989)

Certifying Algorithms (MFCS 1998)

Formal Verification of Checkers

Formal Verification of Complex Algorithms (MFCS 2019)

Future
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Library of Efficient Data Structures and Algorithms
joint work with S. Näher and C. Uhrig

When I asked former students, ....

Insight (1988): Writing books and articles does not suffice.

Must turn knowledge of the field into software that is

easy-to-use,

correct, and

efficient.

Started LEDA project in 1988, later CGAL, STXXL, SCIL

In use at thousands of academic and industrial sites
Algorithmic Solutions GmbH
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Dijkstra’s Algorithm in LEDA

algorithm + LEDA = program
template <class NT>
void DIJKSTRA_T(const graph& G, node s,const edge_array<NT>& c,

node_array<NT>& dist, node_array<edge>& pred)
{ node_pq<NT> PQ(G);

node v; edge e;
dist[s] = 0; PQ.insert(s,0);
forall_nodes(v,G) pred[v] = nil;
while (!PQ.empty())
{ node u = PQ.del_min();

NT du = dist[u];
forall_adj_edges(e,u)
{ v = G.opposite(u,e);

NT dv = du + c[e];
if (pred[v] == nil && v != s )

PQ.insert(v,c);
else if (dv < dist[v]) PQ.decrease_p(v,dv);

else continue;
dist[v] = dv; pred[v] = e;

}
}

}
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LEDA: Guarantees and Promises

Mathematical Guarantees
Algorithms are correct.

Promises, Engineering Guarantees
Combinatorial and geometric algorithms can be formulated
in a natural way: Algorithm + LEDA = Program

As a consequence, our users will be more effective and will
find it easier to write efficient and correct code.

Our implementations are correct.
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But,

Some of our programs were incorrect.

What had gone wrong and what did we do about it?

We had followed the state of the art, however,

there was no scientific basis available for geometric
computations, and

We and others created a basis over the next 20 years.

we made mistakes and wrote incorrect programs.

Adopted new design principle: certifying algorithms.
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Not only our Programs are Incorrect

LEDA 2.0 planarity test was incorrect
Rhino3d (a CAD systems) fails to com-
pute correct intersection of two cyclinders
and two spheres

CPLEX (a linear programming solver) fails on benchmark
problem etamacro.

Mathematica 4.2 (a mathematics systems) fails to solve a
small integer linear program

In[1] := ConstrainedMin[ x , {x==1,x==2} , {x} ]
Out[1] = {2, {x->2}}

In[1] := ConstrainedMax[ x , {x==1,x==2} , {x} ]
ConstrainedMax::"lpsub": "The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}
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The Problem

x program

for a certain task

y

A user feeds x to the program, the program returns y .

How can the user be sure that
y is indeed the correct output for input x?

The user has no way to know.

analogy: construction company
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The Proposal (in 95)

Programs must justify (prove) their answers in a
way that is easily checked by their users.
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Certifying Algorithms

Certifying
program Checker C

x
x y

w

accept y

reject

On input x , a certifying algorithm computes
the function value y and

a witness w . (convincing evidence that y is the correct output for x)

w is inspected by either the human user of the certifying
program,

or more elegantly, by a checker program C.
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Example: Planarity Test

Planar Graph
A graph is planar if it can be drawn in the plane without edge
crossings.

K3,3

planar drawing planar graph nonplanar graphs

K5

Fact: Every non-planar graph contains a Kuratowski graph.

Story and Demo
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Example: Maximum Cardinality Matchings

A matching M is a set of edges no two of which share an
endpoint

 

The blue edges form a matching of maximum cardinality;
this is non-obvious as two vertices are unmatched.

A conventional algorithm outputs the set of blue edges.
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Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Lemma: Let M be a matching in a graph G and let `
be a labelling of the vertices with non-negative integers such
that for each edge e = (u, v) either `(u) = `(v) ≥ 2 or
1 ∈ {`(u), `(v)}. Then

|M| ≤ n1 +
∑
i≥2

bni/2c ,

where ni is the number of vertices labelled i . In particular, if
equality holds, M is max-card-matching.

n1 = 4, n2 = 3, n3 = 3.

no matching has more
than
4 + b3/2c+ b3/2c = 6
edges.

|M| = 6

The labelling ` is the witness.

Witness property: If M is a matching, ` is a legal labelling, and
|M| = n1 +

∑
i≥2 bni/2c then M has maximum cardinality.

Existence of a Witness: If M has maximum cardinality, there is
a witness. This is the hard direction of Edmonds’ Theorem.
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The Checker Program for Maximum Cardinality
Matching

bool CHECK_MAX_CARD_MATCHING(const graph& G,const list<edge>& M,
const node_array<int>& OSC)

{ int n = Max(2,G.number_of_nodes());
array<int> count(n); for (int i = 0; i < n; i++) count[i] = 0;
node v; edge e;

forall_nodes(v,G)
{ if ( OSC[v] < 0 || OSC[v] >= n ) return_false("illegal label");

count[OSC[v]]++;
}

forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);

if ( v == w || OSC[v] == 1 || OSC[w] == 1 ||
( OSC[v] == OSC[w] && OSC[v] >= 2) ) continue;

return_false("OSC is not a cover");
}

node_array<int> deg_in_M(G,0);
forall(e,M) {deg_in_M(G.source(e))++; deg_in_M(G.target(e)); }
forall_nodes(v,G) if (deg_in_M(v) > 1) return_false("M is not a matching");

int S = count[1];
for (int i = 2; i <= n; i++) S += count[i]/2;
if ( S != M.length() ) return_false("OSC does not prove optimality");

return true;
} Trustworthy Graph Algorithms 14/31



Certifying Algorithms: Guarantees and Promises

Mathematical Guarantees
If x , y , w satisfy ϕ(x) and the witness predicateW(x , y ,w),
then the postcondition ψ(x , y) holds.

If x satisfies ϕ(x), the algorithm computes a y and w such
thatW(x , y ,w).

Promises, Engineering Guarantees
Checker programs are very simple and hence correct.

If the checker accepts the witness, the output is correct. If
the output is incorrect, the checker will reject it.

The programs have been executed on many inputs and the
checkers never fired.

You can trust our programs without understanding them.
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History

I do not claim that we invented the concept; it is rather an
old concept

al-Kwarizmi (780 – 850): multiplication
extended Euclid (≈ 1700): gcd
primal-dual algorithms in combinatorial optimization
Blum et al.: Programs that check their work

I do claim that Stefan Näher and I were the
first (1995) to adopt the concept as the de-
sign principle for a software project: By now,
almost all algs in LEDA are certifying.

McConnell/M/Näher/Schweitzer (2010): 80 page survey
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Summary of Indoctrination Part

When you design your next algorithm, make it
certifying.

When you implement your next algorithm, also
implement a checker.
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Who Checks the Checker?

Certifying
program Checker C

x
x y

w

accept y

reject
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Who Checks the Checker?

Certifying
program Checker C

x
x y

w

accept y

reject

Answer till 2011: Checkers are simple programs, and hence,
their correctness is not an issue.

Answer since 2011: Checkers are simple programs, and hence,
we can prove their correctness using formal mathematics.
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Formal Mathematics

Mathematics is carried out in a formal language.

Proofs are machine-checked.

Only correct statements can be proven!!!
We use Isabelle/HOL (L. Paulson, T. Nipkow)

Interactive theorem prover
Proofs are machine-checked; a small kernel must be trusted.
Automatic reasoning tools (term rewriting engine, tableaux
prover, decision procedures). They do not have to be trusted,
but suggest proofs that are then checked.
has been used to prove Gödel incompleteness, substantial
analysis results (probabilities, Green’s theorem & ODE
solvers), correctness of an operating system kernel, . . .
Archive of formal proofs: 490 articles, > 10,000 Lemmata
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Square Root of Two is not a Rational

| 1| theory Sqrt2

| 2| imports Main

| 3| begin

| 4| theorem sqrt2_not_rational:

| 5| "sqrt (real 2) 6∈ Q”
| 6| proof
| 7| let ?x = ”sqrt (real 2)”
| 8| assume ”?x ∈ Q”
| 9| then obtain m n :: nat where

| 10| sqrt_rat: ”?x = real m / real n” and lowest_terms: ”coprime m n”
| 11| by (rule Rats_abs_nat_div_natE)
| 12| hence ”real (m^2) = ?x^2 ∗ real (n^2)” by (auto simp add: power2_eq_square)
| 13| hence eq: ”m^2 = 2 ∗ n^2” using of_nat_eq_iff power2_eq_square by fastforce
| 14| hence ”2 dvd m^2” by simp
| 15| hence ”2 dvd m” by simp
| 16| have ”2 dvd n” proof

| 17| from 2 dvd m obtain k where ”m = 2 ∗ k”
| 18| with eq have ”2 ∗ n^2 = 2^2 ∗ k^2” by simp
| 19| hence ”2 dvd n^2” by simp
| 20| thus ”2 dvd n” by simp
| 21| qed

| 22| with 2 dvd m have ”2 dvd gcd m n” by (rule gcd_greatest)
| 23| with lowest_terms have ”2 dvd 1” by simp
| 24| thus False using odd_one by blast
| 25| qed
| 26| end
| 27|
| 28|

1
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Verification of the Max-Card Checker

We gave formal proofs for the following theorems:

Lemma: If M is a matching in G and ` is a legal node labelling
and |M| = n1 +

∑
i≥2 bni/2c, then M is a maximum cardinality

matching. LP-duality

Lemma: The checker program always halts.

Lemma: On input G, M and `, the checker program returns true
if and only if the hypothesis of the first Lemma holds.

The proof attempt for the third Lemma failed at first,
because the checker program does not check that M is a
subset of the edges of G. After adding

forall(e,M) if (G.is_edge(e) == false)
return_false("M is not a subset of E");

the proof went through.
E. Alkassar, S. Böhme, KM, Ch. Rizkallah: Verification of Certifying Computations, CAV ’11.

L. Noschinski, Ch. Rizkallah, KM: Verification of certifying computations through . . . , NASA Formal Methods ’14.
E. Alkassar, S. Böhme, KM, Ch. Rizkallah: A Framework for the Verification of Certifying Computations, JAR ’14.
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Formal Verification of Checkers: Guarantees and
Promises

Mathematical Guarantees
Checker correctness and witness property are formally
verified.

If the checker accepts, the output is correct.

If the output is incorrect, the checker will catch it.

Promises, Engineering Guarantees
The programs have been executed on many inputs and the
checkers never fired.

You can trust our programs without understanding them.

Caveat: have not verified C++-programs, but C-programs
derived from them.
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Why Formal Proofs?

Software plays a crucial role in modern society; software
failures can lead to substantial damage (money, lives).

Correctness of software requires proof; testing cannot
establish the absence of errors, only the presence of errors.

Mathematical theorems are accepted after a complex social
process; a penciel-and-paper proof is part of this process,
but also talks, discussions, questioning, . . . .

The same process does work for algorithm, but it does not
work for software, because implementations are very
detailed, are meant for machines and not humans, and
hence correctness proofs of implementations do not appeal
to a large audience. However, a large audience is needed
for the social process.
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Formal Proofs Will Never Become the Standard

Formal proofs are extremely tedious and hence this approach
will never fly. It will stay an obsession of some academics and
will never become wide-spread practice.

Building theories: matching is maximum iff there is no
augmenting path; odd-set-cover is dual of matching.

Liability law: According to liability law in many countries, an
engineer/company is liable if he/she/it has not followed the
state of the art. So academia only has to push the state of
the art. (courtesy of W. Paul)
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Verification of Edmond’s Blossom-Shrinking Alg

Alg repeatedly searches for an augmenting path with
respect to the current matching. Initially, the current
matching is empty. If augmenting path exists, augmentation
increases the size of the matching by one. Otherwise, the
current matching has maximum cardinality.

Augmenting path = alternating path connecting two free (=
unmatched) vertices.

2

1 0

3

4

5 2

1 0

3

4

5

Description of alg + correctness proof: 6 pages in
LEDAbook, description of implementation: 10 pages.

Formal correctness proof of alg: 18,000 lines, 250 pages.
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More Details of the Search for Augmenting Paths
Grow alternating trees rooted at free vertices.

Growth: v even depth and {v ,w} not considered
before.

If w not in a tree yet: add w (at odd level) and
its mate (at even level).

If w already in a tree and odd level: skip

If w already in a tree and even level:

augmenting path, if w in different tree.

blossom, if w in same tree. Shrink blossom
and continue search in shrunken graph G′.

If augmenting path in G′, lift to original graph.
Otherwise, no aug-path.

w
b v

v

O E O EE

v w mate(w)

E O E O E

v w

w
b v

w
b v
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Key Lemmas

Lemma: M is not maximum cardinality iff there is an
augmenting path with respect to it.

Lemma: If B is a blossom wrt. M in G, then there is an
augmenting path wrt. M in G iff there is an augmenting path
wrt. M/B in G/B.

Lemma: The tree building process finds an augmenting path if
there is one.

Alternatively:

Lemma: If the tree building process finds neither an
augmenting path nor a blossom, then one can construct a node
labelling proving optimality.

Lemma: Assume tree building detects a blossom B wrt. M in G.
If there is an augm. path wrt. M/B in G/B, then there is one
wrt. M in G. If there is none, one can lift the labelling proving
optimality of M/B in G/B to a proof of optimality of M in G.
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The Verification Process

Tobias Nipkow spent 6 weeks in SB in the fall of 2018 (mid
October to end of November). We started the project and
did first formalizations of the alternative approach.

Mohammad joined the project in January 2019 and worked
about 3 months full time on the project. He did all the
formalizations following the standard approach.

Tobias provided hints and suggestions for improvements
and elegance.
I proofread the formalizations of the definitions, lemmas,
and theorems (not the proofs). It is easier to prove correct theorems and lemmas
than to prove incorrect ones. This is true for paper and pencil proofs and even more true for formal proofs.

Mohammad found simplications for some of the Lemmas, in particular for one direction of Berge’s lemma.
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Summary of Second Part

Formal correct proofs of complex combinatorial
algorithms are doable.

It still requires experts, but this is changing as the tools are
getting more advanced and more students are trained in using
them.
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There is Still a Lot to Do

We verified a slow version of the algorithm, not the most
sophisticated version of it.

Warm start of tree growing process.
Fast blossom shrinking with parallel tree-walk and union-find

We verified an algorithm not an implementation.

We verified one of the many algorithms/implementations in
LEDA

We abstracted away from the underlying infrastructure:
memory management, graph data type, data structures.
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The Tool Box

Will appear in the next days.

Covers sequential and
parallel algorithms and data
structures

Also treats algorithm
engineering aspects.

And, of course, we treat
certification.
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