Let E be a set of equations.

The rewrite relation $\rightarrow_E \subseteq \mathsf{T}_{\Sigma}(X) \times \mathsf{T}_{\Sigma}(X)$ is defined by

$$s \rightarrow_E t$$
 iff there exist $(I \approx r) \in E$, $p \in Pos(s)$,
and $\sigma : X \rightarrow T_{\Sigma}(X)$,
such that $s/p = I\sigma$ and $t = s[r\sigma]_p$.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression).

Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.

Rewrite Relations

An equation $l \approx r$ is also called a rewrite rule, if l is not a variable and $Var(l) \supseteq Var(r)$.

Notation: $I \rightarrow r$.

A set of rewrite rules is called a term rewrite system (TRS).

Rewrite Relations

We say that a set of equations E or a TRS R is terminating, if the rewrite relation \rightarrow_E or \rightarrow_R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

Let *E* be a set of closed equations. A Σ -algebra \mathcal{A} is called an *E*-algebra, if $\mathcal{A} \models \forall \vec{x} (s \approx t)$ for all $\forall \vec{x} (s \approx t) \in E$.

If $E \models \forall \vec{x} (s \approx t)$ (i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras), we write this also as $s \approx_E t$.

Goal:

Use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically:

$$s \approx_E t$$
 if and only if $s \leftrightarrow_E^* t$.

Let *E* be a set of equations over $T_{\Sigma}(X)$. The following inference system allows to derive consequences of *E*:

$E \vdash t \approx t$	(Reflexivity)
$\frac{E \vdash t \approx t'}{E \vdash t' \approx t}$	(Symmetry)
$\frac{E \vdash t \approx t' E \vdash t' \approx t''}{E \vdash t \approx t''}$	(Transitivity)
$\frac{E \vdash t_1 \approx t'_1 \dots E \vdash t_n \approx t'_n}{E \vdash f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)}$	(Congruence)
$E \vdash t\sigma \approx t'\sigma$	(Instance)
$if\;(t\approx t')\in E\;and\;\sigma:X\to T_{\Sigma}(X)$	

Lemma:

The following properties are equivalent:

(i) $s \leftrightarrow_E^* t$ (ii) $E \vdash s \approx t$ is derivable.

Proof:

(i) \Rightarrow (ii): $s \leftrightarrow_E t$ implies $E \vdash s \approx t$ by induction on the depth of the position where the rewrite rule is applied;

then $s \leftrightarrow_E^* t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow_E^* t$.

(ii) \Rightarrow (i): By induction on the size of the derivation for $E \vdash s \approx t$.

Constructing a quotient algebra:

Let X be a set of variables.

For $t \in T_{\Sigma}(X)$ let $[t] = \{ t' \in T_{\Sigma}(X) \mid E \vdash t \approx t' \}$ be the congruence class of t.

Define a Σ -algebra $T_{\Sigma}(X)/E$ (abbreviated by T) as follows: $U_T = \{ [t] \mid t \in T_{\Sigma}(X) \}.$ $f_T([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)] \text{ for } f/n \in \Omega.$

Lemma:

 f_T is well-defined: If $[t_i] = [t'_i]$, then $[f(t_1, \ldots, t_n)] = [f(t'_1, \ldots, t'_n)]$.

Proof:

Follows directly from the *Congruence* rule for \vdash .

Lemma:

 $\mathcal{T} = \mathsf{T}_{\Sigma}(X)/E$ is an *E*-algebra.

Proof:

Let $\forall \vec{x}(s \approx t)$ be an equation in *E*; let α be an arbitrary assignment.

We have to show that $\mathcal{T}(\alpha)(\forall \vec{x}(s \approx t)) = 1$, or equivalently, that $\mathcal{T}(\beta)(s) = \mathcal{T}(\beta)(t)$ for all $\beta = \alpha[x_i \mapsto [t_i] \mid i \in I]$ with $[t_i] \in U_T$.

Let $\sigma = \{x_i \mapsto t_i \mid i \in I\}$, then $s\sigma \in \mathcal{T}(\beta)(s)$ and $t\sigma \in \mathcal{T}(\beta)(t)$.

By the *Instance* rule, $E \vdash s\sigma \approx t\sigma$ is derivable, hence $\mathcal{T}(\beta)(s) = [s\sigma] = [t\sigma] = \mathcal{T}(\beta)(t)$.

Lemma:

Let X be a countably infinite set of variables; let $s, t \in T_{\Sigma}(X)$. If $T_{\Sigma}(X)/E \models \forall \vec{x}(s \approx t)$, then $E \vdash s \approx t$ is derivable.

Proof:

Assume that $\mathcal{T} \models \forall \vec{x} (s \approx t)$, i.e., $\mathcal{T}(\alpha)(\forall \vec{x} (s \approx t)) = 1$. Consequently, $\mathcal{T}(\beta)(s) = \mathcal{T}(\beta)(t)$ for all $\beta = \alpha[x_i \mapsto [t_i] \mid i \in I]$ with $[t_i] \in U_T$.

Choose
$$t_i = x_i$$
, then $[s] = \mathcal{T}(\beta)(s) = \mathcal{T}(\beta)(t) = [t]$,
so $E \vdash s \approx t$ is derivable by definition of \mathcal{T} .

Theorem ("Birkhoff's Theorem"):

Let X be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\Sigma}(X)$:

(i)
$$s \leftrightarrow_E^* t$$
.
(ii) $E \vdash s \approx t$ is derivable.
(iii) $s \approx_E t$, i.e., $E \models \forall \vec{x} (s \approx t)$
(iv) $\mathsf{T}_{\Sigma}(X)/E \models \forall \vec{x} (s \approx t)$.

Proof:

(i) \Leftrightarrow (ii): See above (slide 7).

(ii) \Rightarrow (iii): By induction on the size of the derivation for $E \vdash s \approx t$.

(iii) \Rightarrow (iv): Obvious, since $\mathcal{T} = \mathcal{T}_E(X)$ is an *E*-algebra. (iv) \Rightarrow (ii): See above (slide 11).

Universal Algebra

 $T_{\Sigma}(X)/E = T_{\Sigma}(X)/\approx_{E} = T_{\Sigma}(X)/\leftrightarrow_{E}^{*}$ is called the free *E*-algebra with generating set $X/\approx_{E} = \{ [x] \mid x \in X \}$:

Every mapping $\varphi : X / \approx_E \to \mathcal{B}$ for some *E*-algebra \mathcal{B} can be extended to a homomorphism $\hat{\varphi} : \mathsf{T}_{\Sigma}(X) / E \to \mathcal{B}$.

 $\mathsf{T}_{\Sigma}(\emptyset)/E = \mathsf{T}_{\Sigma}(\emptyset)/\approx_{E} = \mathsf{T}_{\Sigma}(\emptyset)/\leftrightarrow_{E}^{*}$ is called the initial *E*-algebra.

Universal Algebra

$$\approx_E = \{ (s, t) \mid E \models s \approx t \}$$

is called the equational theory of *E*.

$$\approx_E^I = \{ (s, t) \mid \mathsf{T}_{\Sigma}(\emptyset) / E \models s \approx t \}$$

is called the inductive theory of E .

Example:

Let
$$E = \{ \forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y)) \}.$$

Then $x + y \approx_E^I y + x$, but $x + y \not\approx_E y + x$.

Corollary: If *E* is convergent (i.e., terminating and confluent), then $s \approx_E t$ if and only if $s \leftrightarrow_E^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

Corollary: If *E* is finite and convergent, then \approx_E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if it is locally confluent.

Rewrite Relations

Problems:

- Show local confluence of E.
- Show termination of E.
- Transform E into an equivalent set of equations that is locally confluent and terminating.

Showing local confluence (Sketch):

Problem: If $t_1 \leftarrow_E t_0 \rightarrow_E t_2$, does there exist a term *s* such that $t_1 \rightarrow_E^* s \leftarrow_E^* t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Showing local confluence (Sketch):

Question: Are there rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ such that l_1 and some subterm l_2/p have a common instance $l_1\sigma_1 = (l_2/p)\sigma_2$?

Without loss of generality: assume that the two rewrite rules do not have common variables.

Then: Only a single substitution required: $l_1\sigma = (l_2/p)\sigma$?

Further questions:

For which substitutions σ can this happen?

If there are infinitely many substitutions, can we describe them finitely?