
Checking Unsatisfiability

Theorem:

Unsatisfiability of finite sets of first-order formulas (or clauses)

is undecidable.

Theorem:

Unsatisfiability of finite sets of first-order formulas (or clauses)

is recursively enumerable.

Proposition:

The resolution calculus and the tableaux calculus are sound

and refutationally complete semi-decision procedures for

unsatisfiability of finite sets of first-order clauses without

equality.
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Handling Equality Naively

Proposition:

Let F be a closed first-order formula with equality. Let ∼ /∈ Ω be

a new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x , y (x ∼ y → y ∼ x)

∀x , y , z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f (x1, . . . , xn) ∼ f (y1, . . . , yn))
∀~x ,~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ∧ p(x1, . . . , xn)→ p(y1, . . . , yn))

for every f /n ∈ Ω and p/n ∈ Π. Let F̃ be the formula that one

obtains from F if every occurrence of ≈ is replaced by ∼. Then

F is satisfiable if and only if Eq(Σ) ∪ {F̃} is satisfiable.
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Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with

equality can in principle be solved by a standard resolution or

tableaux prover.

But this is unfortunately not efficient

(mainly due to the transitivity and congruence axioms).
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Roadmap

How to proceed:

1. Arbitrary binary relations.

2. Term rewrite systems.

3. Expressing semantic consequence syntactically.

4. Entailment for equations (unit clauses).

5. Entailment for equational clauses.
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2 Abstract Reduction Systems
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Abstract Reduction Systems

Abstract reduction system: (A,→), where

A is a set,

→ ⊆ A× A is a binary relation on A.
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Abstract Reduction Systems

→0 = { (x , x) | x ∈ A } identity

→i+1 =→i ◦ → i + 1-fold composition

→+ =
⋃

i>0→i transitive closure

→∗ =→+ ∪→0 reflexive transitive closure

→= =→∪→0 reflexive closure

→−1 =← = { (x , y) | y → x } inverse

↔ =→∪← symmetric closure

↔+ = (↔)+ transitive symmetric closure

↔∗ = (↔)∗ refl. trans. symmetric closure
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Abstract Reduction Systems

x ∈ A is reducible, if there is a y such that x → y .

x is in normal form (irreducible), if it is not reducible.

y is a normal form of x , if x →∗ y and y is in normal form.

Notation: x↓ (if the normal form of x is uniquely determined).

x and y are joinable, if there is a z such that x →∗ z ←∗ y .

Notation: x ↓ y .
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Abstract Reduction Systems

A relation → is called

Church-Rosser, if x ↔∗ y implies x ↓ y .

confluent, if x ←∗ z →∗ y implies x ↓ y .

locally confluent, if x ← z → y implies x ↓ y .

terminating, if there is no infinite decreasing chain

x0 → x1 → x2 → . . . .

normalizing, if every x ∈ A has a normal form.

convergent, if it is confluent and terminating.
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Abstract Reduction Systems

Lemma:

If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.
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Abstract Reduction Systems

Theorem:

The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof:

(i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in

the derivation x ↔∗ y .
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Abstract Reduction Systems

Lemma:

If → is confluent, then every element has at most one

normal form.

Corollary:

If → is normalizing and confluent, then every element x

has a unique normal form.

Theorem:

If → is normalizing and confluent, then x ↔∗ y if and only if

x↓ = y↓.
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Well-Founded Orderings

A (strict) partial ordering (A,>) is a transitive and irreflexive

binary relation on A.

A (strict) partial ordering > is called well-founded (Noetherian),

if there is no infinite decreasing chain x0 > x1 > x2 > . . . .
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Well-Founded Orderings

Lemma:

If → is a terminating binary relation over A,

then →+ is a well-founded partial ordering.

Lemma:

If > is a well-founded partial ordering and → ⊆ >,

then → is terminating.
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Well-Founded Orderings

Proposition:

(A,>) is well-founded, if and only if every non-empty subset of

A has a minimal element.

Proof:

If (A,>) is not well-founded, then there exists an infinite

decreasing chain x0 > x1 > x2 > . . . .

Then { xi | i ∈ N } does not have a minimal element.

Conversely, if there exists a non-empty subset B ⊆ A without

minimal element, then for every x ∈ B there exists a smaller

y ∈ B .

Hence there is an infinite decreasing chain of elements of B.
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Well-Founded Orderings

Theorem (“Well-founded induction principle”):

Let (A,>) be a well-founded partial ordering;

let P be a unary predicate on A.

If for all x ∈ A the following property holds:

if P(y) for all y < x , then P(x) (∗)
then P(x) for all x ∈ A.

Proof:

Assume that B = { x ∈ A | ¬P(x) } is not empty.

Since > is well-founded, B has a minimal element.

This element violates (∗).
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Proving Confluence

Lemma (“Newman’s Lemma”):

If a terminating relation → is locally confluent, then it is

confluent.

Proof:

Let → be a terminating and locally confluent relation.

Then →+ is a well-founded ordering.

Define P(z) ⇔ (∀x , y : x ←∗ z →∗ y ⇒ x ↓ y
)
.

Prove P(z) for all x ∈ A by well-founded induction over →+:

Case 1: x ←0 z →∗ y : trivial.

Case 2: x ←∗ z →0 y : trivial.

Case 3: x ←∗ x ′ ← z → y ′ →∗ y : use local confluence, then

use the induction hypothesis.
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