Proving Termination: Monotone Mappings

Let (A, >4) and (B, >pg) be partial orderings.
A mapping ¢ : A — B is called monotone,
if x >4y implies p(x) >p p(y) for all x,y € A.

Lemma:
If o : A— B is a monotone mapping from (A, >4) to (B, >3g)
and (B, >pg) is well-founded, then (A, >4) is well-founded.



Proving Termination: Lexicographic Product

Let (A, >4) and (B, >pg) be partial orderings.
The lexicographic product >axg on A X B is defined by

(x,y) >axs (X, y") iff (x>ax") V (x=x" AN y>sYy).

Lemma:
The lexicographic product of two partial orderings is a

partial ordering.



Proving Termination: Lexicographic Product

lLemma:

The lexicographic product of two well-founded partial orderings
Is a well-founded partial ordering.

Proof:
Assume that there is an infinite decreasing chain

(301 bO) >A><B (al, b]_) >A><B cee

This implies ag >4 31 >4 .. ..
Since >4 is well-founded, this chain can only contain finitely
many strict steps a; >4 aj11.
Hence there is a k such that a; = a;1 for all i > k. But then
b; >p bj;1 for all i > k, contradicting the well-foundedness of >g.



Proving Termination: Lexicographic Product

Lemma:
The lexicographic product of two strict total orderings
Is a strict total ordering.

Proof:
by case analysis.



Proving Termination: Lexicographic Product

The lexicographic product > of partial orderings (A;, >;) with
1 </ < n can be defined analogously for n-tuples with n > 2.

The resulting relation is again a partial ordering;
it is well-founded if the orderings (A;, >;) are well-founded,
and it is total if the orderings (A;, >;) are total.



Proving Termination: Lexicographic Product

Note: Given an ordering (A, >4), one can define a lexicographic
ordering > (e on A* = J,5q A’ by

w > w o iff (w=w'v A |v] >0)

V (w=uxv AN w =ux'vi AN x>px").

However, this ordering is not well-founded!



Proving Termination: Lexicographic Product

To get a well-founded ordering on A*, one has to compare the
length of tuples first ( “length/lexicographic combination”):

w >y wiff (|w| > |w!))

V (lw=|w|=n A w> w)

where >7 is the lexicographic ordering on n-tuples.



Proving Termination: Multisets

A multiset M over A is a function M : A — N.

Intuitively, a multiset is a set with (finitely often) repeated
elements; M(x) is the number of copies of x in M.

We use similar notation as for sets; for instance we write {a, ¢, ¢}
for the multiset {a+— 1, b — 0, c — 2}.



Proving Termination: Multisets

A multiset M is called finite, if {x € A| M(x) > 0} is finite.
M(A) denotes the set of all finite multisets over A.

From now on we will consider only finite multisets.



Proving Termination: Multisets

Notations:
Element: x € M iff M(x) > 0
Submultiset: M C N iff for all x € A: M(x) < N(x)
Union: (MU N)(x) = M(x) + N(x)
Difference: (M \ N)(x) = M(x) = N(x)
Intersection: (M N N)(x) = min {M(x), N(x)}

where m—n=m—-—nif m> n, and m = n = 0 otherwise.
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Proving Termination: Multisets

Multiset extension:

Let (A, >) be a partial ordering. We define an ordering > .
over M(A) as follows:

M > N iff  there exist X, Y € M(A) such that
) #£X C M and
N=(M\X)UY and
VyeY dxe X: x>vy.
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Proving Termination: Multisets

Lemma:
The multiset extension >,,,, of a partial ordering > is a partial
ordering.

Proof:
Baader and Nipkow, page 22/23.
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Proving Termination: Multisets

Lemma ( “Konig's Lemma”):
A finitely branching tree is infinite, if and only if it contains an
infinite path.

Proof:

if"": trivial.

“only if": by well-founded induction over the subtree relation.
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Proving Termination: Multisets

Theorem:

The multiset extension of a partial ordering > is well-founded if
and only if > is well-founded.

Proof:
Baader and Nipkow, page 23/24.
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Proving Termination: Multisets

Lemma: M >, N if and only if M # N and for every
née N\ M there isan me& M\ N such that m > n.

Proof:
Baader and Nipkow, page 24/25.
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Proving Termination: Multisets

Corollary: If the ordering > is total, then its multiset extension

>, IS total.

Proof:

Let > be total.
If the multisets M and N are different, then there exists a

greatest element m € A such that M(m) # N(m).
W.o.l.o.g, let M(m) > N(m), hence me M\ N.
Then for every n € N\ M we have m > n, hence M >, N.
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3 Rewrite Systems
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Rewrite Relations

Let E be a set of equations.

The rewrite relation —g C Tg(X) x Tx(X) is defined by

s —gt iff thereexist (/= r) € E, p € Pos(s),
and 0 : X — Tx(X),
such that s/p = lo and t = s[ro],.
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Rewrite Relations

An equation |/ = r is also called a rewrite rule, if / is not a
variable and Var(/) D Var(r).

Notation: | — r.

A set of rewrite rules is called a term rewrite system (TRS).
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Rewrite Relations

We say that a set of equations E or a TRS R is terminating,
If the rewrite relation — g or — g has this property.

(Analogously for other properties of abstract reduction systems).
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