Automated Deduction for Equational

Logic (SS 2003)

Uwe Waldmann uwe@mpi-sb.mpg.de
Thomas Hillenbrand hillen@mpi-sb.mpg.de

Motivation

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e.g., resolution theorem provers.

Equality is theoretically difficult:
First-order functional programming is Turing-complete.
But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

Contents

Syntax and semantics of first-order logic.
Reduction systems and term rewriting (termination, confluence, critical pairs, etc.).

Termination orderings (e.g., path orderings, polynomial orderings, Knuth-Bendix ordering).
(Theory) unification.
Superposition calculus.
Theory reasoning (e.g., calculi with built-in asssociative and commutative operators, transitive relations, Abelian groups).

Implementation issues.

Literature

Slides: http://www.mpi-sb.mpg.de/~uwe/lehre/eqlogic/ (Monday morning before the lecture)
Warning: not complete!
Franz Baader and Tobias Nipkow: Term Rewriting and All That, Cambridge Univ. Press, 1998.

Handbook and journal articles
(to be announced).

1 Recapitulation: First-Order Logic

Signatures

Signature: $\Sigma=(\Omega, \Pi)$, where
Ω is a set of function symbols f with arity n
(special case $n=0$: constant symbol),
Π is a set of predicate symbols p with arity m.

Variables: X is a (usually infinite) set of variable symbols.

Terms

Terms over Σ and X are formed according to this syntax:

$$
\begin{array}{rlr}
s, t, u, v \quad & :=\quad x, & \text { where } x \in X \quad \text { (variable) } \\
& \mid \quad f\left(s_{1}, \ldots, s_{n}\right), & \text { where } f / n \in \Omega \\
& & \text { (functional term) }
\end{array}
$$

The set of all terms over Σ and X is denoted by $\mathrm{T}_{\Sigma}(X)$.
$T_{\Sigma}=T_{\Sigma}(\emptyset)$: set of ground terms.

Terms

Variables of a term s :

$$
\operatorname{Var}(x)=\{x\}
$$

$$
\operatorname{Var}\left(f\left(s_{1}, \ldots, s_{n}\right)\right)=\bigcup_{i=1}^{n} \operatorname{Var}\left(s_{i}\right)
$$

Terms

Positions of a term s:
$\operatorname{Pos}(x)=\{\varepsilon\}$,
$\operatorname{Pos}\left(f\left(s_{1}, \ldots, s_{n}\right)\right)=\{\varepsilon\} \cup \bigcup_{i=1}^{n}\left\{i p \mid p \in \operatorname{Pos}\left(s_{i}\right)\right\}$.
Size of a term s :
$|s|=$ cardinality of $\operatorname{Pos}(s)$.
Prefix order for $p, q \in \operatorname{Pos}(s)$:
p above $q: p \leq q$ if $p p^{\prime}=q$ for some p^{\prime},
p strictly above q : $p<q$ if $p \leq q$ and not $q \leq p$,
p and q parallel: $p \| q$ if neither $p \leq q$ nor $q \leq p$.

Terms

Subterm of s at a position $p \in \operatorname{Pos}(s)$:

$$
s / \varepsilon=s
$$

$$
f\left(s_{1}, \ldots, s_{n}\right) / i p=s_{i} / p
$$

Replacement of the subterm at position $p \in \operatorname{Pos}(s)$ by t :

$$
\begin{aligned}
& s[t]_{\varepsilon}=t \\
& f\left(s_{1}, \ldots, s_{n}\right)[t]_{i p}=f\left(s_{1}, \ldots, s_{i}[t]_{p}, \ldots, s_{n}\right)
\end{aligned}
$$

Formulas

Atoms (atomic formulas) over Σ and X are formed according to this syntax:
$A, B \quad::=p\left(s_{1}, \ldots, s_{m}\right), \quad$ where $p / m \in \Pi$
(non-equational atom)

$$
\quad s \approx t
$$

(equation)

It is sufficient to consider the case that $\Pi=\emptyset$, i.e., only equations, no other atoms.

Formulas

Literals over Σ and X are formed according to this syntax:

$$
\begin{array}{rlrr}
L & ::= & A, & \text { (positive literal) } \\
& & \neg A, & \\
\text { (negative literal) }
\end{array}
$$

Abbreviation: $s \not \approx t$ instead of $\neg s \approx t$.

Formulas

First-order formulas over Σ are formed according to this syntax:

F, G, H	$::=$	\perp
	\mid	T
	A,	
	$: F$	
	$(F \wedge G)$	
	$(F \vee G)$	
	$(F \rightarrow G)$	
	$(F \leftrightarrow G)$	
		$(F \times F$
		$\exists x F$

[^0]
Formulas

Bound and free variables:
In $Q \times F$ with $Q \in\{\exists, \forall\}$, we call F the scope of the quantifier $Q x$.

An occurrence of a variable x is called bound, if it is inside the scope of a quantifier $Q x$. Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas.
Formulas without variables are called ground.

Formulas

Clauses over Σ and X are formed according to this syntax:

$$
\begin{array}{rlr}
C, D & := & \perp \\
& \mid & L_{1} \vee \cdots \vee L_{k},
\end{array} \text { (empty clause) } \begin{array}{ll}
\text { where } k \geq 1 \\
&
\end{array}
$$

Convention: All variables in a clause are implicitly universally quantified.

Usually in this lecture (w.o.l.o.g.): Clauses instead of general formulas.

Substitutions

A substitution is a mapping $\sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X)$ such that the domain of σ, that is, the set $\operatorname{Dom}(\sigma)=\{x \in X \mid \sigma(x) \neq x\}$ is finite.

Notation: $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$.
$\operatorname{Ran}(\sigma)=\{\sigma(x) \mid x \in \operatorname{Dom}(\sigma)\}$
$\operatorname{Codom}(\sigma)=\operatorname{Var}(\operatorname{Ran}(\sigma))$.
Usually: postfix notation $x \sigma=\sigma(x)$.

Substitutions

Substitutions are extended homomorphically to terms and formulas:

$$
\begin{aligned}
f\left(s_{1}, \ldots, s_{n}\right) \sigma & =f\left(s_{1} \sigma, \ldots, s_{n} \sigma\right) \\
\perp \sigma & =\perp \\
\top \sigma & =\top \\
p\left(s_{1}, \ldots, s_{n}\right) \sigma & =p\left(s_{1} \sigma, \ldots, s_{n} \sigma\right) \\
(u \approx v) \sigma & =(u \sigma \approx v \sigma) \\
\neg F \sigma & =\neg(F \sigma)
\end{aligned}
$$

$(F \rho G) \sigma=(F \sigma \rho G \sigma)$, for each binary connective ρ $(Q x F) \sigma=Q z(F \sigma[x \mapsto z])$, with z a fresh variable
where $x \sigma[x \mapsto t]=t$ and $y \sigma[x \mapsto t]=y \sigma$ for $y \neq x$.

Substitutions

If $t=s \sigma$ for some substitution, then t is called an instance of s.
(Analogously for atoms, literals, ...)

Semantics

A Σ-algebra (or Σ-interpretation) is a triple

$$
\mathcal{A}=\left(U_{\mathcal{A}},\left(f_{\mathcal{A}}: U^{n} \rightarrow U\right)_{f / n \in \Omega},\left(p_{\mathcal{A}} \subseteq U^{m}\right)_{p / m \in \Pi}\right)
$$

where $U_{\mathcal{A}} \neq \emptyset$ is a set, called the universe of \mathcal{A}.
If $\Pi=\emptyset$, we will omit the third component.

We will usually use the symbol \mathcal{A} to denote both the algebra and its universe.

Semantics

Special case: term algebras:
$U_{\mathcal{A}}=\mathrm{T}_{\Sigma}(Y)$ for some (possibly empty) set Y of variables,
$f_{\mathcal{A}}:\left(t_{1}, \ldots, t_{n}\right) \mapsto f\left(t_{1}, \ldots, t_{n}\right)$.

Semantics

An assignment is a mapping $\alpha: X \rightarrow \mathcal{A}$.

An assignment α can be homomorphically extended to a function $\mathcal{A}(\alpha): \mathrm{T}_{\Sigma}(X) \rightarrow \mathcal{A}:$

$$
\begin{aligned}
\mathcal{A}(\alpha)(x)= & \alpha(x), \text { for } x \in X \\
\mathcal{A}(\alpha)\left(f\left(s_{1}, \ldots, s_{n}\right)\right)= & f_{\mathcal{A}}\left(\mathcal{A}(\alpha)\left(s_{1}\right), \ldots, \mathcal{A}(\alpha)\left(s_{n}\right)\right), \\
& \text { for } f / n \in \Omega
\end{aligned}
$$

Semantics

The set of truth values is $\{0,1\}$. The truth value $\mathcal{A}(\alpha)(F)$ of a formula F in \mathcal{A} with respect to α is defined inductively:

$$
\begin{aligned}
\mathcal{A}(\alpha)(\perp) & =0 \\
\mathcal{A}(\alpha)(\top) & =1 \\
\mathcal{A}(\alpha)\left(p\left(s_{1}, \ldots, s_{n}\right)\right) & =1 \text { iff }\left(\mathcal{A}(\alpha)\left(s_{1}\right), \ldots, \mathcal{A}(\alpha)\left(s_{n}\right)\right) \in p_{\mathcal{A}} \\
\mathcal{A}(\alpha)(s \approx t) & =1 \text { iff } \mathcal{A}(\alpha)(s)=\mathcal{A}(\alpha)(t) \\
\mathcal{A}(\alpha)(\neg F) & =1 \text { iff } \mathcal{A}(\alpha)(F)=0 \\
\mathcal{A}(\alpha)(F \rho G) & =\mathrm{B}_{\rho}(\mathcal{A}(\alpha)(F), \mathcal{A}(\alpha)(G)),
\end{aligned}
$$

where B_{ρ} is the Boolean function associated with ρ

$$
\mathcal{A}(\alpha)(\forall x F)=1 \text { iff } \mathcal{A}(\alpha[x \mapsto a])(F)=1 \text { for all } a \in U_{\mathcal{A}}
$$

$$
\mathcal{A}(\alpha)(\exists x F)=1 \text { iff } \mathcal{A}(\alpha[x \mapsto a])(F)=1 \text { for some } a \in U_{\mathcal{A}}
$$

where $\alpha[x \mapsto a](x)=a$ and $\alpha[x \mapsto a](y)=\alpha(y)$ for $y \neq x$.

Validity and Satisfiability

F is valid in a \sum-algebra \mathcal{A} under assignment α :

$$
\mathcal{A}, \alpha \models F \text { iff } \mathcal{A}(\alpha)(F)=1
$$

F is valid in a \sum-algebra \mathcal{A} (or: \mathcal{A} is a model of F):

$$
\mathcal{A} \models F \text { iff } \mathcal{A}, \alpha \models F \text { for all } \alpha \in X \rightarrow \mathcal{A} .
$$

F is (universally) valid (or: F is a tautology): $\models F$ iff $\mathcal{A} \models F$ for all Σ-algebras \mathcal{A}.
F is satisfiable iff there exist \mathcal{A} and α such that $\mathcal{A}, \alpha \models F$.
Otherwise F is called unsatisfiable.

Entailment and Equivalence

We will use the notion of entailment only for closed formulas.
Let F and G be closed formulas.
F entails G :
$F \models G$ iff for all Σ-algebras $\mathcal{A}, \mathcal{A} \models F$ implies $\mathcal{A} \models G$.

A set of closed formulas N entails G :
$N \models G$ iff for all Σ-algebras \mathcal{A}, if $\mathcal{A} \models F$ for all $F \in N$, then $\mathcal{A} \models G$.
F and G are equivalent iff for all Σ-algebras \mathcal{A},
$\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$. (analogously for sets of closed formulas).

Semantics

Proposition:
F is valid if and only if $\neg F$ is unsatisfiable.

Proposition:
$N \models F$ if and only if $N \cup\{\neg F\}$ is unsatisfiable.

[^0]: (false)
 (true)
 (atomic formula)
 (negation)
 (conjunction)
 (disjunction)
 (implication)
 (equivalence)
 (universal quantification)
 (existential quantification)

