4 Unification and Critical Pairs

Unification

The composition of two substitutions σ and ρ is the substitution $\sigma \circ \rho$ that maps every variable x to $(x \sigma) \rho$.

Proposition:

The composition of substitutions \circ is associative.

Unification

A substitution σ is called idempotent, if $\sigma \circ \sigma=\sigma$.

Proposition:
σ is idempotent if and only if $\operatorname{Dom}(\sigma) \cap \operatorname{Codom}(\sigma)=\emptyset$.

Unification

A substitution σ is called more general than a substitution τ if $\tau=\sigma \circ \rho$ for some substitution ρ.
Notation: $\sigma \precsim \tau$.

Proposition:
(i) \precsim is a quasi-ordering on substitutions
(i.e., reflexive and transitive).
(ii) If $\sigma \precsim \tau$ and $\tau \precsim \sigma$, then there is a bijective variable renaming ρ such that $x \sigma \rho=x \tau$ for every x in X.

Proof:
Exercise.

Unification

A unification problem is a multiset of equations
$E=\left\{s_{1}=? t_{1}, \ldots, s_{n}=? t_{n}\right\}$ with terms s_{i}, t_{i}.
(Analogously for atoms, literals, etc.)
A substitution σ is called a unifier of E
if $s_{i} \sigma=t_{i} \sigma$ for all $i \in\{1, \ldots, n\}$.
E is called unifiable, if it has a unifier.

A unifier σ of E is called a most general unifier (mgu) of E, if $\sigma \precsim \tau$ for every unifier τ of E.

Unification

Notation:
A (most general) unifier of $\{s=$? $t\}$ is also called a (most general) unifier of s and t.

Unification

The following inference system transforms a unification problem into a simpler unification problem
(or into \perp, denoting an unsolvable unification problem).

Unification

$$
\begin{align*}
& t=? \quad t, E \Rightarrow U E \\
& f(\vec{s})=? ~ f(\vec{t}), E \Rightarrow U s_{1}={ }^{?} t_{1}, \ldots, s_{n}=?{ }^{?} t_{n}, E \\
& f(\vec{s})=? g(\vec{t}), E \Rightarrow U \perp \tag{Clash}\\
& x={ }^{?} t, E \Rightarrow u \quad x=? \quad t, E\{x \mapsto t\} \\
& \text { if } x \in \operatorname{Var}(E), x \notin \operatorname{Var}(t) \\
& x={ }^{?} t, E \Rightarrow U \perp \\
& \text { (Occurs-Check) } \\
& \text { if } x \neq t, x \in \operatorname{Var}(t) \\
& t=? x, E \Rightarrow u \quad x=? t, E \\
& \text { if } t \notin X \\
& \text { (Delete) } \\
& \text { (Decompose) } \\
& \text { (Eliminate) } \\
& \text { (Occurs-Check) } \\
& \text { (Orient) }
\end{align*}
$$

Unification

A unification problem E is said to be in solved form, if $E=\left\{x_{1}=?{ }^{?} u_{1}, \ldots, x_{k}=? u_{k}\right\}$, with x_{i} pairwise distinct and $x_{i} \notin \operatorname{Var}\left(u_{j}\right)$ for all i, j.
E represents the solution $\sigma_{E}=\left\{x_{1} \mapsto u_{1}, \ldots, x_{k} \mapsto u_{k}\right\}$.

Lemma:
If E is in solved form then σ_{E} is an idempotent mgu of E.

Unification

Lemma:
(i) If $E \Rightarrow_{U} E^{\prime}$ then σ is a unifier of E iff σ is a unifier of E^{\prime}.
(ii) If $E \Rightarrow{ }_{U}^{*} E^{\prime}$, with E^{\prime} a solved form, then $\sigma_{E^{\prime}}$ is an mgu of E.
(iii) If $E \Rightarrow{ }_{U}^{*} \perp$ then E is not unifiable.

Proof:
(i) We consider the Eliminate rule (the others are obvious).

Let σ be a unifier of $x=$? t, that is, $x \sigma=t \sigma$.
Then $y(\{x \mapsto t\} \circ \sigma)=y \sigma$ for every variable y.
Therefore, for any equation $u=$? v in E, we have $u \sigma=v \sigma$ iff $u\{x \mapsto t\} \sigma=v\{x \mapsto t\} \sigma$.
(ii) and (iii) follow by induction from (i).

Unification

Lemma:
$\Rightarrow U$ is Noetherian.
Proof:
A variable x is called solved, if it occurs exactly once in E, namely on the Ihs of some $x=$? t.

Let φ map every E to a triple $\left(n_{1}, n_{2}, n_{3}\right) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ where
n_{1} is the number of non-solved variables in E,
n_{2} is the size of E (i.e., $\sum_{s=?}{ }_{s \in E}(|s|+|t|)$,
n_{3} is the number of equations $t=? x$ in E.
Then $E \Rightarrow_{U} E^{\prime}$ implies $\varphi(E)>_{\text {lex }} \varphi\left(E^{\prime}\right)$.

Unification

Lemma:
If E is irreducible w.r.t. $\Rightarrow U$, then it is \perp or in solved form.
Proof:
If E is neither \perp nor in solved form, then it contains
$x_{i}={ }^{?} u_{i}, x_{j}=?{ }^{?} u_{j}$ with $x_{i}=x_{j} \Rightarrow$ apply Eliminate or $x_{i}=?{ }^{?} u_{i}$ with $x_{i} \in \operatorname{Var}\left(u_{i}\right) \Rightarrow$ apply Occurs-Check or $x_{i}={ }^{?} u_{i}$ with $x_{i} \in \operatorname{Var}\left(u_{j}\right)$ and $i \neq j \Rightarrow$ apply Eliminate or $f(\ldots)=f(\ldots) \Rightarrow$ apply Decompose
or $f(\ldots)=g(\ldots) \Rightarrow$ apply Clash or $f(\ldots)=x \Rightarrow$ apply Orient.

Unification

Theorem:
E is unifiable if and only if there exists a most general unifier $\operatorname{mgu}(E)=\sigma$ of E, such that σ is idempotent and $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq \operatorname{Var}(E)$.

Proof:

"if": trivial.
"only if": Compute an arbitrary normal form of E using $\Rightarrow u$.
By the previous lemmas, it is in solved form and represents an idempotent mgu σ of E.
Since none of the inference rules introduces new variables, $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq \operatorname{Var}(E)$.

Unification

Problem: exponential growth of terms possible:
Consider the unification problem $\left\{x_{1}=? ~ f\left(x_{0}, x_{0}\right), x_{2}=? ~ f\left(x_{1}, x_{1}\right), \ldots, x_{n}=? ~ f\left(x_{n-1}, x_{n-1}\right)\right\}$

Alternatively: Consider the unification problem $\left\{s_{n}={ }^{?} t_{n}\right\}$, where $s_{n}=f\left(x_{1}, \quad f\left(x_{2}, \quad f\left(\ldots, x_{n}\right) \ldots\right)\right)$,

$$
t_{n}=f\left(f\left(x_{0}, x_{0}\right), f\left(f\left(x_{1}, x_{1}\right), f\left(\ldots, f\left(x_{n-1}, x_{n-1}\right)\right) \ldots\right)\right)
$$

Unification

Solution:
Use sharing to avoid duplication:
DAGs instead of trees; every variable occurs only once.
Replace intermediate occurs-checks by a single acyclicity test at the end.

Theorem (Paterson, Wegman):
A most-general unifier can be computed in linear time.

Critical Pairs

Let $l_{i} \rightarrow r_{i}(i=1,2)$ be two rewrite rules in a TRS R
whose variables have been renamed such that $\operatorname{Var}\left(\left\{I_{1}, r_{1}\right\}\right) \cup \operatorname{Var}\left(\left\{I_{2}, r_{2}\right\}\right)=\emptyset$.

Let $p \in \operatorname{Pos}\left(I_{1}\right)$ be a position such that I_{1} / p is not a variable and σ is an mgu of I_{1} / p and I_{2}.

Then $r_{1} \sigma \leftarrow \iota_{1} \sigma \rightarrow\left(\iota_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
$\left\langle r_{1} \sigma,\left(I_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is called a critical pair of R.

The critical pair is joinable (or: converges), if $r_{1} \sigma \downarrow_{R}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.

Critical Pairs

Theorem ("Critical Pair Theorem"):
A TRS R is locally confluent if and only if all its critical pairs are joinable.

Proof:
"only if": obvious, since joinability of a critical pair is a special case of local confluence.

Critical Pairs

Proof:

"if": Suppose s rewrites to t_{1} and t_{2} using rewrite rules $I_{i} \rightarrow r_{i} \in R$ at positions $p_{i} \in \operatorname{Pos}(s)$, where $i=1,2$.
Without loss of generality, we can assume that the two rules are variable disjoint, hence $s / p_{i}=l_{i} \theta$ and $t_{i}=s\left[r_{i} \theta\right]_{p_{i}}$.

We distinguish between two cases: Either p_{1} and p_{2} are in disjoint subtrees $\left(p_{1} \| p_{2}\right)$, or one is a prefix of the other (w.o.l.o.g., $p_{1} \leq p_{2}$).

Critical Pairs

Case 1: $p_{1} \| p_{2}$.
Then $s=s\left[l_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$, and therefore $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$ and $t_{2}=s\left[l_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.

Let $t_{0}=s\left[r_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.
Then clearly $t_{1} \rightarrow_{R} t_{0}$ using $I_{2} \rightarrow r_{2}$ and $t_{2} \rightarrow_{R} t_{0}$ using $I_{1} \rightarrow r_{1}$.

Critical Pairs

Case 2: $p_{1} \leq p_{2}$.
Case 2.1: $p_{2}=p_{1} q_{1} q_{2}$, where I_{1} / q_{1} is some variable x.
In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that x occurs m times in I_{1} and n times in r_{1} (where $m \geq 1$ and $n \geq 0$).

Then $t_{1} \rightarrow_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q^{\prime} q_{2}$, where q^{\prime} is a position of x in r_{1}.

Conversely, $t_{2} \rightarrow{ }_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q q_{2}$, where q is a position of x in l_{1} different from q_{1}, and by applying $I_{1} \rightarrow r_{1}$ at p_{1} with the substitution θ^{\prime}, where $\theta^{\prime}=\theta\left[x \mapsto(x \theta)\left[r_{2} \theta\right]_{q_{2}}\right]$.

Critical Pairs

Case 2.2: $p_{2}=p_{1} p$, where p is a non-variable position of I_{1}.
Then $s / p_{2}=I_{2} \theta$ and $s / p_{2}=\left(s / p_{1}\right) / p=\left(l_{1} \theta\right) / p=\left(I_{1} / p\right) \theta$,
so θ is a unifier of I_{2} and I_{1} / p.
Let σ be the mgu of I_{2} and I_{1} / p,
then $\theta=\sigma \circ \rho$ and $\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is a critical pair.
By assumption, it is joinable, so $r_{1} \sigma \rightarrow_{R}^{*} v \leftarrow_{R}^{*}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
Consequently, $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}=s\left[r_{1} \sigma \rho\right]_{p_{1}} \rightarrow_{R}^{*} s[v \rho]_{p_{1}}$ and $t_{2}=$ $s\left[r_{2} \theta\right]_{p_{2}}=s\left[\left(I_{1} \theta\right)\left[r_{2} \theta\right]_{p}\right]_{p_{1}} \rightarrow_{R}^{*} s\left[\left(I_{1} \sigma \rho\right)\left[r_{2} \sigma \rho\right]_{p}\right]_{p_{1}} \rightarrow_{R}^{*} s[v \rho]_{p_{1}}$.
This completes the proof of the Critical Pair Theorem.

Critical Pairs

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered - except if the overlap is at the root (i.e., $p=\varepsilon$).

Critical Pairs

Corollary:
A terminating TRS R is confluent if and only if all its critical pairs are joinable.

Proof:
By Newman's Lemma and the Critical Pair Theorem.

Critical Pairs

Corollary:
For a finite terminating TRS, confluence is decidable.
Proof:
For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\left\langle u_{1}, u_{2}\right\rangle$.

Reduce every u_{i} to some normal form u_{i}^{\prime}. If $u_{1}^{\prime}=u_{2}^{\prime}$ for every critical pair, then R is confluent, otherwise there is some non-confluent situation $u_{1}^{\prime} \leftarrow_{R}^{*} u_{1} \leftarrow_{R} s \rightarrow_{R} u_{2} \rightarrow_{R}^{*} u_{2}^{\prime}$.

