Proving Termination: Monotone Mappings

Let $(A, >_A)$ and $(B, >_B)$ be partial orderings. A mapping $\varphi : A \to B$ is called monotone, if $x >_A y$ implies $\varphi(x) >_B \varphi(y)$ for all $x, y \in A$.

Lemma:

If $\varphi : A \to B$ is a monotone mapping from $(A, >_A)$ to $(B, >_B)$ and $(B, >_B)$ is well-founded, then $(A, >_A)$ is well-founded.

Let $(A, >_A)$ and $(B, >_B)$ be partial orderings. The lexicographic product $>_{A \times B}$ on $A \times B$ is defined by

$$(x, y) >_{A \times B} (x', y')$$
 iff $(x >_A x') \lor (x = x' \land y >_B y')$.

Lemma:

The lexicographic product of two partial orderings is a partial ordering.

Lemma:

The lexicographic product of two well-founded partial orderings is a well-founded partial ordering.

Proof:

Assume that there is an infinite decreasing chain

$$(a_0, b_0) >_{A \times B} (a_1, b_1) >_{A \times B} \ldots$$

This implies $a_0 \geq_A a_1 \geq_A \ldots$

Since $>_A$ is well-founded, this chain can only contain finitely many strict steps $a_i >_A a_{i+1}$.

Hence there is a k such that $a_i = a_{i+1}$ for all $i \ge k$. But then $b_i >_B b_{i+1}$ for all $i \ge k$, contradicting the well-foundedness of $>_B$.

Lemma:

The lexicographic product of two strict total orderings is a strict total ordering.

Proof:

by case analysis.

The lexicographic product $>_{lex}^{n}$ of partial orderings $(A_i, >_i)$ with $1 \le i \le n$ can be defined analogously for *n*-tuples with n > 2.

The resulting relation is again a partial ordering; it is well-founded if the orderings $(A_i, >_i)$ are well-founded, and it is total if the orderings $(A_i, >_i)$ are total.

Note: Given an ordering $(A, >_A)$, one can define a lexicographic ordering $>_{Lex}$ on $A^* = \bigcup_{i>0} A^i$ by

$$w >_{Lex} w' \text{ iff } (w = w'v \land |v| > 0)$$

$$\lor (w = uxv \land w' = ux'v' \land x >_A x').$$

However, this ordering is not well-founded!

To get a well-founded ordering on A^* , one has to compare the length of tuples first ("length/lexicographic combination"):

$$w >_{llex}^{*} w' \quad \text{iff} \quad (|w| > |w'|)$$

$$\lor \quad (|w| = |w'| = n \land w >_{lex}^{n} w'),$$

where $>_{lex}^{n}$ is the lexicographic ordering on *n*-tuples.

A multiset *M* over *A* is a function $M : A \rightarrow \mathbb{N}$.

Intuitively, a multiset is a set with (finitely often) repeated elements; M(x) is the number of copies of x in M.

We use similar notation as for sets; for instance we write $\{a, c, c\}$ for the multiset $\{a \mapsto 1, b \mapsto 0, c \mapsto 2\}$.

A multiset M is called finite, if $\{x \in A \mid M(x) > 0\}$ is finite.

 $\mathcal{M}(A)$ denotes the set of all finite multisets over A.

From now on we will consider only finite multisets.

Notations:

Element: $x \in M$ iff M(x) > 0

Submultiset: $M \subseteq N$ iff for all $x \in A$: $M(x) \leq N(x)$

Union:
$$(M \cup N)(x) = M(x) + N(x)$$

Difference: $(M \setminus N)(x) = M(x) - N(x)$

Intersection: $(M \cap N)(x) = \min \{M(x), N(x)\}$

where m - n = m - n if $m \ge n$, and m - n = 0 otherwise.

Multiset extension:

Let (A, >) be a partial ordering. We define an ordering $>_{mul}$ over $\mathcal{M}(A)$ as follows:

 $M >_{mul} N$ iff there exist $X, Y \in \mathcal{M}(A)$ such that $\emptyset \neq X \subseteq M$ and $N = (M \setminus X) \cup Y$ and $\forall y \in Y \exists x \in X : x > y.$

Lemma:

The multiset extension $>_{mul}$ of a partial ordering > is a partial ordering.

Proof: Baader and Nipkow, page 22/23.

```
Lemma ("König's Lemma"):
```

A finitely branching tree is infinite, if and only if it contains an infinite path.

Proof:

"if": trivial.

"only if": by well-founded induction over the subtree relation.

Theorem:

The multiset extension of a partial ordering > is well-founded if and only if > is well-founded.

Proof: Baader and Nipkow, page 23/24.

Lemma: $M >_{mul} N$ if and only if $M \neq N$ and for every $n \in N \setminus M$ there is an $m \in M \setminus N$ such that m > n.

Proof:

Baader and Nipkow, page 24/25.

Corollary: If the ordering > is total, then its multiset extension $>_{mul}$ is total.

Proof:

Let > be total.

If the multisets M and N are different, then there exists a greatest element $m \in A$ such that $M(m) \neq N(m)$. W.o.l.o.g, let M(m) > N(m), hence $m \in M \setminus N$. Then for every $n \in N \setminus M$ we have m > n, hence $M >_{mul} N$.

3 Rewrite Systems

Rewrite Relations

Let E be a set of equations.

The rewrite relation $\rightarrow_E \subseteq \mathsf{T}_{\Sigma}(X) \times \mathsf{T}_{\Sigma}(X)$ is defined by

$$s \to_E t$$
 iff there exist $(I \approx r) \in E$, $p \in Pos(s)$,
and $\sigma : X \to T_{\Sigma}(X)$,
such that $s/p = I\sigma$ and $t = s[r\sigma]_p$.

Rewrite Relations

An equation $l \approx r$ is also called a rewrite rule, if l is not a variable and $Var(l) \supseteq Var(r)$.

Notation: $I \rightarrow r$.

A set of rewrite rules is called a term rewrite system (TRS).

Rewrite Relations

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).