Automated Deduction for Equational Logic (SS 2003)

Uwe Waldmann <uwe@mpi-sb.mpg.de>
Thomas Hillenbrand <hillen@mpi-sb.mpg.de>

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:

First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

Syntax and semantics of first-order logic.

Reduction systems and term rewriting (termination, confluence, critical pairs, etc.).

Termination orderings (e.g., path orderings, polynomial orderings, Knuth-Bendix ordering).

(Theory) unification.

Superposition calculus.

Theory reasoning (e.g., calculi with built-in asssociative and commutative operators, transitive relations, Abelian groups).

Implementation issues.

Literature

Slides: http://www.mpi-sb.mpg.de/~uwe/lehre/eqlogic/ (Monday morning before the lecture) Warning: not complete!

Franz Baader and Tobias Nipkow: Term Rewriting and All That, Cambridge Univ. Press, 1998.

Handbook and journal articles (to be announced).

1 Recapitulation: First-Order Logic

Signatures

Signature: $\Sigma = (\Omega, \Pi)$, where

 Ω is a set of function symbols f with arity n (special case n = 0: constant symbol),

 Π is a set of predicate symbols p with arity m.

Variables: X is a (usually infinite) set of variable symbols.

Terms over Σ and X are formed according to this syntax:

$$s, t, u, v ::= x,$$
 where $x \in X$ (variable)
 $| f(s_1, ..., s_n),$ where $f/n \in \Omega$
(functional term)

The set of all terms over Σ and X is denoted by $T_{\Sigma}(X)$.

 $\mathsf{T}_{\Sigma} = \mathsf{T}_{\Sigma}(\emptyset)$: set of ground terms.

Variables of a term s:

 $Var(x) = \{x\},$ $Var(f(s_1, \dots, s_n)) = \bigcup_{i=1}^n Var(s_i).$

Positions of a term s:

$$\mathsf{Pos}(x) = \{\varepsilon\},\$$
$$\mathsf{Pos}(f(s_1, \ldots, s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{i p \mid p \in \mathsf{Pos}(s_i)\}.$$

Size of a term *s*:

|s| =cardinality of Pos(s).

Prefix order for $p, q \in Pos(s)$:

p above q: $p \leq q$ if pp' = q for some p',

p strictly above *q*: p < q if $p \leq q$ and not $q \leq p$,

p and q parallel: $p \parallel q$ if neither $p \leq q$ nor $q \leq p$.

Subterm of s at a position $p \in Pos(s)$:

$$s/arepsilon = s,$$

 $f(s_1, \ldots, s_n)/ip = s_i/p.$

Replacement of the subterm at position $p \in Pos(s)$ by t:

$$s[t]_{arepsilon} = t,$$

 $f(s_1, \ldots, s_n)[t]_{ip} = f(s_1, \ldots, s_i[t]_p, \ldots, s_n).$

Formulas

Atoms (atomic formulas) over Σ and X are formed according to this syntax:

It is sufficient to consider the case that $\Pi = \emptyset$, i.e., only equations, no other atoms.

Formulas

Literals over Σ and X are formed according to this syntax:

 $L ::= A, \quad (positive literal)$ $| \neg A, \quad (negative literal)$

Abbreviation: $s \not\approx t$ instead of $\neg s \approx t$.

First-order formulas over Σ are formed according to this syntax:

$$F, G, H$$
::= \bot (false) $|$ \top (true) $|$ $A,$ (atomic formula) $|$ $\neg F$ (negation) $|$ $(F \land G)$ (conjunction) $|$ $(F \lor G)$ (disjunction) $|$ $(F \leftrightarrow G)$ (implication) $|$ $(F \leftrightarrow G)$ (equivalence) $|$ $\forall x F$ (universal quantification) $|$ $\exists x F$ (existential quantification)

Formulas

Bound and free variables:

In $Q \times F$ with $Q \in \{\exists, \forall\}$, we call F the scope of the quantifier $Q \times A$.

An occurrence of a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas.

Formulas without variables are called ground.

Formulas

Clauses over Σ and X are formed according to this syntax:

 $egin{aligned} C,D & ::= & ot & (ext{empty clause}) \ & & | & L_1 \lor \cdots \lor L_k, & ext{where } k \geq 1 \ & & (ext{non-empty clause}) \end{aligned}$

Convention: All variables in a clause are implicitly universally quantified.

Usually in this lecture (w.o.l.o.g.): Clauses instead of general formulas.

Substitutions

A substitution is a mapping $\sigma : X \to T_{\Sigma}(X)$ such that the domain of σ , that is, the set $Dom(\sigma) = \{x \in X \mid \sigma(x) \neq x\}$ is finite.

Notation:
$$\sigma = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}.$$

 $\operatorname{Ran}(\sigma) = \{ \sigma(x) \mid x \in \operatorname{Dom}(\sigma) \}$ $\operatorname{Codom}(\sigma) = \operatorname{Var}(\operatorname{Ran}(\sigma)).$

Usually: postfix notation $x\sigma = \sigma(x)$.

Substitutions are extended homomorphically to terms and formulas:

$$f(s_1, \ldots, s_n)\sigma = f(s_1\sigma, \ldots, s_n\sigma)$$

$$\begin{array}{c} \bot \sigma = \bot \\ \top \sigma = \top \end{array}$$

$$p(s_1, \ldots, s_n)\sigma = p(s_1\sigma, \ldots, s_n\sigma)$$

$$(u \approx v)\sigma = (u\sigma \approx v\sigma) \\ \neg F\sigma = \neg (F\sigma) \\ (F \rho G)\sigma = (F\sigma \rho G\sigma), \text{ for each binary connective } \rho \\ (Qx F)\sigma = Qz (F \sigma[x \mapsto z]), \text{ with } z \text{ a fresh variable} \end{aligned}$$

$$\text{where } x\sigma[x \mapsto t] = t \text{ and } y\sigma[x \mapsto t] = y\sigma \text{ for } y \neq x.$$

Substitutions

If $t = s\sigma$ for some substitution, then t is called an instance of s. (Analogously for atoms, literals, ...)

A Σ -algebra (or Σ -interpretation) is a triple

$$\mathcal{A} = (U_{\mathcal{A}}, (f_{\mathcal{A}}: U^n \to U)_{f/n \in \Omega}, (p_{\mathcal{A}} \subseteq U^m)_{p/m \in \Pi})$$

where $U_{\mathcal{A}} \neq \emptyset$ is a set, called the universe of \mathcal{A} .

If $\Pi = \emptyset$, we will omit the third component.

We will usually use the symbol \mathcal{A} to denote both the algebra and its universe.

Special case: term algebras:

 $U_{\mathcal{A}} = \mathsf{T}_{\Sigma}(Y)$ for some (possibly empty) set Y of variables, $f_{\mathcal{A}} : (t_1, \ldots, t_n) \mapsto f(t_1, \ldots, t_n).$

An assignment is a mapping $\alpha : X \to \mathcal{A}$.

An assignment α can be homomorphically extended to a function $\mathcal{A}(\alpha) : \mathsf{T}_{\Sigma}(X) \to \mathcal{A}$:

$$\mathcal{A}(\alpha)(x) = \alpha(x), \text{ for } x \in X$$
$$\mathcal{A}(\alpha)(f(s_1, \dots, s_n)) = f_{\mathcal{A}}(\mathcal{A}(\alpha)(s_1), \dots, \mathcal{A}(\alpha)(s_n)),$$
for $f/n \in \Omega$.

The set of truth values is $\{0, 1\}$. The truth value $\mathcal{A}(\alpha)(F)$ of a formula F in \mathcal{A} with respect to α is defined inductively:

$$\mathcal{A}(\alpha)(\perp) = 0$$

$$\mathcal{A}(\alpha)(\top) = 1$$

$$\mathcal{A}(\alpha)(p(s_1, \dots, s_n)) = 1 \text{ iff } (\mathcal{A}(\alpha)(s_1), \dots, \mathcal{A}(\alpha)(s_n)) \in p_{\mathcal{A}}$$

$$\mathcal{A}(\alpha)(s \approx t) = 1 \text{ iff } \mathcal{A}(\alpha)(s) = \mathcal{A}(\alpha)(t)$$

$$\mathcal{A}(\alpha)(\neg F) = 1 \text{ iff } \mathcal{A}(\alpha)(F) = 0$$

$$\mathcal{A}(\alpha)(F\rho G) = B_{\rho}(\mathcal{A}(\alpha)(F), \mathcal{A}(\alpha)(G)),$$

where B_{ρ} is the Boolean function associated with ρ

$$\mathcal{A}(\alpha)(\forall xF) = 1 \text{ iff } \mathcal{A}(\alpha[x \mapsto a])(F) = 1 \text{ for all } a \in U_{\mathcal{A}}$$

$$\mathcal{A}(\alpha)(\exists xF) = 1 \text{ iff } \mathcal{A}(\alpha[x \mapsto a])(F) = 1 \text{ for some } a \in U_{\mathcal{A}}$$

where $\alpha[x \mapsto a](x) = a$ and $\alpha[x \mapsto a](y) = \alpha(y)$ for $y \neq x$.

F is valid in a Σ -algebra \mathcal{A} under assignment α : $\mathcal{A}, \alpha \models F$ iff $\mathcal{A}(\alpha)(F) = 1$.

F is valid in a Σ -algebra \mathcal{A} (or: \mathcal{A} is a model of F): $\mathcal{A} \models F$ iff $\mathcal{A}, \alpha \models F$ for all $\alpha \in X \to \mathcal{A}$.

F is (universally) valid (or: F is a tautology):

$$\models F$$
 iff $\mathcal{A} \models F$ for all Σ -algebras \mathcal{A} .

F is satisfiable iff there exist \mathcal{A} and α such that $\mathcal{A}, \alpha \models F$. Otherwise *F* is called unsatisfiable. We will use the notion of entailment only for closed formulas. Let F and G be closed formulas.

F entails G: $F \models G$ iff for all Σ -algebras $\mathcal{A}, \mathcal{A} \models F$ implies $\mathcal{A} \models G$.

A set of closed formulas N entails G: $N \models G$ iff for all Σ -algebras \mathcal{A} , if $\mathcal{A} \models F$ for all $F \in N$, then $\mathcal{A} \models G$.

F and G are equivalent iff for all Σ -algebras \mathcal{A} , $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$. (analogously for sets of closed formulas).

Proposition:

F is valid if and only if $\neg F$ is unsatisfiable.

Proposition:

 $N \models F$ if and only if $N \cup \{\neg F\}$ is unsatisfiable.