
Proving Termination: Monotone Mappings

Let (A,>A) and (B,>B) be partial orderings.

A mapping ϕ : A → B is called monotone,

if x >A y implies ϕ(x) >B ϕ(y) for all x , y ∈ A.

Lemma:

If ϕ : A → B is a monotone mapping from (A,>A) to (B,>B)

and (B,>B) is well-founded, then (A,>A) is well-founded.
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Proving Termination: Lexicographic Product

Let (A,>A) and (B,>B) be partial orderings.

The lexicographic product >A×B on A× B is defined by

(x , y) >A×B (x ′, y ′) iff (x >A x ′) ∨ (x = x ′ ∧ y >B y ′).

Lemma:

The lexicographic product of two partial orderings is a

partial ordering.
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Proving Termination: Lexicographic Product

Lemma:

The lexicographic product of two well-founded partial orderings

is a well-founded partial ordering.

Proof:

Assume that there is an infinite decreasing chain

(a0, b0) >A×B (a1, b1) >A×B . . . .

This implies a0 ≥A a1 ≥A . . . .

Since >A is well-founded, this chain can only contain finitely

many strict steps ai >A ai+1.

Hence there is a k such that ai = ai+1 for all i ≥ k. But then

bi >B bi+1 for all i ≥ k, contradicting the well-foundedness of >B .
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Proving Termination: Lexicographic Product

Lemma:

The lexicographic product of two strict total orderings

is a strict total ordering.

Proof:

by case analysis.
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Proving Termination: Lexicographic Product

The lexicographic product >n
lex of partial orderings (Ai ,>i ) with

1 ≤ i ≤ n can be defined analogously for n-tuples with n > 2.

The resulting relation is again a partial ordering;

it is well-founded if the orderings (Ai ,>i ) are well-founded,

and it is total if the orderings (Ai ,>i ) are total.
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Proving Termination: Lexicographic Product

Note: Given an ordering (A,>A), one can define a lexicographic

ordering >Lex on A∗ =
⋃

i≥0 Ai by

w >Lex w ′ iff (w = w ′v ∧ |v | > 0)

∨ (w = uxv ∧ w ′ = ux ′v ′ ∧ x >A x ′).

However, this ordering is not well-founded!
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Proving Termination: Lexicographic Product

To get a well-founded ordering on A∗, one has to compare the

length of tuples first (“length/lexicographic combination”):

w >∗
llex w ′ iff (|w | > |w ′|)

∨ (|w | = |w ′| = n ∧ w >n
lex w ′),

where >n
lex is the lexicographic ordering on n-tuples.
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Proving Termination: Multisets

A multiset M over A is a function M : A → N.

Intuitively, a multiset is a set with (finitely often) repeated

elements; M(x) is the number of copies of x in M .

We use similar notation as for sets; for instance we write {a, c , c}
for the multiset {a 7→ 1, b 7→ 0, c 7→ 2}.
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Proving Termination: Multisets

A multiset M is called finite, if { x ∈ A | M(x) > 0 } is finite.

M(A) denotes the set of all finite multisets over A.

From now on we will consider only finite multisets.
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Proving Termination: Multisets

Notations:

Element: x ∈ M iff M(x) > 0

Submultiset: M ⊆ N iff for all x ∈ A: M(x) ≤ N(x)

Union: (M ∪ N)(x) = M(x) + N(x)

Difference: (M \ N)(x) = M(x)
.− N(x)

Intersection: (M ∩ N)(x) = min {M(x),N(x)}
where m

.− n = m − n if m ≥ n, and m
.− n = 0 otherwise.

10



Proving Termination: Multisets

Multiset extension:

Let (A,>) be a partial ordering. We define an ordering >mul

over M(A) as follows:

M >mul N iff there exist X ,Y ∈M(A) such that

∅ 6= X ⊆ M and

N = (M \ X ) ∪ Y and

∀y ∈ Y ∃x ∈ X : x > y .
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Proving Termination: Multisets

Lemma:

The multiset extension >mul of a partial ordering > is a partial

ordering.

Proof:

Baader and Nipkow, page 22/23.
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Proving Termination: Multisets

Lemma (“König’s Lemma”):

A finitely branching tree is infinite, if and only if it contains an

infinite path.

Proof:

“if”: trivial.

“only if”: by well-founded induction over the subtree relation.
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Proving Termination: Multisets

Theorem:

The multiset extension of a partial ordering > is well-founded if

and only if > is well-founded.

Proof:

Baader and Nipkow, page 23/24.
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Proving Termination: Multisets

Lemma: M >mul N if and only if M 6= N and for every

n ∈ N \M there is an m ∈ M \ N such that m > n.

Proof:

Baader and Nipkow, page 24/25.
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Proving Termination: Multisets

Corollary: If the ordering > is total, then its multiset extension

>mul is total.

Proof:

Let > be total.

If the multisets M and N are different, then there exists a

greatest element m ∈ A such that M(m) 6= N(m).

W.o.l.o.g, let M(m) > N(m), hence m ∈ M \ N.

Then for every n ∈ N \M we have m > n, hence M >mul N.
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3 Rewrite Systems
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Rewrite Relations

Let E be a set of equations.

The rewrite relation →E ⊆ TΣ(X )× TΣ(X ) is defined by

s →E t iff there exist (l ≈ r) ∈ E , p ∈ Pos(s),

and σ : X → TΣ(X ),

such that s/p = lσ and t = s[rσ]p.
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Rewrite Relations

An equation l ≈ r is also called a rewrite rule, if l is not a

variable and Var(l) ⊇ Var(r).

Notation: l → r .

A set of rewrite rules is called a term rewrite system (TRS).
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Rewrite Relations

We say that a set of equations E or a TRS R is terminating,

if the rewrite relation →E or →R has this property.

(Analogously for other properties of abstract reduction systems).
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