
4 Unification and Critical Pairs
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Unification

The composition of two substitutions σ and ρ is the substitution

σ ◦ ρ that maps every variable x to (xσ)ρ.

Proposition:

The composition of substitutions ◦ is associative.
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Unification

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition:

σ is idempotent if and only if Dom(σ) ∩ Codom(σ) = ∅.
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Unification

A substitution σ is called more general than a substitution τ

if τ = σ ◦ ρ for some substitution ρ.

Notation: σ - τ .

Proposition:

(i) - is a quasi-ordering on substitutions

(i.e., reflexive and transitive).

(ii) If σ - τ and τ - σ, then there is a bijective variable

renaming ρ such that xσρ = xτ for every x in X .

Proof:

Exercise.
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Unification

A unification problem is a multiset of equations

E = {s1 =? t1, . . . , sn =? tn} with terms si , ti .

(Analogously for atoms, literals, etc.)

A substitution σ is called a unifier of E

if siσ = tiσ for all i ∈ {1, . . . , n}.

E is called unifiable, if it has a unifier.

A unifier σ of E is called a most general unifier (mgu) of E ,

if σ - τ for every unifier τ of E .
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Unification

Notation:

A (most general) unifier of {s =? t} is also called

a (most general) unifier of s and t.
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Unification

The following inference system transforms a unification problem

into a simpler unification problem

(or into ⊥, denoting an unsolvable unification problem).

7



Unification

t =? t,E ⇒U E (Delete)

f (~s) =? f (~t),E ⇒U s1 =? t1, . . . , sn =? tn,E (Decompose)

f (~s) =? g(~t),E ⇒U ⊥ (Clash)

x =? t,E ⇒U x =? t,E{x 7→ t} (Eliminate)

if x ∈ Var(E ), x 6∈ Var(t)

x =? t,E ⇒U ⊥ (Occurs-Check)

if x 6= t, x ∈ Var(t)

t =? x ,E ⇒U x =? t,E (Orient)

if t 6∈ X
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Unification

A unification problem E is said to be in solved form, if

E = {x1 =? u1, . . . , xk =? uk}, with xi pairwise distinct and

xi 6∈ Var(uj) for all i , j .

E represents the solution σE = {x1 7→ u1, . . . , xk 7→ uk}.

Lemma:

If E is in solved form then σE is an idempotent mgu of E .
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Unification

Lemma:

(i) If E ⇒U E ′ then σ is a unifier of E iff σ is a unifier of E ′.

(ii) If E ⇒∗
U E ′, with E ′ a solved form, then σE ′ is an mgu of E .

(iii) If E ⇒∗
U ⊥ then E is not unifiable.

Proof:

(i) We consider the Eliminate rule (the others are obvious).

Let σ be a unifier of x =? t, that is, xσ = tσ.

Then y({x 7→ t} ◦ σ) = yσ for every variable y .

Therefore, for any equation u =? v in E , we have uσ = vσ iff

u{x 7→ t}σ = v{x 7→ t}σ.

(ii) and (iii) follow by induction from (i).
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Unification

Lemma:

⇒U is Noetherian.

Proof:

A variable x is called solved, if it occurs exactly once in E ,

namely on the lhs of some x =? t.

Let ϕ map every E to a triple (n1, n2, n3) ∈ N× N× N where

n1 is the number of non-solved variables in E ,

n2 is the size of E (i.e.,
∑

s=?t∈E (|s|+ |t|),
n3 is the number of equations t =? x in E .

Then E ⇒U E ′ implies ϕ(E ) >lex ϕ(E ′).
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Unification

Lemma:

If E is irreducible w.r.t. ⇒U , then it is ⊥ or in solved form.

Proof:

If E is neither ⊥ nor in solved form, then it contains

xi =? ui , xj =? uj with xi = xj ⇒ apply Eliminate

or xi =? ui with xi ∈ Var(ui ) ⇒ apply Occurs-Check

or xi =? ui with xi ∈ Var(uj) and i 6= j ⇒ apply Eliminate

or f (. . . ) = f (. . . ) ⇒ apply Decompose

or f (. . . ) = g(. . . ) ⇒ apply Clash

or f (. . . ) = x ⇒ apply Orient.
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Unification

Theorem:

E is unifiable if and only if there exists a most general

unifier mgu(E ) = σ of E , such that σ is idempotent and

dom(σ) ∪ codom(σ) ⊆ Var(E ).

Proof:

“if”: trivial.

“only if”: Compute an arbitrary normal form of E using ⇒U .

By the previous lemmas, it is in solved form and represents an

idempotent mgu σ of E .

Since none of the inference rules introduces new variables,

dom(σ) ∪ codom(σ) ⊆ Var(E ).
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Unification

Problem: exponential growth of terms possible:

Consider the unification problem

{x1 =? f (x0, x0), x2 =? f (x1, x1), . . . , xn =? f (xn−1, xn−1)}

Alternatively: Consider the unification problem {sn =? tn},
where sn = f (x1, f (x2, f (. . . , xn ) . . . )),

tn = f (f (x0, x0), f (f (x1, x1), f (. . . , f (xn−1, xn−1)) . . . )).
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Unification

Solution:

Use sharing to avoid duplication:

DAGs instead of trees; every variable occurs only once.

Replace intermediate occurs-checks by a single acyclicity test

at the end.

Theorem (Paterson, Wegman):

A most-general unifier can be computed in linear time.
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Critical Pairs

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R

whose variables have been renamed such that

Var({l1, r1}) ∪ Var({l2, r2}) = ∅.
Let p ∈ Pos(l1) be a position such that l1/p is not a variable

and σ is an mgu of l1/p and l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.
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Critical Pairs

Theorem (“Critical Pair Theorem”):

A TRS R is locally confluent if and only if all its critical pairs

are joinable.

Proof:

“only if”: obvious, since joinability of a critical pair is a special

case of local confluence.
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Critical Pairs

Proof:

“if”: Suppose s rewrites to t1 and t2 using rewrite rules

li → ri ∈ R at positions pi ∈ Pos(s), where i = 1, 2.

Without loss of generality, we can assume that the two rules are

variable disjoint, hence s/pi = liθ and ti = s[riθ]pi .

We distinguish between two cases: Either p1 and p2 are in

disjoint subtrees (p1 || p2), or one is a prefix of the other

(w.o.l.o.g., p1 ≤ p2).
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Critical Pairs

Case 1: p1 || p2.

Then s = s[l1θ]p1 [l2θ]p2 ,

and therefore t1 = s[r1θ]p1 [l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1 [r2θ]p2 .

Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using l1 → r1.

19



Critical Pairs

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1 q1 q2, where l1/q1 is some variable x .

In other words, the second rewrite step takes place at or below

a variable in the first rule. Suppose that x occurs m times in l1
and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →∗
R t0 by applying l2 → r2 at all positions p1 q′ q2,

where q′ is a position of x in r1.

Conversely, t2 →∗
R t0 by applying l2 → r2 at all positions

p1 qq2, where q is a position of x in l1 different from q1, and

by applying l1 → r1 at p1 with the substitution θ′, where

θ′ = θ[x 7→ (xθ)[r2θ]q2 ].
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Critical Pairs

Case 2.2: p2 = p1 p, where p is a non-variable position of l1.

Then s/p2 = l2θ and s/p2 = (s/p1)/p = (l1θ)/p = (l1/p)θ,

so θ is a unifier of l2 and l1/p.

Let σ be the mgu of l2 and l1/p,

then θ = σ ◦ ρ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1σρ]p1 →∗
R s[vρ]p1 and t2 =

s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 →∗
R s[(l1σρ)[r2σρ]p]p1 →∗

R s[vρ]p1 .

This completes the proof of the Critical Pair Theorem.
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Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)

itself must be considered – except if the overlap is at the root

(i.e., p = ε).
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Critical Pairs

Corollary:

A terminating TRS R is confluent if and only if all its critical

pairs are joinable.

Proof:

By Newman’s Lemma and the Critical Pair Theorem.
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Critical Pairs

Corollary:

For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first

rule there is at most one critical pair 〈u1, u2〉.
Reduce every ui to some normal form u′

i . If u′
1 = u′

2 for

every critical pair, then R is confluent, otherwise there is some

non-confluent situation u′
1 ←∗

R u1 ←R s →R u2 →∗
R u′

2.
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