Automated Deduction for Equational
Logic
(SS 2003)

Uwe Waldmann <uwe@mpi-sb.mpg.de>

Thomas Hillenbrand <hillen@mpi-sb.mpg.de>

Motivation

Equality is the most important relation in mathematics and

functional programming.

In principle, problems in first-order logic with equality can be
handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:
First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems

that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be
integrated into the theorem prover.

Contents

Syntax and semantics of first-order logic.

Reduction systems and term rewriting
(termination, confluence, critical pairs, etc.).

Termination orderings (e.g., path orderings, polynomial
orderings, Knuth-Bendix ordering).

(Theory) unification.
Superposition calculus.

Theory reasoning (e.g., calculi with built-in asssociative and
commutative operators, transitive relations, Abelian groups).

Implementation issues.

Literature

Slides: http://www.mpi-sb.mpg.de/ uwe/lehre/eqlogic/
(Monday morning before the lecture)
Warning: not complete!

Franz Baader and Tobias Nipkow: Term Rewriting and All That,
Cambridge Univ. Press, 1998.

Handbook and journal articles
(to be announced).

1 Recapitulation: First-Order Logic

Signatures

Signature: ¥ = (€2, 1), where

() is a set of function symbols f with arity n
(special case n = 0: constant symbol),

[1is a set of predicate symbols p with arity m.

Variables: X is a (usually infinite) set of variable symbols.

Terms

Terms over 2 and X are formed according to this syntax:

s, t,u v 1= X, where x € X (variable)

| f(s1, .., sn), where f/neQ
(functional term)

The set of all terms over ¥ and X is denoted by Tx(X).

Ty = Tx(0): set of ground terms.

Terms

Variables of a term s:
Var(x) = {x},
Var(f(sy,..., sn)) = Ui, Var(s;).

Terms

Positions of a term s:
Pos(x) = {e},
Pos(f(s1,....sn)) ={e}UU,_{ip|p € Pos(s) }.

Size of a term s:

|s| = cardinality of Pos(s).

Prefix order for p, g € Pos(s):
p above g: p < q if pp’ = g for some p’,
p strictly above g: p < g if p < g and not g < p,

p and g parallel: p || g if neither p < g nor g < p.

Terms

Subterm of s at a position p € Pos(s):
s/e =s,

f(s1,.--, sn)/ip=-si/p.

Replacement of the subterm at position p € Pos(s) by t:

s[t]le = t,

Formulas

Atoms (atomic formulas) over ¥ and X are formed according to
this syntax:

A B = p(si,...,Sm), where p/meTl
(non-equational atom)

| s=~t, (equation)

It is sufficient to consider the case that 1 = (), i.e., only
equations, no other atoms.

11

Formulas

Literals over 2 and X are formed according to this syntax:

L == A (positive literal)

| A, (negative literal)

Abbreviation: s % t instead of - s ~ t.

12

Formulas

First-order formulas over 2 are formed according to this syntax:

F.G.H = L1 (false)
T (true)
A, (atomic formula)
-F (negation)
(FAG) (conjunction)
(FVG) (disjunction)
(F — G) (implication)
(F < G) (equivalence)
Vx F (universal quantification)
Ix F (existential quantification)

Formulas

Bound and free variables:

In Qx F with Q € {3, V}, we call F the scope of the
quantifier Qx.

An occurrence of a variable x is called bound, if it is inside the
scope of a quantifier @x. Any other occurrence of a variable
Is called free.

Formulas without free variables are also called closed formulas.

Formulas without variables are called ground.

14

Formulas

Clauses over X and X are formed according to this syntax:

C,D = 1 (empty clause)
| [{V---V L, wherek>1

(non-empty clause)

Convention: All variables in a clause are implicitly universally

quantified.

Usually in this lecture (w.o.l.o.g.): Clauses instead of general

formulas.

15

Substitutions

A substitution is a mapping o : X — Tg(X) such that the
domain of o, that is, the set Dom(c) = {x € X | o(x) # x }
is finite.

Notation: 0 = {x; — t,..., Xp — tht.

Ran(o) = {o(x) | x € Dom(co) }
Codom(c) = Var(Ran(o)).

Usually: postfix notation xo = o(x).

16

Substitutions

Substitutions are extended homomorphically to terms and

formulas:
f(s,---, sn)o = f(sio,..., Sno)
lo=_1
To=T
p(s1, ..., sn)o = p(sio, ..., Sno)
(u=v)o = (uoc ~ vo)
—Fo = —(Fo)

(FpG)o = (FopGo), foreach binary connective p
(Qx F)o = Qz (F o[x — z]), with z a fresh variable

where xo[x +— t] =t and yo[x — t] = yo for y # x.

17

Substitutions

If t = so for some substitution, then t is called an instance of s.

(Analogously for atoms, literals, ...)

18

Semantics

A Y -algebra (or X-interpretation) is a triple

A= (U4, (fg:U"— U)f/nefb (pa C Um)p/méﬂ)

where Uy # () is a set, called the universe of A.
If [T =10, we will omit the third component.

We will usually use the symbol A to denote both the algebra
and its universe.

19

Semantics

Special case: term algebras:

Ug = Ts(Y) for some (possibly empty) set Y of variables,

20

Semantics

An assignment is a mapping o : X — A.

An assignment o can be homomorphically extended to a function
Ala) : Tg(X) — A:
A(a)(x) = a(x), for x € X

A(a)(f(s1,5n)) = fa(A(a)(s1), ..., Ala)(sn)),
for f/n € €.

21

Semantics

The set of truth values is {0,1}. The truth value A(a)(F) of a
formula F in A with respect to « is defined inductively:

A(a)(L) =0
A(a)(T) =1
Ala)(p(s1, ... sn)) = 1iff (A(a)(s1), ... A(a)(sn)) € pa
Ala)(s = t) = 1 iff A(a)(s) = A(a)(t)
A(a)(—F) = 1iff A(a)(F) =0
A(a)(FpG) = B,(A(a)(F), A(a)(G)),
where B, is the Boolean function associated with p
A(a)(VxF) = 1 iff A(a[x — a])(F) =1 forall a€ Uy
A(a)(3xF) = 1 iff A(a[x — a])(F) =1 for some a € Uy

where a[x — a|(x) = a and af[x — a|(y) = a(y) for y # x.

22

Validity and Satisfiability

F is valid in a X-algebra A under assignment a:

A, a = F iff A(a)(F)=1.

F is valid in a X-algebra A (or: A is a model of F):
AEFiff A,a = F forallae X — A.

F is (universally) valid (or: F is a tautology):
= F iff A= F for all X-algebras A.

F is satisfiable iff there exist A and « such that A, a = F.

Otherwise F is called unsatisfiable.

23

Entailment and Equivalence

We will use the notion of entailment only for closed formulas.
Let F and G be closed formulas.

F entails G:
F = G iff for all X-algebras A, A = F implies A = G.

A set of closed formulas N entails G:

N = G iff for all X-algebras A, if A= F forall F e N,
then A = G.

F and G are equivalent iff for all X-algebras A,
AEF < A G. (analogously for sets of closed formulas).

24

Semantics

Proposition:
F is valid if and only if =F is unsatisfiable.

Proposition:
N = F if and only if NU{—=F} is unsatisfiable.

25

