
Superposition: Refutational Completeness

A Σ-interpretationA is called term-generated, if for every b ∈ UA
there is a ground term t ∈ TΣ(∅) such that b = A(α)(t).
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Superposition: Refutational Completeness

Lemma:

Let N be a set of (universally quantified) Σ clauses and let A
be a term-generated Σ-interpretation. Then A is a model of N

if and only if it is a model of N.

Proof:

(⇒): Let A |= N; let (∀~xC ) ∈ N. Then A |= ∀~xC

iff A(β[xi 7→ ai ])(C ) = 1 for all β and ai .

Define θ such that A(β)(xiθ) = ai ,

then A(β[xi 7→ ai ])(C ) = A(β)(Cθ) = 1 since Cθ ∈ N.

(⇐): Let A be a model of N; let C ∈ N and Cθ ∈ N. Then

A(β)(Cθ) = A(β[xi 7→ A(β)(xiθ)])(C ) = 1 since A |= N.
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Superposition: Refutational Completeness

Theorem (Refutational Completeness: Static View):

Let N be a set of clauses that is saturated up to redundancy.

Then N has a model if and only if N does not contain the empty

clause.

Proof:

If ⊥ ∈ N, then obviously N does not have a model.

If ⊥ /∈ N, then the interpretation R∞ (that is, TΣ(∅)/R∞) is a

model of all ground instances in N according to part (ii) of the

model construction theorem.

As TΣ(∅)/R∞ is term generated, it is a model of N.
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Superposition: Refutational Completeness

So far, we have considered only inference rules that add new

clauses to the current set of clauses

(corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form

N0 ` N1 ` N2 ` . . . , where each Ni+1 is obtained from Ni by

adding the consequence of some inference from clauses in Ni .

Under which circumstances are we allowed to delete (or simplify)

a clause during the derivation?
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Superposition: Refutational Completeness

A ground clause C is called redundant w. r. t. a set of ground

clauses N, if it follows from clauses in N that are smaller than

C .

A clause is redundant w. r. t. a set of clauses N, if all its ground

instances are redundant w. r. t. N.
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Superposition: Refutational Completeness

A run of the superposition calculus is a sequence

N0 ` N1 ` N2 ` . . . , such that

(i) Ni |= Ni+1, and

(ii) all clauses in Ni \ Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it

follows from the old ones, and we may delete a clause, if it is

redundant w. r. t. the remaining ones.

For a run, N∞ =
⋃

i≥0 Ni and N∗ =
⋃

i≥0

⋂
j≥i Nj .

The set N∗ of all persistent clauses is called the limit of the run.
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Superposition: Refutational Completeness

Lemma:

If N ⊆ N′, then every inference or clause that is redundant

w. r. t. N is redundant w. r. t. N′.

Proof:

Obvious.
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Superposition: Refutational Completeness

Lemma:

If all clauses in N′ are redundant w. r. t. N, then N \ N′ |= N

and every inference or clause that is redundant w. r. t. N is

redundant w. r. t. N \ N′.

Proof:

Follows from the compactness of first-order logic and the

well-foundedness of the multiset extension of the clause ordering.
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Superposition: Refutational Completeness

Lemma:

If the conclusion of an inference is contained in a set N of

clauses, then the inference is redundant w. r. t. N.

Proof:

Exercise.
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Superposition: Refutational Completeness

Lemma:

Let N0 ` N1 ` N2 ` . . . be a run. If an inference or clause

is redundant w. r. t. some Ni , then it is redundant w. r. t. N∞
and N∗.

Proof:

Exercise.
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Superposition: Refutational Completeness

Corollary:

Every clause in Ni is contained in N∗ or redundant w. r. t. N∗.

Proof:

If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1,

so C must be redundant w. r. t. Nk+1. Consequently, C is

redundant w. r. t. N∗.
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Superposition: Refutational Completeness

A run is called fair, if every inference from persistent clauses is

redundant w. r. t. some Ni .

Lemma:

If a run is fair, then its limit is saturated up to redundancy.

Proof:

If the run is fair, then every inference from clauses in N∗ is

redundant w. r. t. some Ni , and therefore redundant w. r. t. N∗.
Hence N∗ is saturated up to redundancy.
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Superposition: Refutational Completeness

Theorem (Refutational Completeness: Dynamic View):

Let N0 ` N1 ` N2 ` . . . be a fair run, let N∗ be its limit.

Then N0 has a model if and only if ⊥ /∈ N∗.

Proof:

(⇐): By fairness, N∗ is saturated up to redundancy.

If ⊥ /∈ N∗, then it has a model.

Since every clause in N0 is contained in N∗ or redundant

w. r. t. N∗, this model is also a model of N0.

(⇒): Obvious, since N0 |= N∗.
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Superposition: Extensions

Extensions and improvements:

simplification techniques,

selection functions,

basic strategies,

constraint reasoning.
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Theory Reasoning

Superposition vs. resolution + equality axioms:

specialized inference rules,

thus no inferences with theory axioms,

computation modulo symmetry,

stronger ordering restrictions,

no variable overlaps,

stronger redundancy criterion.
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Theory Reasoning

Similar techniques can be used for other theories:

transitive relations,

dense total orderings without endpoints,

commutativity,

associativity and commutativity,

abelian monoids,

abelian groups,

divisible torsion-free abelian groups.
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Theory Reasoning

Observations:

no inferences with theory axioms:

yes, usually possible.

computation modulo theory axioms:

often possible, but requires unification and orderings modulo

theory.

stronger ordering restrictions, no variable overlaps:

sometimes possible, but in many cases, certain variable

overlaps remain necessary.

stronger redundancy criterion:

depends on the model construction.
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Theory Reasoning

Observations:

In many cases, integrating more theory axioms simplifies

matters.

Inefficient unification procedures may be replaced by

constraints.
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