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Abstract

Multi-view stereo methods frequently fail to properly re-
construct 3D scene geometry if visible texture is sparse or
the scene exhibits difficult self-occlusions. Time-of-Flight
(ToF) depth sensors can provide 3D information regardless
of texture but with only limited resolution and accuracy. To
find an optimal reconstruction, we propose an integrated
multi-view sensor fusion approach that combines informa-
tion from multiple color cameras and multiple ToF depth
sensors. First, multi-view ToF sensor measurements are
combined to obtain a coarse but complete model. Then, the
initial model is refined by means of a probabilistic multi-
view fusion framework, optimizing over an energy function
that aggregates ToF depth sensor information with multi-
view stereo and silhouette constraints. We obtain high qual-
ity dense and detailed 3D models of scenes challenging for
stereo alone, while simultaneously reducing complex noise
of ToF sensors.

1. Introduction
The purely image-based 3D reconstruction of scene ge-

ometry, for instance via a stereo method, is still a highly
challenging problem. Even the state-of-the-art multi-view
stereo methods [7] according to the Middlebury data
set evaluation fail to properly reconstruct the 3D scene,
Fig. 1(b). The primary reason for this is the notorious dif-
ficulty of finding multi-view correspondence when visible
texture is sparse or complex occlusions are present. Al-
though these difficulties could be partially remedied by in-
creasing the set of views or resolution of the images, intrin-
sic problems still remain.

One way to overcome the limitations of image-based re-
construction methods is to combine a conventional multi-
view stereo vision system with a flash lidar or Time-of-
Flight (ToF) depth sensor [1]. Unlike any other scanner,
ToF sensors can capture full frame depth at video frame
rates. Therefore they are uniquely suited for capturing 3D
information in real time and can greatly advance photo-

(a) 3 out of 5 input images

(b) Furukawa multi-view stereo (c) our multi-view sensor fusion

Figure 1. room data set

realistic 3D rendering of dynamic scenes. (Although a sen-
sor of this type is often called a ToF camera to highlight its
frame rate, we will call it ToF depth sensor or ToF sensor to
avoid confusion with conventional color cameras.) Despite
the fact that ToF sensors can provide dense depth maps even
where stereo setups typically fail, they have two main chal-
lenges: (1) the resolution of ToF depth maps is far below
the resolution of stereo depth maps from color images, and
(2) measurements are greatly corrupted by non-trivial sys-
tematic measurement bias and random noise.

The main contribution of our work is a novel approach
for the fusion of multiple ToF sensors with stereo yield-
ing 3D reconstructions superior to the ones obtainable with
individual sensing modalities alone. The fusion approach
should be able to achieve the accuracy of a stereo approach
where possible and the completeness and robustness of a
ToF sensor.

At first glance, one might think that a straightforward
two-step procedure that first finds initial 3D geometry from
ToF sensors, and second applies any state-of-the-art stereo
approach produces best results. However, superior results



can be achieved by a tighter integration.
We propose an integrated multi-view method that

• utilizes the multi-view setup to compensate complex
systematic measurement bias (Sect. 3),

• fuses multi-view ToF measurements into a single com-
plete initial geometry estimate that drastically reduces
the random noise by incorporating the directional
noise characteristics of ToF sensors (Sect. 5),

• integrates the ToF sensor noise characteristics and
stereo cues via probabilistic framework that refines the
initial geometry estimate and achieves the accuracy of
stereo when reliable constraints exist (Sect. 6).

The framework utilizes both resolution differences and
measurement characteristics of the sensors. The level of de-
tail for the initial geometry is limited by the ToF sensor res-
olution. After refinement step, the reconstruction (Fig. 1(c))
is more detailed and more complete than results obtained
with multi-view stereo or single-view fusion.

2. Related Work
Multi-View Stereo Comprehensive surveys of stereo vi-
sion techniques can be found in [18, 19]. In general, stereo
techniques can be split into two basic categories according
to the search range used to calculate the photo-consistency
measure. Volumetric carving methods search for a surface
in a regular [21] or irregular [15] voxel space. On the other
hand, image-based methods estimate the depth for each ref-
erence image entity (pixels, lines, windows, or segments)
in 3D or along corresponding epipolar lines [19, 7]. Both
methods are computationally expensive, and they both re-
sult in outliers and holes in areas with repetitive textures,
a lack of texture, or substantial lighting changes across the
views.

ToF Sensors Unlike other depth sensors, such as laser
scanners or structured light scanners, time-of-flight flash
lidars [17] or ToF sensors can capture dynamic scenes at
real-time frame rates and multiple ToF sensors can run con-
currently. Most sensor fusion approaches using ToF sensors
aim at enhancing the resolution of depth maps captured with
a single sensor, e.g. by combining it with a single color
camera [5, 22, 14, 4]. This is mainly achieved by enforc-
ing statistical relationships between images and depth, such
as collocating intensity and depth discontinuities, and forc-
ing smoothness of geometry in regions of uniform intensity.
A few pioneering works of sensor fusion [23] [2] men-
tion fusion of a ToF sensor and a stereo pair of color cam-
eras, but focus only in single-view ToF sensor cases. [8]
uses intensity image silhouette and ToF depth data to re-
cover concavities in visual hull reconstructions. Although

they extended the use of ToF sensors into a multi-view sce-
nario for 3D reconstruction, their approach does not exploit
photo-consistency and yields only marginal improvement
over pure visual hull reconstructions at the low resolution
level of depth sensors.

In contrast, we propose a new multi-view depth and
stereo fusion algorithm that recovers dense multi-view 3D
geometry at the high resolution level of color cameras via
a Bayesian surface reconstruction technique similar to [6]
and [11]. Our system fully utilizes not only the measure-
ment characteristics of ToF depth sensors but also silhouette
cues and photo-consistency measures between color cam-
eras.

3. Data Acquisition and Calibration
Our multi-view recording system comprises five

Point GreyTM Flea2 color cameras and three MESA
SwissrangerTM SR3000 ToF depth sensors (each running at
a different modulation frequency to prevent interference).
Input to our reconstruction are the data captured from each
of the cameras: five intensity images I = {I1, I2, . . . , I5},
each featuring 1024 × 768 pixels, and the three ToF depth
maps D = {DA, DB , DC}, each featuring 176× 144 pixel
depth maps. All cameras and sensors are placed in a semi-
circular arrangement around the scene and point roughly
towards its center (Fig 2 (a)). Three of the color cameras
are paired with three ToF sensors resulting in three pairs
with almost identical viewpoints: (I1, DA), (I3, DB), and
(I5, DC). As described later, collocating the ToF sensors
and color cameras allows us to utilize silhouette constraints.

Since the ToF sensors also provide an intensity image,
extrinsic and intrinsic parameters of the ToF and color cam-
eras can be calibrated using a standard calibration tech-
nique [3]. However, even if the extrinsic and intrinsic cam-
era parameters were estimated perfectly, the non-trivial er-
ror characteristics of the ToF depth sensor will result in mis-
alignments between the depth maps DA, DB , and DC .

The error characteristics consist of two main compo-
nents: systematic bias and random noise [1, 12, 13]. Fol-
lowing the work of [13], we assume the following measure-
ment model of a ToF sensor:

p(z | x) ∼ N (z;x + b(x), σ2(x)) , (1)

where z is the depth measurement along a ray, x is the
true distance along that ray, and b(x) is the systematic bias,
which in practice mostly depends on the true distance. The
systematic bias causes the measurement to consistently de-
viate from ground truth even if the random noise were can-
celed out, and therefore, shifts the mean of the random noise
distribution. We assume the same bias b(x) regardless of
the pixel position within the same sensor, but the value is
specific to each depth sensor. The random noise can be



(a) (b) (c)

Figure 2. Calibration:(a) Camera set up (b) Alignment of silhouette (green) and the depth edges (blue). The 3D geometry XB is generated
from DB (blue) and projected on the neighboring view I3. Silhouette edges (green) are distinguished from ordinary image edges (red) by
the projection. (c) Misalignment of the silhouette (green) depth edges (blue) of 3D geometry XA generated from the oblique sensor DA

demonstrating systematic bias b(x).

faithfully modeled as a normal distribution. The standard
deviation σ(x) of the random noise is a quadratic function
of x as described in [13]. Both the systematic bias and the
random noise can be compensated in the multi-view set-up.

The systematic bias component of the error can be cal-
ibrated and compensated during pre-processing. Previous
work proposed bias calibration from many measurements
of a calibration object, e.g. a checkerboard [23, 13], which
is very tedious in practice. The acquired bias function b(x)
is typically composed of both a periodic component and a
globally decaying component, and it is hard to model it ana-
lytically. In contrast, we propose a new bias calibration and
compensation approach that capitalizes on the multi-sensor
setup. It only requires a single set of images of an arbitrary
scene, and it represents the non-trivial b(x) as a look-up ta-
ble.

From DA, DB , and DC , we can generate approximate
3D geometry, XA, XB , and XC . By reprojecting the Xi’s
onto the view of a paired color camera, silhouette edges are
extracted from each pair of a depth sensor and a video cam-
era, Fig. 2(b). Among image edges (red), silhouette edges
(green) are distinguished by proximity to depth discontinu-
ity of projected Xi (blue). When viewed from an oblique
angle, we can estimate the bias that makes the multi-view
data consistent, Fig. 2(c). The goal is to find b(x) by getting
the true depth edges (blue) to align with the silhouette edges
(green).

To serve this purpose, the measured depths z ∈ D are
shifted by discrete distance bias values bk and the shifted
depth map z− bk is projected into image I from an oblique
angle. If a depth pixel projects into the vicinity of silhouette
edge in I , the bin counter at the distance z− bk and the bias
bk is increased. Finally, a look-up table containing one bk

for every observed distance is created by finding the largest
matrix entry for each x. This procedure is carried out for
each of the ToF sensors separately, yielding three different
look-up tables that capture each ToF sensor’s specific bias.

After the systematic bias compensation, all the sensors

are registered into a common frame, and the depth data align
much better in 3D. However, there are still subtle remaining
registration inaccuracies and there are still disturbances due
to random noise.

4. Overview of Surface Reconstruction
Now that all the sensors are registered into a global coor-

dinate system, our job is to extract the best plausible surface
from two different sensors modalities. Even though the re-
construction problem has been studied before for each sen-
sor modality individually, the problem of reconstructing a
surface that meets the two kinds of sensor measurements in
combination is not well understood.

As mentioned before, the key benefits of ToF sensors are
completeness, while multi-view stereo can play an essential
role in finer resolution. We propose an integrated method
that heavily exploits knowledge of directional sensor noise
characteristics which, in the multi-view case, allows for
much more reliable 3D localization. In a first initial fusion
step, an initial surface estimate X̃ is reconstructed from the
multi-view ToF measurements only, Sect. 5. In a refined fu-
sion step, Sect. 6, we exploit specific stereo and image cues
to refine the initial fusion result. The image cues we employ
are largely motivated by the measurement characteristics of
the ToF sensors and can be optimally combined with the
sensor uncertainty information for best reconstruction.

5. Initial Surface Reconstruction
3D reconstruction begins by building an initial 3D shape

estimate X̃ from the ToF data only. Even after calibration,
the raw output of ToF sensors is subject to extreme random
noise. In theory, we can reduce the random noise either by
(1) taking an average of multiple frames over time or (2)
combining ToF data from multiple viewpoints of the same
time step while exploiting knowledge about noise charac-
teristics. The former is a trivial and effective method, but
is only applicable for static scenes. We take the latter ap-



proach that honors the real-time frame rates of ToF sensors
and makes our reconstruction method suitable for dynamic
scenes, too. As it will be shown later (Sect. 7.2), our ap-
proach can reduce the noise level up to the level of the for-
mer method.

In the initial surface reconstruction, we merge all depth
maps DA, DB , and DC into a common 3D field of oc-
cupancy probabilities. We store the combined occupancy
values in a regular voxel grid Vd that is aligned with the
world coordinate frame and comprises voxels of 1 cm side
length (at a scene distance of 2 m, 1 cm voxel size is the spa-
tial resolution of the depth sensor). We describe the occu-
pancy probability for each pixel ray of depth measurement
(Sect. 5.1), and a method for fusing the occupancy proba-
bilities from multiple measurement into a joint probability
field (Sect. 5.2). From the joint occupancy field, the initial
surface is reconstructed via iso-surface extraction. This pro-
duces a sub-optimal surface estimate X̃ but is fast and the
quality has been found to be sufficient to serve as a starting
point for further optimization.

5.1. Occupancy Probabilities

One of the most significant characteristics of ToF sensors
is that the measurement uncertainty lies primarily in the di-
rection of each depth ray. For a given measurement z, the
most probable distance of the surface along the ray evalu-
ates to x̃ = argmaxx p(z | x) = z − b(x), according to the
measurement model of Eq.(1). The measurement model of
Eq.(1), however, implies directional information, and there-
fore, cannot be easily applied to integrate multiple sensor
measurements from various directions. For example, when
a measurement reads z = 2 m, the probability according to
Eq.(1) represents not only that surface exists at x but also
that the one dimensional space along the ray direction in
front of the surface is empty, and that we do not know what
is behind the surface.

We can use the measurement model to infer a proba-
bility of occupancy for each voxel in space independently.
p(mx | z) = 0 represents the situation that the voxel is com-
pletely empty, and p(mx | z) = 1 represents a fully occu-
pied voxel. Please note that we purposefully chose to use a
heuristic function to transform the measurement model into
occupancy probabilities which allows us to build the initial
surface more faithfully via rapid iso-surface reconstruction.
Our heuristic function incorporates the directional ToF sen-
sor noise characteristics and defines p(mx | z) = 0.5 at
the most probable distance x̃, Fig. 3(a). The low occupancy
probability when x < x̃ represents empty space between
the sensor and the measured surface. The steepness of the
change reflects the standard deviation of the random noise,
or the reliability of the measurement. The probability even-
tually reaches to 0.5 (occlusion), which is the initial proba-
bility without any measurement.

While our heuristic function is similar to the function
used in [8], our function is specifically tailored to surface
reconstruction via iso-surface extraction. If one uses a clas-
sical measurement model as in [8], the occupancy probabil-
ities of the most likely surface vary locally. Therefore, the
correct most likely surface can only be found via a costly
optimization (e.g. graph-cut) that accounts for these local
variations. In contrast, we purposefully modified the mea-
surement model to localize the most probable surface more
consistently with an occupancy value of 0.5, also in the
multi-view case. We can therefore more faithfully localize
an initial surface estimate by performing rapid iso-surface
extraction at an iso-level of 0.5. The extracted surface is a
starting point for further refinement described in Sect. 6.

5.2. Joint Occupancy and Surface Extraction

The occupancy probability for the voxel grid is initial-
ized to a value of 0.5, which is equivalent to no information.
Since we assume that the per-voxel depth measurements z1,
z2 and z3 from all three ToF sensors are independent, we
can merge them into a joint occupancy probability as fol-
lows [20, 9]:

log
p(mx | z1, z2, z3)

p(¬mx | z1, z2, z3)
=

3∑
i=1

log
p(mx | zi)

p(¬mx | zi)
(2)

Here p(¬mx | zi) = 1− p(mx | zi) and log-odds are used
for numerical accuracy. Starting from uniform occupancy
probability of p(mx | z) = 0.5, the directional uncertainty
around the iso-value is reduced as three sensor measure-
ments are combined, Fig. 3 (c)(d). As a consequence, the
surface extracted via Marching Cubes iso-surface extraction
is much closer to the true surface than if we had used one
ToF sensor only.

6. Detailed Surface Reconstruction
Now that we have a plausible initial surface estimate, we

can use a gradient-based optimizer to refine the surface po-
sition. The reconstruction of a 3D geometry model X is
formulated as the problem of finding the most likely (MAP)
surface given the ToF depth measurements Z, 3D point con-
straints according to multi-view photo-consistency C, and
3D positions constraints S due to occlusion boundaries that
should line up with image discontinuities. Assuming the
independence of the measurement likelihoods of ToF data,
stereo constraints and silhouette constraints, we can formu-
late the posterior probability of the 3D model given the three
types of measurements as:

P(X | Z,C, S) ∝ P(Z | X)P(C | X)P(S | X)P(X) .
(3)

Here, P(Z | X), P(C | X), and P(S | X) are the mea-
surement likelihoods of Z, C and S, and P(X) is a prior



(a) (b)

(c) (d)

Figure 3. (a) Heuristic occupancy probability function of each ray.
For a 3D model, a slice of occupancy probability field at (b) is
shown for (c) one sensor and (d) three sensors in log odd scale.
The corresponding initial surface where p(mx | z) = 0.5 is shown
in red line. (In log odd scale, p(mx | z) = 0.5 corresponds to
log p(mx|z)

p(¬mx|z)
= 0.) Note the improved surface localization when

combining of multiple ToF sensors.

on likely 3D model configurations. The MAP estimate of
3D model X̂ is found by minimizing the negative logarithm
of the above posterior which yields an energy minimization
problem of the form:

X̂ = argmin
X

EZ + EC + ES + EX (4)

where EZ , EC , and ES are the negative log-likelihoods of
P(Z | X), P(C | X), and P(S | X), respectively. Accord-
ingly EX = − log P(X). We represent the most likely 3D
model X as a triangle mesh with fixed vertex connectivity,
and thus X = {vi | i = 1, . . . , N} can be interpreted as
the set of all N vertex positions vi of the mesh. In the fol-
lowing, we explain the components of the energy function
in more detail.

6.1. Measurement Potential for ToF Sensors

The measurement potential EZ tries to hold the vertex
positions of X̂ close to X̃ , but also takes into account the
resolution deficiency of the initial estimate by assigning no
penalty to any surface that only moves within one voxel size
δ = 1cm from X̃ .

EZ =
N∑

i=1

‖ri‖2, (5)

where ri = (rx
i , ry

i , rz
i )> contains the distances along x,y

and z between the current vertex position vi ∈ X and the
position of the same vertex according to the initial recon-
struction ṽi ∈ X̃ . Using rx

i as an example, the distances
evaluate to rx

i = max(0, |vx
i − ṽi

x| − δ/2), with ry
i and rz

i

computed accordingly. The optimizer can thus freely move
the surface within the 3D space of one voxel size. This
way we successfully recover finer surface detail from the
intensity camera data. Simultaneously, we remove surface
discretization artifacts from the initial surface estimates that
are due to limited sensor and thus voxel grid resolution.

6.2. Photo-consistency and Silhouette Potentials

When reliable stereo cues exist, we can refine our
reconstruction. Among many possible choices, photo-
consistency measure and silhouette constraints are used for
high-resolution constraints. By enforcing the constraints
locally, we can overcome the subtle remainders of sensor
noise, small inaccuracies in initial surface reconstruction,
and limited depth camera resolution. Note that we were able
to enforce silhouette constraints without a complex segmen-
tation algorithm because we already have a good approxi-
mation of 3D geometry from ToF sensor measurements.

To extract 3D points to be used as photo-consistency
constraint, we first test reliability for every vertex ṽi ∈ X̃
by checking if there is sufficient color variation with respect
to the most fronto-parallel camera. If there is, the point ṽi

is transformed along the normal direction within the vicin-
ity of the initial reconstruction and the photo-consistency
is calculated over a patch centered at the transformed point
pk. If the photo-consistency of the transformed point is a
local maximum larger than a threshold value (0.5), the pair
(vi,pk) is added to the list C of stereo-based constraints.
Given the list of all such constraints, we formulate the fol-
lowing photo-consistency potential:

EC =
∑

(vi,pk)∈C

H(‖vi − pk‖) . (6)

Here, H(x) is the robust Huber regression function [10].
The transition position where the Huber function switches
to an `1 norm is at x = δ/2. This way, we implicitly down-
weight the influence of obvious outliers on the final recon-
struction because it is unlikely that the surface ought to de-
form by more than one voxel size.

Similarly, we add a silhouette potential ES to drive ver-
tices which lie on a geometric occlusion boundary to the
nearest reprojected intensity boundary. For each vertex
ṽi ∈ X̃ , we check if it is an occlusion boundary with re-
spect to each color camera. If it is, ṽi is displaced along its
local normal direction in a neighborhood around its origi-
nal position, yielding new 3D candidate positions pu. If a
transformed position pu is found that projects into an edge



in a color image, the pair (vi,pu) is added to the list S
of silhouette rim constraints. Given the set S, an identical
expression as described in Eq.(6) can be used to formulate
ES .

6.3. Prior Potential

The prior potential EX serves as a regularizer that favors
likely 3D surface configurations. We resort to a Laplacian
prior [7] that reads as follows:

EX =
N∑

i=1

‖ρ∆vi + (1− ρ)(−∆2vi)‖2 . (7)

Here, ∆vi is the discrete Laplace operator evaluated at ver-
tex vi, and ∆2v = ∆(∆vi) is the respective bi-Laplacian.
Through experiments we could verify that ρ = 0.6 produces
the best results.

7. Results
We show results with four different data sets recorded

with the setup described in Sect. 3. Henceforth we refer to
the data sets as room (Fig. 1), macbeth (Fig. 4), girl (Fig. 5),
and whale (Figs. 6).

We use the L-BFGS-B optimizer to solve the final en-
ergy minimization problem [16]. Currently, we employ
a single-threaded non-optimized C++ implementation that
takes around 15 minutes to create a final reconstruction on
a Dual Core AthlonTM 5600+ machine with 4 GB mem-
ory, excluding the bias calibration step. Run times are dom-
inated by the photo-consistency calculation (11-12 min)
which can be drastically sped up, e.g. by using the GPU.
Overall, we expect that run times in the range of 4-5 min-
utes per frame are feasible through code optimization.

7.1. Conceptual Advantage over Multi-view Stereo

Even the state-of-the-art multi-view stereo approach [7]
fails on our room data set (Fig. 1(b)) which features mainly
plain untextured walls. In contrast, our multi-view sen-
sor fusion method can capitalize on and refine the geom-
etry measured with the ToF sensors, thereby reconstructing
dense and faithful models of the back walls and the floor,
Fig. 1(c).

Our other data sets also feature elements that are difficult
for a multi-view stereo methods. For instance, in the whale
data set (Fig. 6(b) left), the whale itself, the box, and the
bag exhibit big holes, since the surfaces are uniformly col-
ored. The same holds true for the colored board and the t-
shirt in macbeth (Fig. 4(b)). The holes of multi-view stereo
reconstruction can be filled based on a smoothness prior
(e.g., Poisson surface reconstruction). However, geomet-
ric hole-fillling approaches are not based on true measure-
ment, and can hallucinate incorrect geometry in between

(a) 3 out of 5 input images

(b) Furukawa multi-
view stereo

(c) one ToF sensor
and a stereo pair

(d) our multi-view
sensor fusion

Figure 4. macbeth data set

(a) 3 out of 5 input images

(b) one ToF sensor and a stereo pair (c) our multi-view sensor fusion

Figure 5. girl data set

objects (Fig. 6(b) right). In contrast, our proposed algo-
rithm yields accurate dense models even on such challeng-
ing scenes, Figs. 4(d), 6(c), 5(c).

7.2. Conceptual Advantage over Single-View Sen-
sor Fusion

Our proposed fusion of information from multiple ToF
sensors and multiple intensity cameras yields results of su-
perior quality than it is achievable with methods employing
only a single ToF sensor and a single pair of vision cam-
eras [23, 2]. First, our approach captures a larger range of
viewpoints yielding more complete geometry with less oc-
clusion problems. Furthermore, our multi-view approach
enables more accurate 3D geometry by efficiently compen-
sating for both systematic bias and random noise. To illus-



(a) 3 out of 5 input images (b) Furukawa multi-view stereo (c) Multi-view fusion

Figure 6. whale data set

(a) (b) (c) (d)

(e)

Figure 7. Random noise levels on a planar surface which is part of
the macbeth data set: The very high random noise label in a depth
map from a single ToF sensor (a) is severely reduced by our multi-
view approach (b). Please note that by combining three frames
from three ToF sensors taken at the same instant (c), we achieve
similar noise reduction as if we temporally averaged three consec-
utive frames from a single camera. This underpins the feasibility
of our multi-view approach also for dynamic scenes. For compari-
son, the result of temporally averaging 100 frames from one sensor
is shown in (d). The quantitative result is shown in (e) which plots
the standard deviations of random noise for the respective meth-
ods.

trate this, we compared our approach to a single-view ap-
proach by running sensor fusion with one ToF sensor and
two adjacent video cameras only, as shown in Fig. 4(b)
and Fig. 5(b). The single-view results exhibit erroneous
extruded occlusion boundaries whereas our algorithm re-
constructs geometry faithfully also in those areas occluded
from one viewpoint (such as the fins of the whale, or the
arms of the girl). Furthermore, when reprojecting the in-
put intensity images back onto the 3D geometry, there are
strongly noticeable ghosting artifacts in the single view re-
sults which are not visible in our results; an indication for
the more accurate 3D reconstruction through our approach.

Fig. 7 shows that our multi-view formulation in Sect. 5
can reduce the severe random noise from a single ToF sen-
sor.

NCC silhouette dist.data set
initial refined initial refined

whale 0.3320 0.6219 4.333 1.377
macbeth 0.5694 0.7047 3.147 1.110

girl 0.4703 0.5904 4.349 1.323
room 0.6385 0.8020 1.581 0.5799

Table 1. On all data sets, the refinement step leads to a clear im-
provement of the average photo-consistency (NCC) of the ver-
tices which were included into the refinement according to photo-
consistency constraints. The silhouette in images and depth dis-
continuity of 3D reconstruction is also closer after refinement.
This quantitatively confirms the observable visual improvements
after refinement of the coarse initial geometry.

(a) (b)

Figure 8. Improvement in Texture (Blended from Input Images):
The initial model (a) shows reconstruction errors and texture
ghosting, which is significantly improved in the full fusion result
(b). The patterns in the table cloth is more clear and the text is
readable.

7.3. Verification of Pipeline and Quantitative Vali-
dation

Our multi-view pipeline extracts faithful and complete
3D models, even on sparsely textured scenes. This is
achieved through an efficient interplay of initial reconstruc-
tion and refinement under exploitation of ToF sensor char-
acteristics. The relevance of the refinement step for ac-
curate 3D geometry computation is revealed after visual
inspection on texture, Fig. 8, and silhouette alignments,
Fig. 9). This clearly illustrates the effectiveness of multi-
view ToF-guided enforcement of photo-consistency and sil-



(a) (b) (c)

Figure 9. Alignment Improvement: Zooming in onto the whale
(white box) one can see that, after the full pipeline (c), the whale’s
occlusion edges in 3D (green) align much more accurately with
the corresponding image edges (yellow) than after initial recon-
struction using ToF sensor only (b).

houette constraints for accurate shape reconstruction.
Table 1 shows that the full pipleline clearly improves re-

construction quality over mere initial ToF-based reconstruc-
tion on all data sets. Please note that, since we did not have
a 3D laser scanner for ground truth geometry measurement,
we resorted to NCC and silhouette distances for quantitative
validation.

8. Conclusion
We have presented a new multi-view sensor fusion al-

gorithm that combines multiple ToF depth measurements
and multiple color images of a scene to reconstruct accurate
and dense 3D models. Our fusion framework is designed
in the way that the mutual benefits of both sensor types
can be most pronounced. The final reconstruction produce
a faithful models even of scenes where multi-view stereo
or single-view sensor fusion fails. Since multiple ToF sen-
sors can run together at full video frame rate (in contrast
to other depth sensors), we plan to apply our technique to
time-varying data in the future.
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