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Walras’ Model of an Economy (Léon Walras 1875)

Each market participant (agent) owns some goods and

has preferences over goods, i.e.,

at a given set of prices, certain bundles of goods will give maximum
pleasure (utility).

Agents are only willing to buy bundles that give maximum utility.

Question: are there prices such that all goods can be completely sold and
agents spend all their income, i.e.

can a perfect exchange be organized through appropriate prices?
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Linear Utilities: A Special Case

Twice as much is twice as good,

marginal utilities do no decrease.

Utilities from different goods add up.

Example: suppose a bottle of champagne gives me three times the
pleasure of a bottle of wine.

If the price of champagne is more than three times the price of wine, I am
not willing to buy champagne.

If the price is exactly three times the price of wine, I am willing to buy
champagne and wine and any combination is equally fine.
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First agent values second good 12
times as much as first good, . . .

Assume i-th agent owns i-th good, one
unit of each good. Goods are divisible.
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First agent values second good 12
times as much as first good, . . .

Assume i-th agent owns i-th good, one
unit of each good. Goods are divisible.

If prices are as shown in blue, money
will flow only along the blue edges
(MBB edges).

If goods are completely sold, the red
budgets will be available to the agents,

but the second good will certainly not
be completely sold, because nobody is
interested in it.
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Example (A Solution)
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A Special Case: The Fisher Market (Fisher 1891)

buyer i has budget mi , mi ≥ 0

uij = utility for i if all of good j is allocated to him
are there prices pj , 1 ≤ j ≤ n, and allocations xij such that

all goods are completely sold:
∑

i xij = 1
all money is spent:

∑
j xij pj = mi

only bang per buck items are bought:

xij > 0 ⇒
uij

pj
= αi , where αi = max

`

ui`
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The MBB-Network Gp (Fisher Market)

Vertices: buyers bi and goods cj , source s and sink t

E

i

j

buyers goods

pj

s t

mi

Edges:

(s, bi ) with capacity mi

(bi , cj ) iff uij/pj = αi ,
unlimited capacity

(cj , t) with capacity pj

flow on edge (bi , cj ) = money paid by buyer bi

for his fraction of good cj

p is an equilbrium iff a max flow saturates all edges out of s and into t .
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Questions

Do equilibria exist?

Properties of equilibria: is there a rational equilibrium? do equilibria form
a convex set?
Algorithms:

approximation, exact
efficient
combinatorial or do we need ellipsoid and/or interior point
global knowledge versus local knowledge
natural updates (tatonnement)
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History

Walras introduces the model in 1875 (more general utilities) and argues
existence (iterative adaption of prices).

Fisher (1891), simpler model (buyers have
budgets), alg for three buyers/goods.

Wald (36) shows existence of equ. under
strong assumptions.

Arrow/Debreu (54) show existence for a
much more general model under mild as-
sumptions.

Existence proofs are non-constructive (fix-
point theorems).
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Algorithm Development

Algorithm development starts in the 60s: Scarf, Smale, Kuhn, Todd,
Eaves.

Early algorithms are inspired by fixed-point proofs or are Newton-based
and compute approximations, are exponential time.

Exact poly-time combinatorial algorithms are known for the Fisher market
(Devanur/Padimitriou/Saberi/Varzirani (08) and Orlin (10)) and for the
Arrow-Debreu market (Duan/Mehlhorn (12) and Duan/Garg/Mehlhorn
(13)). Orlin even gave a strongly polynomial algorithm for the Fisher
market.

I show you a poly-time alg for Fisher markets inspired by an algorithm for
Arrow-Debreu markets due to Duan/Mehlhorn.
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Overview

intialize all prices to one: pj = 1 for all j

repeat
construct the network Gp for the current prices p and compute
a balanced flow f in it;

increase some prices and adjust flow;

until the total surplus is tiny (less than O( 1
4n4U3n ));

round the current prices to the equilibrium prices;

Details of final rounding: Let p be the current price vector;
let qi be the rational closest to pi with denominator ≤ (nU)n.

Then q = (q1, . . . , qn) is a vector of equilibrium prices.
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The Flow Network Gp, Revisited

Vertices bi , ci , 1 ≤ i ≤ n, s and t

Edges Ep = {(bi , cj ) | uij/pj = αi := max` ui`/p`}, capacity∞
Let f be a maximum flow

E

i

j

buyers goods

pj

s t

mi

r(bi ) = pi −
∑

j fij , surplus of
buyer i

r(B) = (r(b1), . . . , r(bn)), surplus
vector

Balanced flow = maxflow minimizing ||r(B)|| =
√

r(b1)2 + . . .+ r(bn)2;

Intuiton: As long as there is a good having inflow from two buyers with
unequal surplus, balance.

Can be computed with n maxflow computations (Devanur et al)

Markets and Fair Division KM 13/35



The Flow Network Gp, Revisited

Vertices bi , ci , 1 ≤ i ≤ n, s and t

Edges Ep = {(bi , cj ) | uij/pj = αi := max` ui`/p`}, capacity∞
Let f be a maximum flow

E

i

j

buyers goods

pj

s t

mi

r(bi ) = pi −
∑

j fij , surplus of
buyer i

r(B) = (r(b1), . . . , r(bn)), surplus
vector

Balanced flow = maxflow minimizing ||r(B)|| =
√

r(b1)2 + . . .+ r(bn)2;

Intuiton: As long as there is a good having inflow from two buyers with
unequal surplus, balance.

Can be computed with n maxflow computations (Devanur et al)

Markets and Fair Division KM 13/35



Intuition

Let f be a balanced flow, order buyers

r(b1) ≥ r(b2) ≥ . . . ≥ r(bn) ≥ r(bn+1) := 0.

Let ` be minimal such r(b`)/r(b`+1) ≥ 1 + 1/n, let

S = {b1, . . . , b`}, and big surplus buyers
C(S) = {cj | bi ∈ S and (i, j) ∈ E}. goods bought by them

All flow from the buyers in S goes to the goods in C(S). Hence the goods
in C(S) are completely sold.

Natural action: increase the prices of the goods in C(S) and the flow into
them by a common factor x .

What is the effect of this?
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Price Update

f = a balanced flow

S = {b1, . . . , b`}, and big surplus buyers

C(S) = {cj | bi ∈ S and (i, j) ∈ E}. goods bought by them

C(S)

equality

edges

S

There is no flow from B \ S to C(S).

Goods in C(S) are completely sold.

Increase prices of goods in C(S) and flow
into these vertices by a factor x > 1.

Surplus goes down, surplus unchanged.

Goods outside C(S) become more
attractive for buyers in S.

Goods in C(S) keep surplus zero; goods
with non-zero surplus have price one

Constraints on x

A new MBB edge arises connecting a buyer in S with a good in C \ C(S).

A blue surplus becomes zero.
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The Complete Algorithm

intialize prices: pj = 1 for all j
repeat

construct the network G for the current prices and compute a balanced
flow f in it;
order buyers by surplus and let ` be minimal such that r(b`) > (1 +
1/n)r(b`+1). Let S = {b1, . . . , b`}.
increase prices of goods in C(S) and flows into these goods by gradually
increasing factor x until

new equality edge or
surplus of a buyer in S and a buyer in B becomes zero.

until the total surplus is tiny (less than O( 1
4n4U3n ));

round the current prices to the equilibrium prices;
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Key Lemmas

Prices stay bounded by M :=
∑

i mi .

Norm of surplus vector decreases by factor 1 + Ω(1/n3) in each iteration.

Norm is at most n initially. We stop when norm is less than 1/(4n4U3n).
Hence the number of iterations is at most L, where

n · (1 +
1
n3 )L ≤ 1

n4U3n .

Thus
L = O(n3 log(nU)).

Number of arithmetic operations is O(L · n · n3) = O(n7 log(nU)).

It suffices to compute with integers with O(n log(nU)) bits.
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Norm of surplus vector decreases by a factor 1 + Ω(1/n3) in each
iteration.

The buyers in S have the same surplus up to a factor of e.

If the surplus of a buyer becomes zero, the norm drops by a factor
1 + Ω(1/n).
If a new MBB-edge arises, we

first push flow into the good until it is completely sold (happens only m times)
or surplus of buyer is zero and then
balance flow. This will make two surpluses which were at a factor 1 + 1/n
appart equal.
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Fair Division of Goods among Multiple Agents

Assignment of Items to Agents with Valuations

Set G of m (in)divisible items

Set A of n agents or users

uij = utility of good j to agent i

Allocation
xij = fraction of good j assigned to agent i , xij ≥ 0.

No item is overassigned, i.e.,
∑

i xij ≤ 1.

ui =
∑

j uijxij , utility of agent i .

indivisible: xij ∈ {0, 1}.

What constitutes a fair division?
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Which Objective Catches Fairness?
Maximize the arithmetic mean of valuations
Utilitarian Social Welfare:

SW(S) =
1
n

∑
i∈A

ui

Maximize the minimum of valuations
Max-Min-Fairness, Egalitarian Welfare:

EW(S) = min
i∈A

ui

Maximize the geometric mean of valuations
Proportional Fairness, Nash Social Welfare:

NSW(S) =

(∏
i∈A

ui

)1/n

What do the numbers uij mean? Does it make sense to compare uij and uik ?
uij and uhj?
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Axiomatic Justification of Nash Social Welfare

Maximize the geometric mean of valuations
Proportional Fairness, Nash Social Welfare:

NSW(S) =

(∏
i∈A

ui

)1/n

Nash (1952): NSW is the only objective that satisfies Pareto optimiality,
invariance under scaling, symmetry, and independence of irrelevant
alternatives.
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Formulation as a Mathematical Program

Formulation as a Non-Linear Optimization Problem:

Max.

∏
i∈A

∑
j∈G

uijxij

1/n

s.t.
∑
i∈A

xij ≤ 1 j ∈ G

xij ≥ 0 i ∈ A, j ∈ G

First formulated in the connection with Fisher Markets.
Optimal solutions: Competitive Equilibria with Equal Incomes (CEEI), [Varian,

JET ’74]
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Formulation as a Mathematical Program

After taking logarithm of the objective (recall that logarithm function is mono-
tone).
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Formulation as a Mathematical Program

Eisenberg-Gale Convex Program: [Eisenberg, Gale, Ann Math Stat’59]

[Gale 1960], [Eisenberg, Mgmt Sci’61]
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Constrained Optimization

Min. f (x)

s.t. hi (x) ≤ 0 i = 1, 2, 3, . . .
gj (x) = 0 j = 1, 2, 3, . . .

KKT conditions, Method of Lagrange Multipliers: In an optimal point, the
gradient (vector of partial derivatives) of f is a linear combination of the
gradients of the tight constraints. The multipliers have to be non-negative for
the inequalities and are unconstrained otherwise. I.e.,

∇f (x) =
∑

i

λi∇hi (x) +
∑

j

µj∇gj (x)

s.t. hi (x) ≤ 0 i = 1, 2, 3, . . .
gj (x) = 0 j = 1, 2, 3, . . .

λi ≥ 0 i = 1, 2, 3, . . .
λi > 0 implies hi (x) = 0
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Optimality Conditions for our Mathematical Program

Max.
1
n

∑
i∈A

log

∑
j∈G

uijxij


s.t.

∑
i∈A

xij ≤ 1 j ∈ G dual variable pj

−xij ≤ 0 i ∈ A, j ∈ G dual variable qij

Optimality Conditions: write ui for
∑

j∈G uijxij .

uij/ui = pj − qij derivative with respect to xij

pj ≥ 0
qij ≥ 0∑

i∈A

xij ≤ 1

−xij ≤ 0
xij > 0 implies qij = 0∑

i∈A

xij < 1 implies pj = 0
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This is a Fisher Market for Incomes mi = 1 for all Agents

uij/ui = pj − qij derivative with respect to xij

pj ≥ 0 price of good j
qij ≥ 0 uij/ui ≤ pj or uij/pj ≤ ui always∑

i∈A

xij ≤ 1

−xij ≤ 0
xij > 0 implies qij = 0 if xij > 0 then uij/ui = pj and hence uij/pj = ui∑

i∈A

xij < 1 implies pj = 0 if good j is not fully allocated, its price is zero.

Further consequence:
∑

j xijpj =
∑

j xijuij/ui = 1, i.e., each agent spends
exactly one unit of money, and pj > 0 iff uij > 0 for some i . Alternatively:

buyer i has budget mi , mi = 1.
are there prices pj , 1 ≤ j ≤ m, and allocations xij such that

all goods are completely sold:
∑

i xij = 1
all money is spent:

∑
j xij pj = mi

only bang per buck items are bought:

xij > 0 ⇒
uij

pj
= αi , where αi = max

`

ui`

p`
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Approximating Nash Social Welfare for Indivisible Goods

Algorithm ALG computes a ρ-approximation if for every problem instance I

NSW(ALG(I)) ≥ NSW(S∗)
ρ

.

Extensions of the 2-approximation algorithm:
Additive-separable concave valuations [Anari, Mai, Oveis Gharan, Vazirani, 2016]

Multiple copies of each item [Bei, Garg, Hoefer, Mehlhorn, SAGT’17]

budget-additive valuations ui = min
(

ci ,
∑

j uijxij

)
, where ci is a utility cap

of agent i . [Garg, Hoefer, Mehlhorn, SODA 2018]
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Approximating Nash Social Welfare for Indivisible Goods
Additive Valuations:

ui =
∑

j

uijxij

APX-hard, no 1.00008-approximation unless P = NP [Lee, IPL’17]

2.889-approximation via markets [Cole, Gkatzelis, STOC’15]

e-approximation via stable polynomials [Anari, Gharan, Singh, Saberi, ITCS’17]

2-approximation via markets
[Cole, Devanur, Gkatzelis, Jain, Mai, Vazirani, Yazdanbod, EC’17]

1.45-approximation via limited envy [Barman, Krishnamurthy, Vaish, 2017]

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang, EC’16]

In every case: define a suitable relaxation, solve it, and round the solution.

Extensions of the 2-approximation algorithm:
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Relaxation – First Attempt

Optimization Problem as (Non-Linear) Integer Program:

Max.

∏
i∈A

∑
j∈G

uijxij

1/n

s.t.
∑
i∈A

xij ≤ 1 j ∈ G

xij ∈ {0, 1} i ∈ A, j ∈ G

We already know this program. We even know how to solve it. But, is it a
good relaxation?

NO, IT IS NOT. Consider: n buyers, m = n, uij = 1 for 1 ≤ j < n and uij = 2n

for j = n and all i .

Optimal fractional allocation: ui = (n − 1 + 2n)/n for all i .
NSW =

(
((n − 1 + 2n)/n)

n)1/n ≥ 2n/n.

Optimal integral allocation NSW =
(
1n−12n)1/n

= 2.
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Relaxation – First Attempt

Relaxation to Eisenberg-Gale-Type Convex Program:
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Cole - Gkatzelis, SICOMP 2017

For each agent, its utility vector is shown on the left. The entries correspond
to the five items on the right, i.e., u11 = 1 and u21 = 15. Prices are shown
next to each item. The graph on the left is the MBB-graph, i.e., each agent is
connected to all goods that give maximum utility per unit of money. Each
agent has one unit of money.
The graph on the right shows the money flow in the Fisher market equilibrium.
Note that three buyers spend all their money on item 1, and buyer 4 buys
goods 2, 3, and 4. This gives very little information on how to round.
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Cole - Gkatzelis, Spending-Constrained Equilibrium

Cole-Gkatzelis: Restrict the money inflow to each good to 1, i.e., inflow is 1 if
the price is larger than one and inflow is equal to price otherwise.

The prices and money flow in equilibrium are shown on the left. Note that the
price of first good is now much higher so that no buyer other than buyer 1 is
interested in the first good.

On the right the utility vectors are scaled (recall that NSW is invariant under
scaling) such that the utility per unit of money becomes 1, i.e., uij/pj ≤ 1 for
all edges and uij/pj = 1 for MBB-edges. This implies that every agent has a
utililty of 1 in Market equilibrium.
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Cole - Gkatzelis, Spending-Constrained Equilibrium

Cole-Gkatzelis: Restrict the money inflow to each good to 1, i.e., inflow is 1 if
the price is larger than one and inflow is equal to price otherwise.

The spending-constrained equilibrium suggests to assign good 1 to agent 1,
good 2 to agent 2, goods 3 to agent 3, good 5 to agent 5, and good 4 to
either agent 3 or 4. The NSW of this assignment is

(10 · 4/3 · 4/3 · 2/3)1/4 = (320/9)1/4 ≥ 1
2.4

 ∏
{j | pj>1}

pj

1/4

.
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Cole - Gkatzelis, Spending-Constrained Equilibrium

Cole-Gkatzelis: Restrict the money inflow to each good to 1, i.e., inflow is 1 if
the price is larger than one and inflow is equal to price otherwise.

If the allow partial allocation of the goods of price at most one, the NSW
becomes

(10 · 4/3 · 1 · 1)1/4 = (40/3)1/4 =

 ∏
{j | pj>1}

pj

1/4

.
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Fair Division of Indivisible Goods

Approximation Algorithm for Indivisible Goods (Cole-Gkatzelis)
The spending-constrained equilibrium can be computed in polynomial time.

The equilibrium can be rounded to an integral allocation x such that

NSW(x) ≥ 1
2e1/(2e) ·

∏
j:pj>1

pj Note 2e1/(2e) ≈ 2.404 .

The optimal integral allocation x∗ has value at most

NSW(x∗) ≤
∏

j:pj>1

pj .

Proposition [Garg, Hoefer, Mehlhorn, SODA’18]

Essentially the same ration can be achieved for budget additive utilities
min(ci ,

∑
j uijxij ). It is NP-hard to approximate NSW with budget-additive

valuations to within a factor of
√

8/7 (≈ 1.069).
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Upper Bound: NSW(x∗) ≤
∏

j:pj>1 pj for every integral x∗.

Scale utilities so that uij/pj ≤ 1 always and uij = pj for MBB-edges.

H = {j | pj > 1} and L = {j | pj ≤ 1}. Allow goods in L to allocated partially.
Use x′ to denote optimal solution. If j is assigned to i , i receives utility pj .
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Scale utilities so that uij/pj ≤ 1 always and uij = pj for MBB-edges.

H = {j | pj > 1} and L = {j | pj ≤ 1}. Allow goods in L to allocated partially.
Use x′ to denote optimal solution. If j is assigned to i , i receives utility pj .

Assume first, H = ∅. Then
∑

i ui (x′) =
∑

j pj = n and hence(∏
i

ui (x′)

)1/n

≤

(
1/n

∑
i

ui (x′)

)1/n

≤ 1.
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Upper Bound: NSW(x∗) ≤
∏

j:pj>1 pj for every integral x∗.

Scale utilities so that uij/pj ≤ 1 always and uij = pj for MBB-edges.

H = {j | pj > 1} and L = {j | pj ≤ 1}. Allow goods in L to allocated partially.
Use x′ to denote optimal solution. If j is assigned to i , i receives utility pj .

At most |H| agents are assigned a good in H. So n − H agents receive only
goods in L; call this set AL. Money flow to goods in H is |H|. Hence∑

i∈AL

ui (x′) ≤
∑
j∈L

pj ≤ n − |H| and hence ∃i0 ∈ AL s.t. ui0 (x′) ≤ 1.
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ui (x′) ≤
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j∈L

pj ≤ n − |H| and hence ∃i0 ∈ AL s.t. ui0 (x′) ≤ 1.

Assume ui (x′) > 1 for some i that is partially assigned a good in L. Shift from
i to i0 and improve NSW(x′), a contradiction. In particular, ui (x′) ≤ 1 for all i
that are partially assigned some good in L.
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ui (x′) ≤
∑
j∈L

pj ≤ n − |H| and hence ∃i0 ∈ AL s.t. ui0 (x′) ≤ 1.

Assume ui (x′) > 1 for some i that is partially assigned a good in L. Shift from
i to i0 and improve NSW(x′), a contradiction. In particular, ui (x′) ≤ 1 for all i
that are partially assigned some good in L.

Assume next that some agent in A \ AL receives two goods from H, say h and
j . Reassign one to i0 and note that that (α + ph)pj ≥ α(ph + pj ) for
ui0 (x′) = α ≤ 1 < ph, pj .
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Rounding the Equilibrium

Step 1: Allocation graph forms a forest. For each tree component, assign
some agent to be the root.

Step 2: For every good j keep at most one child-agent. If pj ≤ 1/2, cut the
edges to all children and make them roots. If pj > 1/2, keep the
child-agent i that buys the largest amount of j among the child
agents.

In other words, an agent i is cut from its parent j , if pj ≤ 1/2 or some
sibling buys more of j than i .

Step 3: Goods with no child-agent are assigned to their parent-agent.

No agent suffers under step 3.

In step 2, agents may loose allocation. If an agent loses allocation, it
becomes a root. Hence, only roots lose allocation. A root loses at most
half of its value (because a root has spent at most 1/2 on its former
parent-good).
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Rounding the Equilibrium

Structure of the forest:

Every good has exactly one child agent.

Assigning its parent-good to a non-root will give it a value that it at least
1/2 of its value in Market equilibrium (because price of parent-good is at
1/2 and value of every agent in Market equilibrium is one).

Step 4: For each tree component: Define path

a1 − g1 − a2 − g2 − · · · − a` − g` − a`+1,

where gi is the child of ai that contributes most to ai ’s utility. Assign
gi to ai . Outside path assign each good to its child-agent.

Aside the path, good goes to child agent, gives a 2-approximation. On the
path, approximation is captured by a telescopic product term.
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Analysis of Path: Assume first that all prices are at most one.

Define path
a1 − g1 − a2 − g2 − · · · − a` − g` − a`+1,

where gi is the child of ai that contributes most to ai ’s utility. Assign gi to ai .

So ai receives utility pi in rounded solution. Let qi be the fraction of gi that
goes to ai in Market equilibrium.

For i ≥ 2, ai spends at least qi−1 on its children in Market equilibrium: At
most fraction 1− qi−1 of gi−1 is allocated to ai and hence spending on
parent is at most this amount.

a1 spends at least 1/2 on its children in Market equilibrium.

a`+1 receives at least utility q` from its children in Market equilibrium and
hence in rounded solution.

Let ki be the number of children-goods of ai .

q1p1 = money spend by a1 on g1 ≥ 1/(2k1)

qipi = money spent by ai to gi ≥ qi−1/ki for 1 ≤ i ≤ `.∏
1≤i≤`+1

value of ai in rounded solution ≥ p1 · · · p` · q` ≥
1

2q1k1

q1

q2k2
· q`−1

q`k`
q`

=
1

2k1 · · · k`
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Summary

Market equilibriua for linear Arrow-Debrau and Fisher Markets

Nash Social Welfare captures fair division.

Nash Social Welfare for Divisible Goods and Fisher Markets

Approximation Algs for Nash Social Welfare for Indivisible Goods via
Spending-Restricted Markets
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