4 Unification and Critical Pairs




Unification

The composition of two substitutions o and p is the substitution
o o p that maps every variable x to (xo)p.

Proposition:
The composition of substitutions o is associative.



Unification

A substitution ¢ is called idempotent, if c o0 = 0.

Proposition:
o is idempotent if and only if Dom(o) N Codom(o) = 0.



Unification

A substitution o is called more general than a substitution 7
if 7 = o0 o p for some substitution p.
Notation: o 3 7.

Proposition:
(i) = is a quasi-ordering on substitutions
(i.e., reflexive and transitive).

(i) If 0 = 7 and 7 = o, then there is a bijective variable

Yy Yy

renaming p such that xop = x7 for every x in X.

Proof:
Exercise.



Unification

A unification problem is a multiset of equations
E={s;="t,...,5, =" t,} with terms s;, t;.

(Analogously for atoms, literals, etc.)

A substitution o is called a unifier of E
if sic = tio forall i € {1,..., n}.

E is called unifiable, if it has a unifier.

A unifier o of E is called a most general unifier (mgu) of E,
if o = 7 for every unifier 7 of E.



Unification

Notation:
A (most general) unifier of {s =’ t} is also called
a (most general) unifier of s and t.



Unification

The following inference system transforms a unification problem
Into a simpler unification problem
(or into L, denoting an unsolvable unification problem).



Unification

t="1tE
f(5) = (7). E

f(5) =" g(t). E

x="t E

x="t E

t="x E

E (Delete)
s, =" t1,...,5, =" t,, E (Decompose)
1 (Clash)
x ="t E{x — t} (Eliminate)

if x € Var(E), x & Var(t)

1 (Occurs-Check)
if x # t, x € Var(t)
x="tE (Orient)

if t & X



Unification

A unification problem E is said to be in solved form, if

E=1{xg =" up,...,xx =" uy}, with x; pairwise distinct and
x; & Var(uj) for all i, ;.

E represents the solution o = {xy — u1,... , Xk — Uk}.

Lemma:

If E is in solved form then og is an idempotent mgu of E.



Unification

Lemma:
(i) If E =y E’ then o is a unifier of E iff o is a unifier of E’.

(i) If E =7, E’, with E” a solved form, then o+ is an mgu of E.
(iii) If E =7, L then E is not unifiable.

Proof:

(i) We consider the Eliminate rule (the others are obvious).
Let o be a unifier of x =’ t, that is, xo = to.

Then y({x +— t} o) = yo for every variable y.

Therefore, for any equation u =’ v in E, we have uo = vo iff
u{x — tlto = v{x — t}o.

(ii) and (iii) follow by induction from (i).
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Unification

Lemma:
=y 1s Noetherian.

Proof:
A variable x is called solved, if it occurs exactly once in E,
namely on the |hs of some x =’ t.

Let © map every E to a triple (ny, np, n3) € N x N x N where
ny i1s the number of non-solved variables in E,
ny is the size of E (i.e., Y .+, cg(|s] + [t]),
ns is the number of equations t =’ x in E.

Then E =y E’ implies o(E) >ex @(E’).
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Unification

Lemma:
If E is irreducible w.r.t. =, then it is _L or in solved form.

Proof:
If £ is neither | nor in solved form, then it contains

x; =" u;, X; = u; with x; = x; = apply Eliminate

or x; =’ u; with x; € Var(u;) = apply Occurs-Check

or x; =’ u; with x; € Var(uj) and i #j = apply Eliminate
or f(...)=f(...) = apply Decompose

or f(...)=g(...) = apply Clash

or f(...)=x = apply Orient.
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Unification

Theorem:
E is unifiable if and only if there exists a most general

unifier mgu(E) = o of E, such that o is idempotent and
dom(c) U codom(o) C Var(E).

Proof:
‘It trivial.

“only if": Compute an arbitrary normal form of E using = .
By the previous lemmas, it is in solved form and represents an
idempotent mgu o of E.

Since none of the inference rules introduces new variables,

dom(c) U codom(o) C Var(E).
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Unification

Problem: exponential growth of terms possible:
Consider the unification problem

{x1 = f(xo0, X0), X2 = f(x1,x1), ..., Xn = f(Xn—1,%Xn—1)}

Alternatively: Consider the unification problem {s, =7 t,},
where s, = f(x, f(x2, (... X )--4)),
t, = f(f(Xo,Xo), f(f(Xl,Xl), f( e f(Xn—l;Xn—l)) . ))
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Unification

Solution:

Use sharing to avoid duplication:
DAGs instead of trees; every variable occurs only once.

Replace intermediate occurs-checks by a single acyclicity test
at the end.

Theorem (Paterson, Wegman):

A most-general unifier can be computed in linear time.
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Critical Pairs

Let [; — r; (i = 1,2) be two rewrite rulesin a TRS R
whose variables have been renamed such that

Var({h,n})UVar({h, rn}) = 0.

Let p € Pos(/;) be a position such that /;/p is not a variable
and o is an mgu of /;/p and k.

Then o «— ho — (ho)[rno],.

(no, (ho)[ro]p) is called a critical pair of R.

The critical pair is joinable (or: converges), if o [r (ho)[ro],.
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Critical Pairs

Theorem ( “Critical Pair Theorem"):
A TRS R is locally confluent if and only if all its critical pairs
are joinable.

Proof:
“only if": obvious, since joinability of a critical pair is a special
case of local confluence.
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Critical Pairs

Proof:
“if": Suppose s rewrites to t; and t, using rewrite rules

l; — r; € R at positions p; € Pos(s), where i =1, 2.
Without loss of generality, we can assume that the two rules are

variable disjoint, hence s/p; = [;0 and t; = s[r;f],..

We distinguish between two cases: Either p; and p, are in
disjoint subtrees (p; || p2), or one is a prefix of the other

(w.o.l.o.g., p1 < p2).
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Critical Pairs

Case 1: p1 || p2.

Then s = s[h0],,[10]p,.
and therefore t; = s[r0],,[L0],, and to = s[h6]p, [r20],,.

Let tg = s[r1¢9]p1[r29]p2.
Then clearly t; —r tp using b — r» and t, —g to using | — n.
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Critical Pairs

Case 2: p; < po.
Case 2.1: po = p1 g1 qo, where /1 /q; is some variable x.

In other words, the second rewrite step takes place at or below
a variable in the first rule. Suppose that x occurs m times in f;
and n times in r; (where m > 1 and n > 0).

Then t; —% to by applying b — r» at all positions p; ¢’ go,
where g’ is a position of x in ry.

Conversely, to —% tp by applying b — r» at all positions
P19 q>, where g is a position of x in /; different from ¢g;, and
by applying 1 — r; at p; with the substitution 6/, where
0" = O[x — (x0)[r0]4,]-
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Critical Pairs

Case 2.2: po = p1 p, where p is a non-variable position of /;.

Then s/py = htl and s/p> = (s/p1)/p = (h0)/p = (h/p)9,
so 6 is a unifier of /, and h/p.

Let o be the mgu of L and £ /p,
then 8 = o o p and (no, (ho)[ro]p) is a critical pair.

By assumption, it is joinable, so no —% v <% (ho)[rna],.

Consequently, t; = s[nf], = s[noply, —% s|vp]p, and t =
s[r20]p, = s[(h0)[r20]p]p, —& sl(hop)lr2oplplp —& slvelp-
This completes the proof of the Critical Pair Theorem.
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Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of)
itself must be considered — except if the overlap is at the root

(i.e., p=-¢).
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Critical Pairs

Corollary:

A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Proof:

By Newman's Lemma and the Critical Pair Theorem.
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Critical Pairs

Corollary:
For a finite terminating TRS, confluence is decidable.

Proof:

For every pair of rules and every non-variable position in the first
rule there is at most one critical pair (uy, up).

Reduce every u; to some normal form u!. If ui = uj for

every critical pair, then R is confluent, otherwise there is some
. . / * *k /

non-confluent situation uj <% U1 <—pr S —R Uz — 5 U,.
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