
5 Termination

1



Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions

starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition:

Both termination problems for TRSs are undecidable in general.

Proof:

Encode Turing machines using rewrite rules and reduce the

(uniform) halting problems for TMs to the termination problems

for TRSs.
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Termination

Consequence:

Decidable criteria for termination are not complete.
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Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at

finitely many rules l → r ∈ R, rather than at infinitely many

possible replacement steps s →R s′.
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Reduction Orderings

A binary relation A over TΣ(X ) is called

compatible with Σ-operations,

if s A s′ implies f (t1, . . . , s , . . . , tn) A f (t1, . . . , s
′, . . . , tn)

for all f /n ∈ Ω and s, s′, ti ∈ TΣ(X ).

Lemma:

The relation A is compatible with Σ-operations, if and only if

s A s′ implies t[s]p A t[s′]p
for all s, s′, t ∈ TΣ(X ) and p ∈ Pos(t).

(compatible with Σ-operations = compatible with Σ-contexts)
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Reduction Orderings

A binary relation A over TΣ(X ) is called stable under

substitutions, if s A s′ implies sσ A s′σ
for all s, s′ ∈ TΣ(X ) and substitutions σ.
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Reduction Orderings

A binary relation A is called a rewrite relation, if it is compatible

with Σ-operations and stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X ) that is a rewrite relation is

called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.
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Reduction Orderings

Theorem:

A TRS R terminates if and only if there exists a reduction

ordering > such that l > r for every rule l → r ∈ R.

Proof:

“if”: s →R s′ if and only if s = t[lσ]p, s′ = t[rσ]p. Now l > r

implies lσ > rσ and therefore t[lσ]p > t[rσ]p. So →R ⊆ >.

Since > is a well-founded ordering, →R is terminating.

“only if”: Define > = →+
R . If →R is terminating, then > is a

reduction ordering.
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The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra;

let > be a well-founded strict partial ordering on its universe.

Define the ordering >A over TΣ(X ) by s >A t iff

A(α)(s) > A(α)(t) for all assignments α : X → UA.

Is >A a reduction ordering?
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The Interpretation Method

Lemma:

>A is stable under substitutions.

Proof:

Let s >A s′, that is,

A(α)(s) > A(α)(s′) for all assignments α : X → UA.

Let σ be a substitution. We have to show that

A(β)(sσ) > A(β)(s′σ) for all assignments β : X → UA.

Define α(x) = A(β)(xσ),

then A(α)(t) = A(β)(tσ) for every t ∈ TΣ(X ).

Thus A(β)(sσ) = A(α)(s) > A(α)(s′) = A(β)(s′σ).

Therefore sσ >A s′σ.
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The Interpretation Method

A function F : Un
A → UA is called monotone (w.r.t. >),

if a > a′ implies

F (b1, . . . , a, . . . , bn) > F (b1, . . . , a
′, . . . , bn)

for all a, a′, bi ∈ UA.
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The Interpretation Method

Lemma:

If the interpretation fA of every function symbol f is monotone

w.r.t. >, then >A is compatible with Σ-operations.

Proof:

Let s > s′, that is, A(α)(s) > A(α)(s′) for all α : X → UA.

Let α : X → UA be an arbitrary assignment.

Then A(α)(f (t1, . . . , s, . . . , tn))

= fA(A(α)(t1), . . . ,A(α)(s), . . . ,A(α)(tn))

> fA(A(α)(t1), . . . ,A(α)(s′), . . . ,A(α)(tn))

= A(α)(f (t1, . . . , s
′, . . . , tn)).

Therefore f (t1, . . . , s, . . . , tn) >A f (t1, . . . , s
′, . . . , tn).
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The Interpretation Method

Theorem:

If the interpretation fA of every function symbol f is monotone

w.r.t. >, then >A is a reduction ordering.

Proof:

By the previous two lemmas, >A is a rewrite relation.

If there were an infinite chain s1 >A s2 >A . . . , then it would

correspond to an infinite chain A(α)(s1) > A(α)(s2) > . . .

(with α chosen arbitrarily).

Thus >A is well-founded.

Irreflexivity and transitivity are proved similarly.
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Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is some subset of the natural numbers.

To every n-ary function symbol f associate a

polynomial Pf (X1, . . . ,Xn) ∈ N[X1, . . . ,Xn]

with coefficients in N and indeterminates X1, . . . ,Xn.

Then define fA(a1, . . . , an) = Pf (a1, . . . , an) for ai ∈ UA.
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Polynomial Orderings

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA.

(Otherwise, A would not be a Σ-algebra.)
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Polynomial Orderings

The mapping from function symbols to polynomials can be

extended to terms:

A term t containing the variables x1, . . . , xn

yields a polynomial Pt with indeterminates X1, . . . ,Xn

(where Xi corresponds to α(xi )).

Example:

Ω = {a/0, f /1, g/3},
UA = { n ∈ N | n ≥ 1 },
Pa = 3, Pf (X1) = X 2

1 , Pg (X1,X2,X3) = X1 + X2X3.

Let t = g(f (a), f (x), y), then Pt(X ,Y ) = 9 + X 2Y .
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Polynomial Orderings

Requirement 2:

fA must be monotone (w.r.t. >).

From now on:

UA = { n ∈ N | n ≥ 2 }.
If f /0 ∈ Ω, then Pf is a constant ≥ 2.

If f /n ∈ Ω with n ≥ 1, then Pf is a polynomial P(X1, . . . ,Xn),

such that every Xi occurs in some monomial with exponent

at least 1 and non-zero coefficient.

⇒ Requirements 1 and 2 are satisfied.
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Polynomial Orderings

If P,Q are polynomials in N[X1, . . . ,Xn], we write P > Q

if P(a1, . . . , an) > Q(a1, . . . , an) for all a1, . . . , an ∈ UA.

Clearly, l >A r iff Pl > Pr .

Question: Can we check Pl > Pr automatically?
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Polynomial Orderings

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . ,Xn] with integer

coefficients, is P = 0 for some n-tuple of natural numbers?

Theorem:

Hilbert’s 10th Problem is undecidable.

Proposition:

Given a polynomial interpretation and two terms l , r , it is

undecidable whether Pl > Pr .

Proof:

By reduction of Hilbert’s 10th Problem.
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Polynomial Orderings

One possible solution:

Test whether Pl(a1, . . . , an) > Pr (a1, . . . , an)

for all a1, . . . , an ∈ { x ∈ R | x ≥ 2 }.
This is decidable (but very slow).

Since UA ⊆ { x ∈ R | x ≥ 2 }, it implies Pl > Pr .
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Polynomial Orderings

Another solution (Ben Cherifa and Lescanne):

Consider the difference Pl (X1, . . . ,Xn) − Pr (X1, . . . ,Xn) as

a polynomial with real coefficients and apply the following

inference system to it to show that it is positive for all

a1, . . . , an ∈ UA:
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Polynomial Orderings

P ⇒BCL >,

if P contains at least one monomial with a positive coefficient

and no monomial with a negative coefficient.

P + c X p1

1 · · ·X pn
n − d X q1

1 · · ·X qn
n ⇒BCL P + c ′ X p1

1 . . . X pn
n ,

if c , d > 0, pi ≥ qi for all i ,

and c ′ = c − d · 2(q1−p1)+···+(qn−pn) ≥ 0.

P + c X p1

1 · · ·X pn
n − d X q1

1 · · ·X qn
n ⇒BCL P − d ′ X q1

1 . . . X qn
n ,

if c , d > 0, pi ≥ qi for all i ,

and d ′ = d − c · 2(p1−q1)+···+(pn−qn) > 0.
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Polynomial Orderings

Lemma:

If P ⇒BCL P ′, then P(a1, . . . , an) ≥ P ′(a1, . . . , an) for all

a1, . . . , an ∈ UA.

Proof:

Follows from the fact that ai ∈ UA implies ai ≥ 2.

Proposition:

If P ⇒+
BCL >, then P(a1, . . . , an) > 0 for all a1, . . . , an ∈ UA.
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