
Rewrite Relations

Let E be a set of equations.

The rewrite relation →E ⊆ TΣ(X )× TΣ(X ) is defined by

s →E t iff there exist (l ≈ r) ∈ E , p ∈ Pos(s),

and σ : X → TΣ(X ),

such that s/p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a

redex (reducible expression).

Contracting a redex means replacing it with the corresponding

instance of the rhs (right-hand side) of the rule.
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Rewrite Relations

An equation l ≈ r is also called a rewrite rule, if l is not a

variable and Var(l) ⊇ Var(r).

Notation: l → r .

A set of rewrite rules is called a term rewrite system (TRS).
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Rewrite Relations

We say that a set of equations E or a TRS R is terminating,

if the rewrite relation →E or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.
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E-Algebras

Let E be a set of closed equations. A Σ-algebra A is called an

E -algebra, if A |= ∀~x(s ≈ t) for all ∀~x(s ≈ t) ∈ E .

If E |= ∀~x(s ≈ t) (i.e., ∀~x(s ≈ t) is valid in all E -algebras), we

write this also as s ≈E t.

Goal:

Use the rewrite relation→E to express the semantic consequence

relation syntactically:

s ≈E t if and only if s ↔∗
E t.
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E-Algebras

Let E be a set of equations over TΣ(X ). The following inference

system allows to derive consequences of E :
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E-Algebras

E ` t ≈ t (Reflexivity)

E ` t ≈ t′

E ` t′ ≈ t
(Symmetry)

E ` t ≈ t′ E ` t′ ≈ t′′

E ` t ≈ t′′ (Transitivity)

E ` t1 ≈ t′
1 . . . E ` tn ≈ t′

n

E ` f (t1, . . . , tn) ≈ f (t′
1, . . . , t

′
n)

(Congruence)

E ` tσ ≈ t′σ (Instance)

if (t ≈ t′) ∈ E and σ : X → TΣ(X )
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E-Algebras

Lemma:

The following properties are equivalent:

(i) s ↔∗
E t

(ii) E ` s ≈ t is derivable.

Proof:

(i)⇒(ii): s ↔E t implies E ` s ≈ t by induction on the depth

of the position where the rewrite rule is applied;

then s ↔∗
E t implies E ` s ≈ t by induction on the number of

rewrite steps in s ↔∗
E t.

(ii)⇒(i): By induction on the size of the derivation for E ` s ≈ t.
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E-Algebras

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X ) let [t] = { t′ ∈ TΣ(X ) | E ` t ≈ t′ } be the

congruence class of t.

Define a Σ-algebra TΣ(X )/E (abbreviated by T ) as follows:

UT = { [t] | t ∈ TΣ(X ) }.

fT ([t1], . . . , [tn]) = [f (t1, . . . , tn)] for f /n ∈ Ω.
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E-Algebras

Lemma:

fT is well-defined:

If [ti ] = [t′
i ], then [f (t1, . . . , tn)] = [f (t′

1, . . . , t
′
n)].

Proof:

Follows directly from the Congruence rule for `.
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E-Algebras

Lemma:

T = TΣ(X )/E is an E -algebra.

Proof:

Let ∀~x(s ≈ t) be an equation in E ; let α be an arbitrary

assignment.

We have to show that T (α)(∀~x(s ≈ t)) = 1, or equivalently,

that T (β)(s) = T (β)(t) for all β = α[ xi 7→ [ti ] | i ∈ I ] with

[ti ] ∈ UT .

Let σ = {xi 7→ ti | i ∈ I}, then sσ ∈ T (β)(s) and tσ ∈ T (β)(t).

By the Instance rule, E ` sσ ≈ tσ is derivable,

hence T (β)(s) = [sσ] = [tσ] = T (β)(t).
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E-Algebras

Lemma:

Let X be a countably infinite set of variables; let s, t ∈ TΣ(X ).

If TΣ(X )/E |= ∀~x(s ≈ t), then E ` s ≈ t is derivable.

Proof:

Assume that T |= ∀~x(s ≈ t), i.e., T (α)(∀~x(s ≈ t)) = 1.

Consequently, T (β)(s) = T (β)(t) for all β = α[ xi 7→ [ti ] | i ∈ I ]

with [ti ] ∈ UT .

Choose ti = xi , then [s] = T (β)(s) = T (β)(t) = [t],

so E ` s ≈ t is derivable by definition of T .
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E-Algebras

Theorem (“Birkhoff’s Theorem”):

Let X be a countably infinite set of variables, let E be a set of

(universally quantified) equations. Then the following properties

are equivalent for all s, t ∈ TΣ(X ):

(i) s ↔∗
E t.

(ii) E ` s ≈ t is derivable.

(iii) s ≈E t, i.e., E |= ∀~x(s ≈ t).

(iv) TΣ(X )/E |= ∀~x(s ≈ t).
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E-Algebras

Proof:

(i)⇔(ii): See above (slide 7).

(ii)⇒(iii): By induction on the size of the derivation for

E ` s ≈ t.

(iii)⇒(iv): Obvious, since T = TE (X ) is an E -algebra.

(iv)⇒(ii): See above (slide 11).
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Universal Algebra

TΣ(X )/E = TΣ(X )/≈E = TΣ(X )/↔∗
E is called the

free E -algebra with generating set X/≈E = { [x ] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E -algebra B can be

extended to a homomorphism ϕ̂ : TΣ(X )/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔∗
E is called the

initial E -algebra.
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Universal Algebra

≈E = { (s, t) | E |= s ≈ t }
is called the equational theory of E .

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t }

is called the inductive theory of E .

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}.
Then x + y ≈I

E y + x , but x + y 6≈E y + x .
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Rewrite Relations

Corollary:

If E is convergent (i.e., terminating and confluent),

then s ≈E t if and only if s ↔∗
E t if and only if s↓E = t↓E .

Corollary:

If E is finite and convergent, then ≈E is decidable.

Reminder:

If E is terminating, then it is confluent if and only if

it is locally confluent.
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Rewrite Relations

Problems:

Show local confluence of E .

Show termination of E .

Transform E into an equivalent set of equations that is

locally confluent and terminating.
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Rewrite Relations

Showing local confluence (Sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such

that t1 →∗
E s ←∗

E t2 ?

If the two rewrite steps happen in different subtrees (disjoint

redexes): yes.

If the two rewrite steps happen below each other (overlap at

or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable

position: needs further investigation.
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Rewrite Relations

Showing local confluence (Sketch):

Question: Are there rewrite rules l1 → r1 and l2 → r2 such

that l1 and some subterm l2/p have a common instance

l1σ1 = (l2/p)σ2 ?

Without loss of generality: assume that the two rewrite rules

do not have common variables.

Then: Only a single substitution required: l1σ = (l2/p)σ ?

Further questions:

For which substitutions σ can this happen?

If there are infinitely many substitutions, can we describe

them finitely?
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