Checking Unsatisfiability

Theorem:

Unsatisfiability of finite sets of first-order formulas (or clauses)
Is undecidable.

Theorem:

Unsatisfiability of finite sets of first-order formulas (or clauses)
is recursively enumerable.

Proposition:

The resolution calculus and the tableaux calculus are sound
and refutationally complete semi-decision procedures for
unsatisfiability of finite sets of first-order clauses without
equality.



Handling Equality Naively

Proposition:
Let F be a closed first-order formula with equality. Let ~ ¢ € be
a new predicate symbol. The set Eq(X) contains the formulas

Vx (x ~ x)
Vx,y (x ~y =y ~X)
VX, v, z(x ~y ANy ~z— x~ Z)
VX, y (Xt ~yi Ao Axn ~ yn — F(xa, o X0) ~ (v, oo ¥n))
VX,V (xg ~ Y1 A AXp~yn Ap(xa, ..., xp) — plyi, ..., Yn))

for every f/n € Q and p/n € . Let F be the formula that one
obtains from F if every occurrence of = is replaced by ~. Then
F is satisfiable if and only if Eq(X) U {F} is satisfiable.



Handling Equality Naively

By giving the equality axioms explicitly, first-order problems with
equality can in principle be solved by a standard resolution or

tableaux prover.

But this is unfortunately not efficient
(mainly due to the transitivity and congruence axioms).



Roadmap

How to proceed:
1. Arbitrary binary relations.
Term rewrite systems.
Expressing semantic consequence syntactically.

Entailment for equations (unit clauses).

A

Entailment for equational clauses.



2 Abstract Reduction Systems




Abstract Reduction Systems

Abstract reduction system: (A, —), where
Als a set,

— C A X A'is a binary relation on A.
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Abstract Reduction Systems

x € Ais reducible, if there is a y such that x — .
x is in normal form (irreducible), if it is not reducible.

y is a normal form of x, if x —* y and y is in normal form.
Notation: x| (if the normal form of x is uniquely determined).

x and y are joinable, if there is a z such that x =™ z «* y.
Notation: x | v.



Abstract Reduction Systems

A relation — is called
Church-Rosser, if x <* y implies x | y.
confluent, if x «<* z —* y implies x | y.
locally confluent, if x < z — y implies x | .

terminating, if there is no infinite decreasing chain

X0 — X1 —7 X0 — ....
normalizing, if every x € A has a normal form.

convergent, if it is confluent and terminating.



Abstract Reduction Systems

Lemma:
If — is terminating, then it is normalizing.

Note: The reverse implication does not hold.
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Abstract Reduction Systems

Theorem:
The following properties are equivalent:

(i) — has the Church-Rosser property.

(i) — is confluent.

Proof:
(i)=(ii): trivial.

(ii)=-(i): by induction on the number of peaks in
the derivation x <™ y.
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Abstract Reduction Systems

Lemma:
If — is confluent, then every element has at most one
normal form.

Corollary:
If — is normalizing and confluent, then every element x
has a unique normal form.

Theorem:
If — is normalizing and confluent, then x <~* y if and only if

x|l =yl
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Well-Founded Orderings

A (strict) partial ordering (A, >) is a transitive and irreflexive
binary relation on A.

A (strict) partial ordering > is called well-founded (Noetherian),
If there is no infinite decreasing chain xg > x1 > x > ...
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Well-Founded Orderings

Lemma:
If — is a terminating binary relation over A,
then — T is a well-founded partial ordering.

Lemma:
If > is a well-founded partial ordering and — C >,

then — Is terminating.

14



Well-Founded Orderings

Proposition:
(A, >) is well-founded, if and only if every non-empty subset of
A has a minimal element.

Proof:

If (A, >) is not well-founded, then there exists an infinite
decreasing chain xp > x1 > xp > .. ..

Then {x; | i € N} does not have a minimal element.

Conversely, if there exists a non-empty subset B C A without
minimal element, then for every x € B there exists a smaller

y € B.
Hence there is an infinite decreasing chain of elements of B.
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Well-Founded Orderings

Theorem ( “Well-founded induction principle”):
Let (A, >) be a well-founded partial ordering;
let P be a unary predicate on A.

If for all x € A the following property holds:
if P(y) for all y < x, then P(x)  (x)
then P(x) for all x € A.

Proof:

Assume that B = {x € A| =P(x) } is not empty.
Since > is well-founded, B has a minimal element.
This element violates ().
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Proving Confluence

Lemma (“Newman’s Lemma"):
If a terminating relation — is locally confluent, then it is
confluent.

Proof:

Let — be a terminating and locally confluent relation.

Then —7 is a well-founded ordering.

Define P(z) & (Vx,y :x<—*z—=*y=x]y).

Prove P(z) for all x € A by well-founded induction over —:

Case 1: x <Y

z —* y: trivial.
Case 2: x «* z =0 y: trivial.

Case 3: x «—* x’ «— z — y’ —* y: use local confluence, then

use the induction hypothesis.
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