
CITIUS ALTIUS FORTIUS:

Lessons learned from the

Theorem Prover WALDMEISTER

Thomas Hillenbrand

Max-Planck-Institut für Informatik
Saarbrücken

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.1

Unit Equational Logic

• Example: group axiomatization

E : (x + y) + z = x + (y + z) x + 0 = x x + (−x) = 0

Word problem: Does E |= x = −− x hold?

• Tackle word problem with Knuth-Bendix completion
– idea: equations l = r oriented into rewrite rules l → r

– aim: E |= s = t iff s↓ ≡ t↓

– price: saturation of rules necessary

• Perform fully automated proof search
Return proof log in case of success

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.2

WALDMEISTER Searching for a Proof

**
************************* COMPLETION - PROOF *************************
**

new rule: 1 +(x1,0) -> x1
new rule: 2 +(x1,-(x1)) -> 0
new rule: 3 +(+(x1,x2),x3) -> +(x1,+(x2,x3))
new rule: 4 +(x1,+(0,x2)) -> +(x1,x2)
new rule: 5 +(x1,-(0)) -> x1
new rule: 6 +(x1,+(-(x1),x2)) -> +(0,x2)
new rule: 7 +(0,-(-(x1))) -> x1
new rule: 8 +(x1,-(-(x2))) -> +(x1,x2)
remove rule: 7
new rule: 9 +(0,x1) -> x1
remove rule: 4
simplify rhs of rule: 6
new rule: 10 -(0) -> 0
remove rule: 5
new rule: 11 -(-(x1)) -> x1
remove rule: 8
joined goal: 1 c ?= -(-(c)) to c

+--------------------------+
| this proves the goal |
+--------------------------+

Proved Goals:
No. 1: c ?= -(-(c)) joined, current: c = c
1 goal was specified, which was proved.

Waldmeister states: Goal proved.
Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.3

WALDMEISTER Presenting a Proof

Consider the following set of axioms:

Axiom 1: x + 0 = x

Axiom 2: x + (−x) = 0

Axiom 3: (x + y) + z = x + (y + z)

This theorem holds true:

Theorem 1: x = − − x

Proof:

Lemma 1: 0 + (− − x) = x

0 + (− − x)

= by Axiom 2 RL
(x + (−x)) + (− − x)

= by Axiom 3 LR
x + ((−x) + (− − x))

= by Axiom 2 LR
x + 0

= by Axiom 1 LR
x

Lemma 2: x + (− − y) = x + y

x + (− − y)

= by Axiom 1 RL
(x + 0) + (− − y)

= by Axiom 3 LR
x + (0 + (− − y))

= by Lemma 1 LR
x + y

Lemma 3: 0 + x = x

0 + x

= by Lemma 2 RL
0 + (− − x)

= by Lemma 1 LR
x

Theorem 1: x = − − x

x

= by Lemma 3 RL
0 + x

= by Lemma 2 RL
0 + (− − x)

= by Lemma 3 LR
− − x

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.4

Aim of this Talk

• FTP organizers:
... would like to learn more about WALDMEISTER, what

makes it so efficient ...

• Some evidence of efficiency from performance in the CADE ATP
System Competitions. A.D. 2002 (70 problems attempted):

W
M

E
-S

E
T

H

E G
an

da
lf

V
am

pi
re

O
tte

r

S
C

O
T

T

C
iM

E

Solved 70 40 36 27 25 17 17 15
Av. Time 3.2 24.0 15.6 78.9 76.5 45.1 130.7 36.6

• What are the underlying concepts?

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.5

Outline: Lessons Learned...

• CITIUS: on algorithms and data structures

• ALTIUS: on integrating “intelligence”

• FORTIUS: on the proof procedure

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.6

CITIUS:

Tailor your Algorithms
and Data Structures!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.7

Algorithms and Data Structures

• Design and analysis of A&D core subject of computer science

• Highly valuable in actual construction of theorem prover

• To be achieved:
efficient algorithm efficient implementation

• Use problem of term indexing as an example

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.8

Term Indexing

• Provers incrementally construct data base of facts
inference application involves complex retrieval from data base

• Retrieval conditions: central term-level operations
constitute major part of system’s work

• Observation: performance degradation
retrieval handled 1:1 inference rate soon sharply decreases

• Remedy: retrieval in set-based fashion
Process at a time one query against a compiled data base!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.9

Perfect Discrimination Trees

• Interpret term as string of its symbols
Index strings in a trie data structure
Gain: Sharing of common prefixes

• Example: Index for term set
f (x1, x1)

f (x1, b)

f (a, g(x1))

f (g(x1), g(x2))

f (g(b), a)

a

a

x1

g b

f

gx1

x1 b x1

x2

g

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.10

Perfect Discrimination Trees

• Interpret term as string of its symbols
Index strings in a trie data structure
Gain: Sharing of common prefixes

• Optimization: collapse subtrees
that contain one leaf node only
into a single node

• May cut away more
than half of the nodes

b
g
x1

g
x2

a

f

a gx1

x1 b x1

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.11

Representation of Terms

• PDTs favour term traversal “from left to right”
corresponding term structure:

linear instead of tree-like

x2x1ff g gx1

x1

g

g x2

f

f

x1

• flatterms accelerate preorder term traversal
more expensive wrt. memory
but allocation intertwined with free-list memory management

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.12

Retrieval of Generalizations

(A)

bg
x1

g
x2

a

f

a gx1

x1 b x1

b

a

f
σ= Ø

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.13

Retrieval of Generalizations

(B)

bg
x1

g
x2

a

f

a gx1

x1 b x1

b

a

f
σ= Ø

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.13

Retrieval of Generalizations

(C)

bg
x1

g
x2

a

f

a gx1

x1 b x1

b

a

f
σ= Ø

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.13

Retrieval of Generalizations

(B)

bg
x1

g
x2

a

f

a gx1

x1 b x1

b

a

f
σ= Ø

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.13

Retrieval of Generalizations

(D)

bg
x1

g
x2

a

f

a gx1

x1 b x1

b

a

f
σ= {x1←a}

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.13

Retrieval of Generalizations

(E)

bg
x1

g
x2

a

f

a gx1

x1 b x1b

a

f σ= {x1←a}

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.13

Careful Coding Counts...

• Reduction of tree size pays off:
– less memory locations to be inspected during retrieval
– fewer cache faults, and therefore first-class execution

• Array representation of nodes possible
hence low-level operations
on tree very simple!

gx1 a b fgx2 x1 a b f

gx1 a b f

gx1 a b f

f(x1,b)

f(a,g(x1))

f(x1,x1) f(g(x1),g(x2))

f(g(b),a)

A→

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.14

Further Examples

• Implementation of reduction orderings:
– arrangement of conditions to evaluate
– cheap but effective filters

• Computation of normal forms:
– different strategies of rewriting
– different combinations of standard and ordered rewrite steps
– different strategies for recycling of substitutes

• On a larger scale:
comparison of indexing techniques
joint work with R. Nieuwenhuis, A. Riazanov, A. Voronkov

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.15

COMPIT Web Site
Let’s COMPIT - Introduction http://www.mpi-sb.mpg.de/~hillen/compit/

1 of 2 06/07/03 15:10

COMPIT

Let’s COMPIT

A method for COMParing Indexing Techniques for
automated deduction

What is Compit ?

If you use automated deduction for your application, you probably use some kind of
indexing technique for terms. This technique may even be crucial to the efficiency of
your program. But do you know how efficient it really is? Compared to others?

If you are an implementor and you need to know which indexing technique is likely to
behave best for your application, or if you are a developer of new indexing techniques,
you need to be able to compare techniques in order to get intuition about where to
search for improvements, and in order to provide scientific evidence of the superiority of
new techniques over other previous ones.

Are you sure your implementation works error free?
If you are an implementor, you need to debug your implementation. Why not use
COMPIT for this and solve several problems in one step?
See our tutorial page for a use case.

Compit is a test-framework which allows you to compare indexing techniques for
automated deduction. More on Compit you can find in the IJCAR paper "On the
Evaluation of Indexing Techniques for Theorem Proving".
How to use Compit to compare your own indexing technique with the ones already
included in the test-framework you can see on our tutorial page.

Indexing techniques already included in the testing framework

COMPIT tackles the following indexing problems: retrieval of generalization (forward
matching) and unification. It is intended to cope with instances (backward matching)
soon.

The following indexing techniques are already included in the framework:

Code Trees as implemented in the Vampire Prover
Context Trees, as decribed in this IJCAR paper
Discrimination Trees as implemented in the Waldmeister prover

Statistics on experiments currently available

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.16

COMPIT Joint Initiative

• Observation: complexity analysis of indexing techniques difficult

• Therefore: compare implementations of different techniques
on benchmarks corresponding to real runs of real provers

• Speed in 2000:
code trees : discr. trees : context trees

1.91 : 1.37 : 1.00

• Participants have improved their implementations since
e. g. PDTs nearly twice as fast just by more compact node format

• Do not advocate that e. g. PDTs are the best
but advocate: that you...

tailor your algorithms and data structures!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.17

FORTIUS:

Design your Proof
Procedure Carefully!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.18

Calculus and Proof Procedure

• Unfailing completion: given as set of inference rules

expanding:
s[l ′] = t l = r

(s[r] = t)σ
critical pair

contracting: rewrite-based simplification rules

• Parameter: reduction ordering
additional control constraint: fairness

• Non-deterministic algorithm!
how to resolve non-determinism?

• Common solution: given-clause algorithm (Overbeek 1971)

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.19

Given-clause Algorithm

• Approach: incrementally precompute all expansion steps
assess candidate equations heuristically by weighting function ϕ

• Active facts A for rewriting and superposition
passive facts P: critical pairs descending from A

A P

s=t: ϕ(s=t) min.

CP>(s=t, A)

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.20

Proof Procedure

FUNCTION WALDMEISTER(E , C,>,ϕ) : BOOL
1: (A,P) := (∅, E)
2: WHILE ¬trivial(C) ∧ P 6= ∅ DO
3: e := minϕ(P); P := P \ {e}

4: e := Normalize>

A(e)
5: IF ¬redundant(e) THEN
6: (A, P1) := Interred>(A, e)

7: A := A ∪ {Orient>(e)}

8: P2 := CP>(e,A)
9: P := Update(P ∪ P1 ∪ P2) Normalize...

10: C := Normalize>

A(C)
11: END
12: END
13: RETURN trivial(C)

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.21

Proof Procedure

FUNCTION WALDMEISTER(E , C,>,ϕ) : BOOL
1: (A,P) := (∅, E)
2: WHILE ¬trivial(C) ∧ P 6= ∅ DO
3: e := minϕ(P); P := P \ {e}

4: e := Normalize>

A(e)
5: IF ¬redundant(e) THEN
6: (A, P1) := Interred>(A, e)

7: A := A ∪ {Orient>(e)}

8: P2 := CP>(e,A)

9: P := Normalize>

A(P ∪ P1 ∪ P2) OTTER loop – eager
10: C := Normalize>

A(C)
11: END
12: END
13: RETURN trivial(C)

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.21

Proof Procedure

FUNCTION WALDMEISTER(E , C,>,ϕ) : BOOL
1: (A,P) := (∅, E)
2: WHILE ¬trivial(C) ∧ P 6= ∅ DO
3: e := minϕ(P); P := P \ {e}

4: e := Normalize>

A(e)
5: IF ¬redundant(e) THEN
6: (A, P1) := Interred>(A, e)

7: A := A ∪ {Orient>(e)}

8: P2 := CP>(e,A)

9: P := P ∪ Normalize>

A(P1 ∪ P2) DISCOUNT loop – lazy
10: C := Normalize>

A(C)
11: END
12: END
13: RETURN trivial(C)

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.21

Representation of P

• P ordered under ϕ priority queue

• Typically |P| exceeding |A| by three orders of magnitude
so space can become a problem

• Representations for elements of P:

Flatterms

Stringterms

implizit

f x1 f a x2 f x1 x2

f x1 f a x2 f x1 x2

<s[l']p=t, l=r >

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.22

Space Behaviour over Time

250 MB

500 MB

750 MB

1 GB

0 1000 2000 3000 4000 5000

S
pa

ce
 r

eq
ui

re
m

en
ts

Number of activated facts

ROB001-1
flatterms

stringterms
overlap

without P

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.23

Engineering P and A

• Problem with the overlap representation:

((s = t)↓i) ↓j vs. (s = t) ↓j

• Rewrite relation changes over time
reproduction not exact (confluence not given!)
negative effects on proof search

• Requirement for P: behave neutral wrt. proof search!
Requirement for A: remember history!

• History of A turns simple compression scheme complete...

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.24

Iterated Compression

〈w1, s1 = t1, i , j1, p1〉 〈w2, s2 = t2, i , j2, p2〉 . . . 〈wn, sn = tn, i , jn, pn〉

↓ ↓ ↓ ↓ ↓

〈w1, i , j1, p1〉 〈w2, i , j2, p2〉 . . . 〈wn, i , jn, pn〉

↓ ↓ ↓ ↓ ↓ ↓

〈w ′
1, i , j1, ∗〉 . . . 〈w ′

k , i , jk , ∗〉

↓ ↓ ↓

〈w , i , ∗, ∗〉
Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.25

On Remembering History

• Saving for each k ≤ j the indexing structure for Ak introduces
new space problem

• Employ one index for all →k , k ≤ j

– use age constraints
– match ordering problem
– additional benefit: detailed proof objects for free

• Most rewrite steps (> 90%) performed with →j

use two indexes: one for →j , one for all →k , k ≤ j

• Elegant solution with perfect discrimination trees...

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.26

The Match Ordering Problem

• Query term may be matched by several indexed terms:

f (a, a, b) B
?

f (a, b, a)

f (x1, x2, b) → σ1

f (x1, x1, x2) → σ2

• Ordering between matches determined by indexing structure
in practice: use first match

• For exact reproduction: store not only all equations,
but the ordering relation between the matching terms as well!
problem when one index is used for all →k , k ≤ j

• PDTs: match ordering solely determined by traversal strategy

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.27

Discrimination Trees for →k , k ≤ j

f

a

b

a

[1; 4)

x1

x2

[4;∞)

✘

x1

x2

b

[2;∞)

✔

x1

x2

[3;∞)

✔Match f (a, a, b) at t = 3:

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.28

A Simple Strategy for Compression

• Employ two buffers:
– constant-size cache for individuals up to some weight limit
– rest buffer: per A-element an entry 〈w , i , ∗, ∗〉 for the rest
– hence |P| = O(|A|)

• Cache full move heaver half into second buffer
and adapt weight limit

• Minimum selection: from cache individually,
from rest buffer by recomputation

• Trade-off between space and time
but only a small fraction of P ever selected

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.29

Benefits of Refined Proof Procedure

• Laziness works!

• Huge reduction of space consumption
at the price of modest run-time overhead
no discarding – completeness can be retained

• System ready for more demanding problems
– e. g. Winker2 ⇒ Boolean: overnight problem the standard way
– starting point for easily implemented parallelization

• Prover substantially strengthened if you...

design your proof procedure carefully!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.30

ALTIUS:
Integrate more Intelligence!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.31

Tackling Redundancy

• Observation: Performance of unfailing completion not
satisfactory when AC axioms are involved

• Ordered completion: equation s = t redundant if
every ground instance has a smaller proof

• Instances employed in WALDMEISTER: if s and t

– AC-equal (subsystem ACC’ ground convergent), or
– joinable under all variable ordering constraints
– finding: then keep redundant equations for simplification

• Full confluence trees: turned out to be computationally too
expensive here

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.32

Experimental Evaluation

• Number of CPs for representative examples:

Problem WM WM-AC WM-GJ

ROB005-1 305 000 33 000 18 000
RNG027-5 418 000 49 000 54 000
LAT023-1 130 000 66 000 54 000
RNG035-7 237 000 161 000 148 000
GRP180-1 83 000 88 000 65 000

• All in all, cheap alternative to completion modulo AC

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.33

Representing the Conjecture

• Idea: instead of termpairs, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 0 rewrite rules derived

u

v

u

v

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.34

Representing the Conjecture

• Idea: instead of termpairs, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 2 rewrite rules derived

u

v

u

v

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.34

Representing the Conjecture

• Idea: instead of termpairs, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 13 rewrite rules derived

u

v

u

v

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.34

Representing the Conjecture

• Idea: instead of termpairs, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 19 rewrite rules derived

u

v

u

v

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.34

Representing the Conjecture

• Idea: instead of termpairs, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 30 rewrite rules derived

u

v

u

v

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.34

Benefit Derived from Successor Sets

• Proofs are found
– in many cases with less steps of saturating the axiomatization
– at least with no more steps

• Some proofs only found with enlarging

• Focus of completion-based proving slightly shifts
from axioms to conjecture

• Extension: consider (some) rewrite predecessors as well

• Danger of combinatorical explosion escalation strategy

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.35

Automating Control: Weighting Function

• Comparison of different weighting functions in various domains

addweight gtweight

BOO003-2 >300 0.1
BOO007-2 >300 81.8
BOO008-4 61.1 7.0

LCL153-1 2.1 >300
LCL154-1 2.0 >300
LCL155-1 1.2 >300

Σ Boolean 22 / 29 29 / 29
25.4 4.5

Σ Wajsberg 21 / 25 17 / 25
0.9 0.9

• Must employ different classifications on different structures!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.36

Automating Control: Reduction Ordering

• Lexicographic path ordering: lifts operator precedence to terms
Knuth-Bendix ordering: orders terms according to their length

LPO KBO

COL063-4 223.0 0.0
COL063-6 >300 0.0
COL064-6 >300 0.0

Σ BT fragment 21 / 27 25 / 27
16.6 0.5

Σ non-associa- 21 / 38 11 / 38
tive rings 3.0 1.4

A>C>∗>−>+>0

Σ lattice-ordered 98 / 102 90 / 102
groups 12.7 23.8

+>∧>−>∨>0

• Must employ different orderings on different structures!
Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.37

Control Component

• Concept: match known axiomatizations on input specification E

• Stage 1: extract known axioms
E : Table 1:

+(x , +(y , z))= + (+(x , y), z) F (x , F (y , z))=F (F (x , y), z) =⇒ Ass(F)

+(x , 0)=x F (x , E)=x =⇒ Neutr(F , E)

+(x ,−(x))=0 F (x , I (x))=E =⇒ Invr(F , I , E)

• Stage 2: match known structures on extracted axiom set
extracted axioms: Table 2:

{Ass(+), Neutr(+, 0), Invr(+,−, 0)} {Neutr(F , E), Ass(F), Invr(F , I , E)}

=⇒ Group(F , I , E)

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.38

Control Component

• Stage 2: match known structures on extracted axiom set
extracted axioms: Table 2:

{Ass(+), Neutr(+, 0), Invr(+,−, 0)} {Neutr(F , E), Ass(F), Invr(F , I , E)}

=⇒ Group(F , I , E)

• Stage 3: instantiate strategy
detected axiomatization: Table 3:

Group(+,−, 0) Group(F , I , E) =⇒

>:= LPO(I>F>E), ϕ := gtweight

• Start proof search with reduction ordering LPO(−>+>0)
and weighting function gtweight

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.39

Lesson Learned from these Achievements

• Refinements on inference level a major means of advancing

• There is no general-purpose control strategy!
therefore: specialization according to the algebraic structure

• Useful control knowledge should be integrated
a step towards "push button technology"

• System finds more and more proofs if you...

integrate more intelligence!

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.40

Conclusion

• Many routine problems solved instantly

• Challenging ones may call for expertise

• Expressiveness of logics limited
but: lessons should carry over to more general calculi

• Conviction: continuous specialization and refinement of
deductive techniques is a prerequisite to future progress

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.41

Ongoing Work

• Stronger, constraint-based redundancy criteria for specific cases
of interest

• Singleton axiomatizations for Sheffer stroke:
OTTER and WALDMEISTER applied in
writing of A New Kind of Science

• Intentions of integrating WALDMEISTER

into MATHEMATICA

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.42

A Last Secret Finally Revealed
Waldmeister - Theorem Prover http://www.mpi-sb.mpg.de/~hillen/waldmeister/

1 of 2 06/08/03 17:01

ABOUT WALDMEISTER |ALL TIME NEWS

As you might already know, Waldmeister (asperula odorata, woodruff) is an ingredient for
a very popular potable. It is also liked as aroma for sodas. But no, the Waldmeister we
are talking about here, you cannot use for your potion. Well, maybe you try and make
such a potion. If you are a logic-wizzard after drinking from it, please contact us...
Because the Waldmeister we are talking about here is a highly efficient theorem prover.

So be welcomed in the world of Waldmeister, which is the world of logical theorems.

Waldmeister is a theorem prover for unit equational logic. Its proof procedure is unfailing
Knuth-Bendix completion [BDP89]. Waldmeister’s main advantage is that efficiency has
been reached in terms of time as well as of space. Within that scope, a complete proof
object is constructed at run-time. Read more about the implementation.

ALL TIME NEWS

For his book

A New Kind Of Science

which is hot from the press, Stephan Wolfram has employed our system to carry out
investigations in the area of singleton axiom systems for Boolean algebra. Pages
809-10 therein show a proof found with Waldmeister that the equation

((x | y) | z) | (x | ((x | z) | x)) = z

axiomatizes the NAND Sheffer stroke. If you are more interested in the singleton
subject, the Argonne group has already reported this result and more. ..

As in previous years, Waldmeister took part in the CADE prover competition, and
came out first in its division.

Waldmeister took part in the Compit contest.

Th. Hillenbrand CITIUS ALTIUS FORTIUS – p.43

	centerline {Unit Equational Logic}
	centerline {W{small ALDMEISTER} Searching for a Proof}
	centerline {W{small ALDMEISTER} Presenting a Proof}
	centerline {Aim of this Talk}
	centerline {Outline: Lessons Learned...}
	Huge 	extsc {Citius}: \[1ex] Large Tailor your Algorithms \[0.5ex] and Data Structures!
	centerline {Algorithms and Data Structures}
	centerline {Term Indexing}
	centerline {Perfect Discrimination Trees}
	centerline {Perfect Discrimination Trees}
	centerline {Representation of Terms}
	centerline {Retrieval of Generalizations}
	centerline {Careful Coding Counts...}
	centerline {Further Examples}
	centerline {C{small OMPIT} Web Site}
	centerline {C{small OMPIT} Joint Initiative}
	Huge 	extsc {Fortius}: \[1ex] Large Design your Proof \[0.5ex] Procedure Carefully!
	centerline {Calculus and Proof Procedure}
	centerline {Given-clause Algorithm}
	centerline {Proof Procedure}
	centerline {Representation of $P $}
	centerline {Space Behaviour over Time}
	centerline {Engineering $P $ and $A $}
	centerline {Iterated Compression}
	centerline {On Remembering History}
	centerline {The Match Ordering Problem}
	centerline {Discrimination Trees for $	o _k$, $kle j$}
	centerline {A Simple Strategy for Compression}
	centerline {Benefits of Refined Proof Procedure}
	Huge 	extsc {Altius}: \[1ex] Large Integrate more Intelligence!
	centerline {Tackling Redundancy}
	centerline {Experimental Evaluation}
	centerline {Representing the Conjecture}
	centerline {Benefit Derived from Successor Sets}
	centerline {Automating Control: Weighting Function}
	centerline {Automating Control: Reduction Ordering}
	centerline {Control Component}
	centerline {Control Component}
	centerline {Lesson Learned from these Achievements}
	centerline {Conclusion}
	centerline {Ongoing Work}
	centerline {A Last Secret Finally Revealed}

