Termination

Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition:

Both termination problems for TRSs are undecidable in general.

Proof:

Encode Turing machines using rewrite rules and reduce the (uniform) halting problems for TMs to the termination problems for TRSs.

Termination

Consequence:

Decidable criteria for termination are not complete.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules $I \rightarrow r \in R$, rather than at infinitely many possible replacement steps $s \rightarrow_R s'$.

A binary relation \Box over $\mathsf{T}_{\Sigma}(X)$ is called compatible with Σ -operations, if $s \Box s'$ implies $f(t_1, \ldots, s, \ldots, t_n) \Box f(t_1, \ldots, s', \ldots, t_n)$ for all $f/n \in \Omega$ and $s, s', t_i \in \mathsf{T}_{\Sigma}(X)$.

Lemma:

The relation \Box is compatible with Σ -operations, if and only if $s \sqsupseteq s'$ implies $t[s]_p \sqsupset t[s']_p$ for all $s, s', t \in T_{\Sigma}(X)$ and $p \in Pos(t)$.

(compatible with Σ -operations = compatible with Σ -contexts)

Reduction Orderings

A binary relation \Box over $T_{\Sigma}(X)$ is called stable under substitutions, if $s \Box s'$ implies $s\sigma \Box s'\sigma$ for all $s, s' \in T_{\Sigma}(X)$ and substitutions σ .

Reduction Orderings

A binary relation \Box is called a rewrite relation, if it is compatible with Σ -operations and stable under substitutions.

Example: If R is a TRS, then \rightarrow_R is a rewrite relation.

A strict partial ordering over $T_{\Sigma}(X)$ that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem:

A TRS *R* terminates if and only if there exists a reduction ordering > such that l > r for every rule $l \rightarrow r \in R$.

Proof:

"if": $s \to_R s'$ if and only if $s = t[I\sigma]_p$, $s' = t[r\sigma]_p$. Now I > rimplies $I\sigma > r\sigma$ and therefore $t[I\sigma]_p > t[r\sigma]_p$. So $\to_R \subseteq >$. Since > is a well-founded ordering, \to_R is terminating.

"only if": Define $> = \rightarrow_R^+$. If \rightarrow_R is terminating, then > is a reduction ordering.

The Interpretation Method

Proving termination by interpretation:

Let \mathcal{A} be a Σ -algebra;

let > be a well-founded strict partial ordering on its universe.

Define the ordering $>_{\mathcal{A}}$ over $\mathsf{T}_{\Sigma}(X)$ by $s >_{\mathcal{A}} t$ iff $\mathcal{A}(\alpha)(s) > \mathcal{A}(\alpha)(t)$ for all assignments $\alpha : X \to U_{\mathcal{A}}$.

Is $>_{\mathcal{A}}$ a reduction ordering?

Lemma:

 $>_{\mathcal{A}}$ is stable under substitutions.

Proof:

Let $s >_{\mathcal{A}} s'$, that is, $\mathcal{A}(\alpha)(s) > \mathcal{A}(\alpha)(s')$ for all assignments $\alpha : X \to U_{\mathcal{A}}$. Let σ be a substitution. We have to show that $\mathcal{A}(\beta)(s\sigma) > \mathcal{A}(\beta)(s'\sigma)$ for all assignments $\beta : X \to U_{\mathcal{A}}$. Define $\alpha(x) = \mathcal{A}(\beta)(x\sigma)$, then $\mathcal{A}(\alpha)(t) = \mathcal{A}(\beta)(t\sigma)$ for every $t \in \mathsf{T}_{\Sigma}(X)$. Thus $\mathcal{A}(\beta)(s\sigma) = \mathcal{A}(\alpha)(s) > \mathcal{A}(\alpha)(s') = \mathcal{A}(\beta)(s'\sigma)$. Therefore $s\sigma >_{\mathcal{A}} s'\sigma$.

The Interpretation Method

A function $F : U_{\mathcal{A}}^n \to U_{\mathcal{A}}$ is called monotone (w.r.t. >), if a > a' implies $F(b_1, \ldots, a, \ldots, b_n) > F(b_1, \ldots, a', \ldots, b_n)$ for all $a, a', b_i \in U_{\mathcal{A}}$. Lemma:

If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. >, then $>_{\mathcal{A}}$ is compatible with Σ -operations.

Proof:

Let s > s', that is, $\mathcal{A}(\alpha)(s) > \mathcal{A}(\alpha)(s')$ for all $\alpha : X \to U_{\mathcal{A}}$. Let $\alpha : X \to U_{\mathcal{A}}$ be an arbitrary assignment. Then $\mathcal{A}(\alpha)(f(t_1, \ldots, s, \ldots, t_n))$ $= f_{\mathcal{A}}(\mathcal{A}(\alpha)(t_1), \ldots, \mathcal{A}(\alpha)(s), \ldots, \mathcal{A}(\alpha)(t_n))$ $> f_{\mathcal{A}}(\mathcal{A}(\alpha)(t_1), \ldots, \mathcal{A}(\alpha)(s'), \ldots, \mathcal{A}(\alpha)(t_n))$ $= \mathcal{A}(\alpha)(f(t_1, \ldots, s', \ldots, t_n)).$ Therefore $f(t_1, \ldots, s, \ldots, t_n) >_{\mathcal{A}} f(t_1, \ldots, s', \ldots, t_n).$ Theorem:

If the interpretation f_A of every function symbol f is monotone w.r.t. >, then $>_A$ is a reduction ordering.

Proof:

By the previous two lemmas, $>_{\mathcal{A}}$ is a rewrite relation. If there were an infinite chain $s_1 >_{\mathcal{A}} s_2 >_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\alpha)(s_1) > \mathcal{A}(\alpha)(s_2) > \ldots$ (with α chosen arbitrarily).

Thus $>_{\mathcal{A}}$ is well-founded.

Irreflexivity and transitivity are proved similarly.

Polynomial orderings:

Instance of the interpretation method:

The carrier set U_A is some subset of the natural numbers.

To every *n*-ary function symbol *f* associate a polynomial $P_f(X_1, \ldots, X_n) \in \mathbb{N}[X_1, \ldots, X_n]$ with coefficients in \mathbb{N} and indeterminates X_1, \ldots, X_n . Then define $f_{\mathcal{A}}(a_1, \ldots, a_n) = P_f(a_1, \ldots, a_n)$ for $a_i \in U_{\mathcal{A}}$.

Requirement 1:

If $a_1, \ldots, a_n \in U_A$, then $f_A(a_1, \ldots, a_n) \in U_A$. (Otherwise, A would not be a Σ -algebra.)

The mapping from function symbols to polynomials can be extended to terms:

A term t containing the variables x_1, \ldots, x_n yields a polynomial P_t with indeterminates X_1, \ldots, X_n (where X_i corresponds to $\alpha(x_i)$).

Example:

$$\begin{split} \Omega &= \{a/0, f/1, g/3\}, \\ U_{\mathcal{A}} &= \{n \in \mathbb{N} \mid n \geq 1\}, \\ P_{a} &= 3, \quad P_{f}(X_{1}) = X_{1}^{2}, \quad P_{g}(X_{1}, X_{2}, X_{3}) = X_{1} + X_{2}X_{3}. \\ \text{Let } t &= g(f(a), f(x), y), \text{ then } P_{t}(X, Y) = 9 + X^{2}Y. \end{split}$$

Requirement 2:

 f_A must be monotone (w.r.t. >).

From now on:

 $U_{\mathcal{A}} = \{ n \in \mathbb{N} \mid n \geq 2 \}.$

If $f/0 \in \Omega$, then P_f is a constant ≥ 2 .

If $f/n \in \Omega$ with $n \ge 1$, then P_f is a polynomial $P(X_1, \ldots, X_n)$, such that every X_i occurs in some monomial with exponent at least 1 and non-zero coefficient.

 \Rightarrow Requirements 1 and 2 are satisfied.

If P, Q are polynomials in $\mathbb{N}[X_1, \ldots, X_n]$, we write P > Qif $P(a_1, \ldots, a_n) > Q(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in U_A$.

Clearly, $l >_{\mathcal{A}} r$ iff $P_l > P_r$.

Question: Can we check $P_l > P_r$ automatically?

Hilbert's 10th Problem:

Given a polynomial $P \in \mathbb{Z}[X_1, \ldots, X_n]$ with integer coefficients, is P = 0 for some *n*-tuple of natural numbers?

Theorem:

Hilbert's 10th Problem is undecidable.

Proposition:

Given a polynomial interpretation and two terms I, r, it is undecidable whether $P_I > P_r$.

Proof:

By reduction of Hilbert's 10th Problem.

One possible solution:

Test whether $P_l(a_1, \ldots, a_n) > P_r(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in \{x \in \mathbb{R} \mid x \ge 2\}$.

This is decidable (but very slow). Since $U_A \subseteq \{x \in \mathbb{R} \mid x \ge 2\}$, it implies $P_I > P_r$.

Another solution (Ben Cherifa and Lescanne):

Consider the difference $P_l(X_1, \ldots, X_n) - P_r(X_1, \ldots, X_n)$ as a polynomial with real coefficients and apply the following inference system to it to show that it is positive for all $a_1, \ldots, a_n \in U_A$:

 $P \Rightarrow_{BCL} \top$,

if *P* contains at least one monomial with a positive coefficient and no monomial with a negative coefficient.

$$P + c X_1^{p_1} \cdots X_n^{p_n} - d X_1^{q_1} \cdots X_n^{q_n} \Rightarrow_{BCL} P + c' X_1^{p_1} \cdots X_n^{p_n},$$

if $c, d > 0, p_i \ge q_i$ for all $i,$
and $c' = c - d \cdot 2^{(q_1 - p_1) + \dots + (q_n - p_n)} \ge 0.$
$$P + c X_1^{p_1} \cdots X_n^{p_n} - d X_1^{q_1} \cdots X_n^{q_n} \Rightarrow_{BCL} P - d' X_1^{q_1} \cdots X_n^{q_n},$$

if $c, d > 0, p_i \ge q_i$ for all $i,$
and $d' = d - c \cdot 2^{(p_1 - q_1) + \dots + (p_n - q_n)} > 0.$

Lemma:

If
$$P \Rightarrow_{BCL} P'$$
, then $P(a_1, \ldots, a_n) \ge P'(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in U_A$.

Proof:

Follows from the fact that $a_i \in U_A$ implies $a_i \ge 2$.

Proposition:

If
$$P \Rightarrow_{BCL}^+ op$$
, then $P(a_1, \ldots, a_n) > 0$ for all $a_1, \ldots, a_n \in U_A$.