Checking Unsatisfiability

Theorem:

Unsatisfiability of finite sets of first-order formulas (or clauses) is undecidable.

Theorem:

Unsatisfiability of finite sets of first-order formulas (or clauses) is recursively enumerable.

Proposition:

The resolution calculus and the tableaux calculus are sound and refutationally complete semi-decision procedures for unsatisfiability of finite sets of first-order clauses without equality. Proposition:

Let F be a closed first-order formula with equality. Let $\sim \notin \Omega$ be a new predicate symbol. The set $Eq(\Sigma)$ contains the formulas

$$\begin{array}{c} \forall x (x \sim x) \\ \forall x, y (x \sim y \rightarrow y \sim x) \\ \forall x, y, z (x \sim y \wedge y \sim z \rightarrow x \sim z) \\ \forall \vec{x}, \vec{y} (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \rightarrow f(x_1, \dots, x_n) \sim f(y_1, \dots, y_n)) \\ \forall \vec{x}, \vec{y} (x_1 \sim y_1 \wedge \dots \wedge x_n \sim y_n \wedge p(x_1, \dots, x_n) \rightarrow p(y_1, \dots, y_n)) \end{array}$$

for every $f/n \in \Omega$ and $p/n \in \Pi$. Let \tilde{F} be the formula that one obtains from F if every occurrence of \approx is replaced by \sim . Then F is satisfiable if and only if $Eq(\Sigma) \cup \{\tilde{F}\}$ is satisfiable.

Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).

Roadmap

How to proceed:

- 1. Arbitrary binary relations.
- 2. Term rewrite systems.
- 3. Expressing semantic consequence syntactically.
- 4. Entailment for equations (unit clauses).
- 5. Entailment for equational clauses.

Abstract reduction system: (A, \rightarrow) , where

A is a set,

 $\rightarrow \subseteq A \times A$ is a binary relation on A.

identity i + 1-fold composition transitive closure reflexive transitive closure reflexive closure inverse symmetric closure transitive symmetric closure refl. trans. symmetric closure

- $x \in A$ is reducible, if there is a y such that $x \to y$.
- x is in normal form (irreducible), if it is not reducible.
- y is a normal form of x, if $x \to^* y$ and y is in normal form. Notation: $x \downarrow$ (if the normal form of x is uniquely determined).

x and y are joinable, if there is a z such that $x \rightarrow^* z \leftarrow^* y$. Notation: $x \downarrow y$.

A relation \rightarrow is called

Church-Rosser, if $x \leftrightarrow^* y$ implies $x \downarrow y$.

confluent, if $x \leftarrow^* z \rightarrow^* y$ implies $x \downarrow y$.

locally confluent, if $x \leftarrow z \rightarrow y$ implies $x \downarrow y$.

terminating, if there is no infinite decreasing chain $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$

normalizing, if every $x \in A$ has a normal form.

convergent, if it is confluent and terminating.

Lemma:

If \rightarrow is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Theorem:

The following properties are equivalent:

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

Proof:

(i) \Rightarrow (ii): trivial.

(ii) \Rightarrow (i): by induction on the number of peaks in the derivation $x \leftrightarrow^* y$. Lemma:

If \rightarrow is confluent, then every element has at most one normal form.

Corollary:

If \rightarrow is normalizing and confluent, then every element x has a unique normal form.

Theorem:

If \rightarrow is normalizing and confluent, then $x \leftrightarrow^* y$ if and only if $x \downarrow = y \downarrow$.

Well-Founded Orderings

A (strict) partial ordering (A, >) is a transitive and irreflexive binary relation on A.

A (strict) partial ordering > is called well-founded (Noetherian), if there is no infinite decreasing chain $x_0 > x_1 > x_2 > ...$

Well-Founded Orderings

Lemma:

If \rightarrow is a terminating binary relation over A, then \rightarrow^+ is a well-founded partial ordering.

Lemma:

If > is a well-founded partial ordering and $\rightarrow \subseteq$ >, then \rightarrow is terminating.

Well-Founded Orderings

Proposition:

(A, >) is well-founded, if and only if every non-empty subset of A has a minimal element.

Proof:

If (A, >) is not well-founded, then there exists an infinite decreasing chain $x_0 > x_1 > x_2 > \dots$.

Then $\{x_i \mid i \in \mathbb{N}\}$ does not have a minimal element.

Conversely, if there exists a non-empty subset $B \subseteq A$ without minimal element, then for every $x \in B$ there exists a smaller $y \in B$.

Hence there is an infinite decreasing chain of elements of B.

Theorem ("Well-founded induction principle"): Let (A, >) be a well-founded partial ordering; let P be a unary predicate on A.

If for all $x \in A$ the following property holds:

if
$$P(y)$$
 for all $y < x$, then $P(x)$ (*)

then P(x) for all $x \in A$.

Proof:

Assume that $B = \{x \in A \mid \neg P(x)\}$ is not empty. Since > is well-founded, B has a minimal element. This element violates (*). Lemma ("Newman's Lemma"):

If a terminating relation \rightarrow is locally confluent, then it is confluent.

Proof:

Let \rightarrow be a terminating and locally confluent relation. Then \rightarrow^+ is a well-founded ordering. Define $P(z) \Leftrightarrow (\forall x, y : x \leftarrow^* z \rightarrow^* y \Rightarrow x \downarrow y)$. Prove P(z) for all $x \in A$ by well-founded induction over \rightarrow^+ : Case 1: $x \leftarrow^0 z \rightarrow^* y$: trivial. Case 2: $x \leftarrow^* z \rightarrow^0 y$: trivial. Case 3: $x \leftarrow^* x' \leftarrow z \rightarrow y' \rightarrow^* y$: use local confluence, then use the induction hypothesis.