Simplification Orderings

The proper subterm ordering > is defined by s > t if and only if
s/p = t for some position p # € of s.



Simplification Orderings

A rewrite ordering > over Ty (X) is called simplification ordering,
if it has the subterm property:

s> t implies s > t for all s,t € Tx(X).

Example:

Let Rempb be the rewrite system
Remb ={f(x1,....Xn) = x; | F/neQ, n>11<i<n}.

: . + L *
Deflne [>emb — _>Remb and [Zemb — HRemb

(“homeomorphic embedding relation™).

>emb IS @ simplification ordering.



Simplification Orderings

Lemma:
If > is a simplification ordering, then s >¢mp t implies s > t and

S Demb t Implies s > t.

Proof:
Since > is transitive and > is transitive and reflexive, it suffices

to show that s —g . t implies s > t.

By definition, s —g_, t if and only if s = s[lo] and t = s[ro]
for some rule [ — r € Remp.

Obviously, / > r for all rules in Remp, hence [ > r.

Since > is a rewrite relation, s = s[lg] > s[ro] = t.



Simplification Orderings

Goal:

Show that every simplification ordering is well-founded (and
therefore a reduction ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification
orderings and the definition of embedding have to be modified.



Kruskal’s Theorem

A (usually not strict) partial ordering > on a set A is called
well-partial-ordering (wpo), if for every infinite sequence
ai, az, as, ... there are indices / < j such that a; < a;.

Terminology:

An infinite sequence ay, a, as, ... Is called good, if there exist
I < J such that a; < a;; otherwise it is called bad.

Therefore: > is a wpo iff every infinite sequence is good.



Kruskal’s Theorem

Lemma:

If > is a wpo, then every infinite sequence aj, as, a3, ... has
an infinite ascending subsequence a;, < a;, < a; <X ..., where
H<bh<i<....

Proof:

Let a;, a», a3,... be an infinite sequence. We call an index

m > 1 terminal, if there is no n > m such that a,, < a,.

There are only finitely many terminal indices my, my, ms, .. .;
otherwise the sequence an,,, am,, am,, ... would be bad.
Choose p > 1 such that all m > p are not terminal; define
ip = p; define recursively /j;1 such that /j;1 > /; and a;,, = a;.



Kruskal’s Theorem

Lemma:
If =q1,..., ~n are wpo's on Aq, ..., A,, then > defined by
(a1, ..., an) = (a1, ..., ar) iff a; =; a’ for all i

IS a wpoon A; X --- X A,.

Proof:
The case n =1 is trivial.
Otherwise let (agl) ..... af,l)), (agz) ..... a,(,2)), ... be an infinite

sequence. By the previous lemma, there are infinitely many
indices i < iy < i3 < ... such that gl) < gl2) < ) o

By induction on n, there are k < / such that ali") = agi’) AR
a,(,'ﬁ)l = a(")l. Therefore (al"‘) ..... af,"‘)) < (ag") ..... af,")).

n_



Kruskal’'s Theorem

Theorem (“Kruskal's Theorem”):

Let > be a finite signature, let X be a finite set of variables.
Then >emp is @ wpo on Tx(X).

Proof:
Baader and Nipkow, page 114/115.



Simplification Orderings

Theorem (Dershowitz):
If 2 is a finite signature, then every simplification ordering > on
Tx(X) is well-founded (and therefore a reduction ordering).

Proof:
Suppose that t; > t, > t3 > ... is an infinite decreasing chain.

First assume that there is an x € Var(t;11) \ Var(t;).
Let 0 = {x — t;}, then tiy;0 > xo = t; and therefore
ti = tio > tiy 10 > t;, contradicting reflexivity.

Consequently, Var(t;) D Var(ti1) and t; € Tg(V) for all i,
where V is the finite set Var(t;). By Kruskal's Theorem, there
are | < J with t; <emp tj. Hence t; < t;, contradicting t; > t;.



Simplification Orderings

There are reduction orderings that are not simplification
orderings and terminating TRSs that are not contained in any

simplification ordering.

Example:

Let R = {f(f(x)) — f(g(f(x)))}.

R terminates and —>;§ Is therefore a reduction ordering.

Assume that —r were contained in a simplification ordering .

Then f(f(x)) —r f(g(f(x))) implies £(f(x)) = f(g(f(x))).
and f(g(f(x))) Bemb f(f(x)) implies f(g(f(x))) = f(f(x)),
hence f(f(x)) = f(f(x)).
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Recursive Path Orderings

Let > = (€2, 1) be a finite signature, let > be a strict partial
ordering ( “precedence”) on Q.

The lexicographic path ordering >|,, on Tx(X) induced by > is
defined by: s >, t iff

(1) t € Var(s) and t # s, or

(a) si >ipo t for some i, or
(b) f > g and s >, t; for all j, or

(c) f =g, 5 >po tj for all j, and
(51 ..... Sm) (>Ipo)|ex (tl ..... t,,).
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Recursive Path Orderings

Lemma:
S >po t implies Var(s) D Var(t).

Proof:
By induction on |s| 4 |t| and case analysis.
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Recursive Path Orderings

Theorem:

>|p0 IS @ simplification ordering on Tx(X).

Proof:

Show transitivity, subterm property, stability under substitutions,
compatibility with X -operations, and irreflexivity, usually by
induction on the sum of the term sizes and case analysis.
Details: Baader and Nipkow, page 119/120.
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Recursive Path Orderings

Theorem:

If the precedence > is total, then the lexicographic path ordering
>0 IS total on ground terms, i.e., for all s, t € Tx(0):
S >lpo tVE>pe SVS=TL.

Proof:

By induction on |s| 4 |t| and case analysis.
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