4 Unification and Critical Pairs

The composition of two substitutions σ and ρ is the substitution $\sigma \circ \rho$ that maps every variable x to $(x\sigma)\rho$.

Proposition:

The composition of substitutions \circ is associative.

A substitution σ is called idempotent, if $\sigma \circ \sigma = \sigma$.

Proposition:

 σ is idempotent if and only if $Dom(\sigma) \cap Codom(\sigma) = \emptyset$.

A substitution σ is called more general than a substitution τ if $\tau = \sigma \circ \rho$ for some substitution ρ . Notation: $\sigma \preceq \tau$.

Proposition: (i) \precsim is a quasi-ordering on substitutions (i.e., reflexive and transitive).

(ii) If $\sigma \preceq \tau$ and $\tau \preceq \sigma$, then there is a bijective variable renaming ρ such that $x\sigma\rho = x\tau$ for every x in X.

Proof:

Exercise.

A unification problem is a multiset of equations $E = \{s_1 = t_1, \dots, s_n = t_n\}$ with terms s_i, t_i . (Analogously for atoms, literals, etc.)

A substitution σ is called a unifier of Eif $s_i \sigma = t_i \sigma$ for all $i \in \{1, ..., n\}$.

E is called unifiable, if it has a unifier.

A unifier σ of E is called a most general unifier (mgu) of E, if $\sigma \preceq \tau$ for every unifier τ of E.

Notation:

- A (most general) unifier of $\{s = t\}$ is also called
- a (most general) unifier of s and t.

The following inference system transforms a unification problem into a simpler unification problem (or into \perp , denoting an unsolvable unification problem).

$$t = {}^{?} t, E \Rightarrow_{U} E$$
 (Delete)

$$f(\vec{s}) = {}^{?} f(\vec{t}), E \Rightarrow_{U} s_{1} = {}^{?} t_{1}, \dots, s_{n} = {}^{?} t_{n}, E$$
 (Decompose)

$$f(\vec{s}) = {}^{?} g(\vec{t}), E \Rightarrow_{U} \bot$$
 (Clash)

$$x = {}^{?} t, E \Rightarrow_{U} x = {}^{?} t, E\{x \mapsto t\}$$
 (Eliminate)

$$if x \in Var(E), x \notin Var(t)$$

$$x = {}^{?} t, E \Rightarrow_{U} \bot$$
 (Occurs-Check)

$$if x \neq t, x \in Var(t)$$

$$t = {}^{?} x, E \Rightarrow_{U} x = {}^{?} t, E$$
 (Orient)

$$if t \notin X$$

A unification problem E is said to be in solved form, if $E = \{x_1 = u_1, \dots, x_k = u_k\}$, with x_i pairwise distinct and $x_i \notin Var(u_j)$ for all i, j.

E represents the solution $\sigma_E = \{x_1 \mapsto u_1, \ldots, x_k \mapsto u_k\}$.

Lemma:

If E is in solved form then σ_E is an idempotent mgu of E.

Lemma:

(i) If $E \Rightarrow_U E'$ then σ is a unifier of E iff σ is a unifier of E'. (ii) If $E \Rightarrow_U^* E'$, with E' a solved form, then $\sigma_{E'}$ is an mgu of E. (iii) If $E \Rightarrow_U^* \bot$ then E is not unifiable.

Proof:

(i) We consider the Eliminate rule (the others are obvious). Let σ be a unifier of $x = {}^{?} t$, that is, $x\sigma = t\sigma$. Then $y(\{x \mapsto t\} \circ \sigma) = y\sigma$ for every variable y. Therefore, for any equation $u = {}^{?} v$ in E, we have $u\sigma = v\sigma$ iff $u\{x \mapsto t\}\sigma = v\{x \mapsto t\}\sigma$.

(ii) and (iii) follow by induction from (i).

Lemma:

 \Rightarrow_U is Noetherian.

Proof:

A variable x is called solved, if it occurs exactly once in E, namely on the lhs of some x = t.

Let φ map every E to a triple $(n_1, n_2, n_3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where

- n_1 is the number of non-solved variables in E,
- n_2 is the size of E (i.e., $\sum_{s={}^?t\in E}(|s|+|t|)$,

 n_3 is the number of equations t = x in E.

Then $E \Rightarrow_U E'$ implies $\varphi(E) >_{lex} \varphi(E')$.

Lemma:

If *E* is irreducible w.r.t. \Rightarrow_U , then it is \perp or in solved form.

Proof:

If *E* is neither \perp nor in solved form, then it contains

$$x_i = u_i, x_j = u_j \text{ with } x_i = x_j \Rightarrow \text{ apply Eliminate}$$

or $x_i = u_i \text{ with } x_i \in \text{Var}(u_i) \Rightarrow \text{ apply Occurs-Check}$
or $x_i = u_i \text{ with } x_i \in \text{Var}(u_j) \text{ and } i \neq j \Rightarrow \text{ apply Eliminate}$
or $f(\ldots) = f(\ldots) \Rightarrow \text{ apply Decompose}$
or $f(\ldots) = g(\ldots) \Rightarrow \text{ apply Clash}$
or $f(\ldots) = x \Rightarrow \text{ apply Orient.}$

Theorem:

E is unifiable if and only if there exists a most general unifier mgu(*E*) = σ of *E*, such that σ is idempotent and $dom(\sigma) \cup codom(\sigma) \subseteq Var(E)$.

Proof:

"if": trivial.

"only if": Compute an arbitrary normal form of E using \Rightarrow_U . By the previous lemmas, it is in solved form and represents an idempotent mgu σ of E. Since none of the inference rules introduces new variables, $dom(\sigma) \cup codom(\sigma) \subseteq Var(E)$.

Problem: exponential growth of terms possible:

Consider the unification problem $\{x_1 = f(x_0, x_0), x_2 = f(x_1, x_1), \dots, x_n = f(x_{n-1}, x_{n-1})\}$ Alternatively: Consider the unification problem $\{s_n = f(x_1, x_1), f(x_2, x_1, x_1), f(\dots, x_n, x_{n-1})), \dots)\}$ where $s_n = f(x_1, f(x_2, f(\dots, x_n, x_{n-1}))), \dots)$ $t_n = f(f(x_0, x_0), f(f(x_1, x_1), f(\dots, f(x_{n-1}, x_{n-1}))))$

Solution:

- Use sharing to avoid duplication:
- DAGs instead of trees; every variable occurs only once.
- Replace intermediate occurs-checks by a single acyclicity test at the end.

Theorem (Paterson, Wegman):

A most-general unifier can be computed in linear time.

Let $l_i \rightarrow r_i$ (i = 1, 2) be two rewrite rules in a TRS Rwhose variables have been renamed such that $Var(\{l_1, r_1\}) \cup Var(\{l_2, r_2\}) = \emptyset.$

Let $p \in \text{Pos}(I_1)$ be a position such that I_1/p is not a variable and σ is an mgu of I_1/p and I_2 .

Then $r_1 \sigma \leftarrow l_1 \sigma \rightarrow (l_1 \sigma)[r_2 \sigma]_p$.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a critical pair of R.

The critical pair is joinable (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma) [r_2 \sigma]_p$.

Theorem ("Critical Pair Theorem"):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:

"only if": obvious, since joinability of a critical pair is a special case of local confluence.

Proof:

"if": Suppose *s* rewrites to t_1 and t_2 using rewrite rules $l_i \rightarrow r_i \in R$ at positions $p_i \in \text{Pos}(s)$, where i = 1, 2. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s/p_i = l_i\theta$ and $t_i = s[r_i\theta]_{p_i}$.

We distinguish between two cases: Either p_1 and p_2 are in disjoint subtrees $(p_1 || p_2)$, or one is a prefix of the other (w.o.l.o.g., $p_1 \leq p_2$).

Case 1: $p_1 || p_2$.

Then $s = s[l_1\theta]_{p_1}[l_2\theta]_{p_2}$, and therefore $t_1 = s[r_1\theta]_{p_1}[l_2\theta]_{p_2}$ and $t_2 = s[l_1\theta]_{p_1}[r_2\theta]_{p_2}$. Let $t_0 = s[r_1\theta]_{p_1}[r_2\theta]_{p_2}$. Then clearly $t_1 \rightarrow_R t_0$ using $l_2 \rightarrow r_2$ and $t_2 \rightarrow_R t_0$ using $l_1 \rightarrow r_1$.

Case 2: $p_1 \le p_2$.

Case 2.1: $p_2 = p_1 q_1 q_2$, where l_1/q_1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in l_1 and n times in r_1 (where $m \ge 1$ and $n \ge 0$).

Then $t_1 \rightarrow_R^* t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q' q_2$, where q' is a position of x in r_1 .

Conversely, $t_2 \rightarrow_R^* t_0$ by applying $l_2 \rightarrow r_2$ at all positions $p_1 q q_2$, where q is a position of x in l_1 different from q_1 , and by applying $l_1 \rightarrow r_1$ at p_1 with the substitution θ' , where $\theta' = \theta[x \mapsto (x\theta)[r_2\theta]_{q_2}].$

Case 2.2: $p_2 = p_1 p$, where p is a non-variable position of l_1 . Then $s/p_2 = l_2\theta$ and $s/p_2 = (s/p_1)/p = (l_1\theta)/p = (l_1/p)\theta$, so θ is a unifier of l_2 and l_1/p . Let σ be the mgu of I_2 and I_1/p , then $\theta = \sigma \circ \rho$ and $\langle r_1 \sigma, (l_1 \sigma) [r_2 \sigma]_{\rho} \rangle$ is a critical pair. By assumption, it is joinable, so $r_1 \sigma \rightarrow^*_R v \leftarrow^*_R (l_1 \sigma) [r_2 \sigma]_p$. Consequently, $t_1 = s[r_1\theta]_{\rho_1} = s[r_1\sigma\rho]_{\rho_1} \rightarrow^*_R s[v\rho]_{\rho_1}$ and $t_2 = s[r_1\sigma\rho]_{\rho_1} \rightarrow^*_R s[v\rho]_{\rho_1}$ $s[r_2\theta]_{p_2} = s[(l_1\theta)[r_2\theta]_p]_{p_1} \rightarrow^*_R s[(l_1\sigma\rho)[r_2\sigma\rho]_p]_{p_1} \rightarrow^*_R s[v\rho]_{p_1}.$ This completes the proof of the Critical Pair Theorem.

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered – except if the overlap is at the root (i.e., $p = \varepsilon$).

Corollary:

A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof:

By Newman's Lemma and the Critical Pair Theorem.

Corollary:

For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\langle u_1, u_2 \rangle$.

Reduce every u_i to some normal form u'_i . If $u'_1 = u'_2$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u'_1 \leftarrow_R^* u_1 \leftarrow_R s \rightarrow_R u_2 \rightarrow_R^* u'_2$.