Simplification Orderings

The proper subterm ordering \triangleright is defined by $s \triangleright t$ if and only if s/p = t for some position $p \neq \varepsilon$ of s.

A rewrite ordering > over $T_{\Sigma}(X)$ is called simplification ordering, if it has the subterm property:

 $s \succ t$ implies s > t for all $s, t \in \mathsf{T}_{\Sigma}(X)$.

Example:

Let R_{emb} be the rewrite system $R_{emb} = \{ f(x_1, ..., x_n) \rightarrow x_i \mid f/n \in \Omega, n \ge 1, 1 \le i \le n \}.$ Define $\triangleright_{emb} = \rightarrow^+_{R_{emb}}$ and $\succeq_{emb} = \rightarrow^*_{R_{emb}}$ ("homeomorphic embedding relation").

 \triangleright_{emb} is a simplification ordering.

Lemma:

If > is a simplification ordering, then $s \triangleright_{emb} t$ implies s > t and $s \succeq_{emb} t$ implies $s \ge t$.

Proof:

Since > is transitive and \geq is transitive and reflexive, it suffices to show that $s \rightarrow_{R_{emb}} t$ implies s > t. By definition, $s \rightarrow_{R_{emb}} t$ if and only if $s = s[l\sigma]$ and $t = s[r\sigma]$ for some rule $l \rightarrow r \in R_{emb}$. Obviously, $l \triangleright r$ for all rules in R_{emb} , hence l > r. Since > is a rewrite relation, $s = s[l\sigma] > s[r\sigma] = t$.

Simplification Orderings

Goal:

- Show that every simplification ordering is well-founded (and therefore a reduction ordering).
- Note: This works only for finite signatures!
- To fix this for infinite signatures, the definition of simplification orderings and the definition of embedding have to be modified.

A (usually not strict) partial ordering \succeq on a set A is called well-partial-ordering (wpo), if for every infinite sequence a_1, a_2, a_3, \ldots there are indices i < j such that $a_i \leq a_j$.

Terminology:

An infinite sequence a_1, a_2, a_3, \ldots is called good, if there exist i < j such that $a_i \preceq a_j$; otherwise it is called bad.

Therefore: \succeq is a wpo iff every infinite sequence is good.

Lemma:

If \succeq is a wpo, then every infinite sequence a_1, a_2, a_3, \ldots has an infinite ascending subsequence $a_{i_1} \preceq a_{i_2} \preceq a_{i_3} \preceq \ldots$, where $i_1 < i_2 < i_3 < \ldots$.

Proof:

Let a_1, a_2, a_3, \ldots be an infinite sequence. We call an index $m \ge 1$ terminal, if there is no n > m such that $a_m \preceq a_n$. There are only finitely many terminal indices m_1, m_2, m_3, \ldots ; otherwise the sequence $a_{m_1}, a_{m_2}, a_{m_3}, \ldots$ would be bad. Choose p > 1 such that all $m \ge p$ are not terminal; define $i_1 = p$; define recursively i_{j+1} such that $i_{j+1} > i_j$ and $a_{i_{j+1}} \succeq a_{i_j}$.

Lemma:

If $\succeq_1, \ldots, \succeq_n$ are wpo's on A_1, \ldots, A_n , then \succeq defined by $(a_1, \ldots, a_n) \succeq (a'_1, \ldots, a'_n)$ iff $a_i \succeq_i a'_i$ for all iis a wpo on $A_1 \times \cdots \times A_n$.

Proof:

The case n = 1 is trivial. Otherwise let $(a_1^{(1)}, \ldots, a_n^{(1)}), (a_1^{(2)}, \ldots, a_n^{(2)}), \ldots$ be an infinite sequence. By the previous lemma, there are infinitely many indices $i_1 < i_2 < i_3 < \ldots$ such that $a_n^{(i_1)} \preceq a_n^{(i_2)} \preceq a_n^{(i_3)} \preceq \ldots$. By induction on n, there are k < l such that $a_1^{(i_k)} \preceq a_1^{(i_l)} \land \cdots \land a_{n-1}^{(i_k)} \preceq a_{n-1}^{(i_l)}$.

Theorem ("Kruskal's Theorem"):

Let Σ be a finite signature, let X be a finite set of variables. Then \geq_{emb} is a wpo on $T_{\Sigma}(X)$.

Proof: Baader and Nipkow, page 114/115. Theorem (Dershowitz):

If Σ is a finite signature, then every simplification ordering > on $T_{\Sigma}(X)$ is well-founded (and therefore a reduction ordering).

Proof:

Suppose that $t_1 > t_2 > t_3 > \ldots$ is an infinite decreasing chain.

First assume that there is an $x \in Var(t_{i+1}) \setminus Var(t_i)$. Let $\sigma = \{x \mapsto t_i\}$, then $t_{i+1}\sigma \supseteq x\sigma = t_i$ and therefore $t_i = t_i\sigma > t_{i+1}\sigma \ge t_i$, contradicting reflexivity.

Consequently, $Var(t_i) \supseteq Var(t_{i+1})$ and $t_i \in T_{\Sigma}(V)$ for all i, where V is the finite set $Var(t_1)$. By Kruskal's Theorem, there are i < j with $t_i \leq_{emb} t_j$. Hence $t_i \leq t_j$, contradicting $t_i > t_j$. There are reduction orderings that are not simplification orderings and terminating TRSs that are not contained in any simplification ordering.

Example:

Let
$$R = \{f(f(x)) \rightarrow f(g(f(x)))\}.$$

R terminates and \rightarrow_R^+ is therefore a reduction ordering.

Assume that \rightarrow_R were contained in a simplification ordering \succ . Then $f(f(x)) \rightarrow_R f(g(f(x)))$ implies $f(f(x)) \succ f(g(f(x)))$, and $f(g(f(x))) \succeq_{emb} f(f(x))$ implies $f(g(f(x))) \succeq f(f(x))$, hence $f(f(x)) \succ f(f(x))$. Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let > be a strict partial ordering ("precedence") on Ω .

The lexicographic path ordering $>_{Ipo}$ on $T_{\Sigma}(X)$ induced by > is defined by: $s >_{Ipo} t$ iff

(1)
$$t \in Var(s)$$
 and $t \neq s$, or
(2) $s = f(s_1, \ldots, s_m)$, $t = g(t_1, \ldots, t_n)$, and
(a) $s_i \ge_{lpo} t$ for some i , or
(b) $f > g$ and $s >_{lpo} t_j$ for all j , or
(c) $f = g$, $s >_{lpo} t_j$ for all j , and
 $(s_1, \ldots, s_m) (>_{lpo})_{lex} (t_1, \ldots, t_n)$.

Recursive Path Orderings

Lemma:

 $s >_{\mathsf{lpo}} t \text{ implies } \mathsf{Var}(s) \supseteq \mathsf{Var}(t).$

Proof:

By induction on |s| + |t| and case analysis.

Recursive Path Orderings

Theorem:

```
>_{\text{lpo}} is a simplification ordering on \mathsf{T}_{\Sigma}(X).
```

Proof:

Show transitivity, subterm property, stability under substitutions, compatibility with Σ -operations, and irreflexivity, usually by induction on the sum of the term sizes and case analysis. Details: Baader and Nipkow, page 119/120.

Recursive Path Orderings

Theorem:

If the precedence > is total, then the lexicographic path ordering $>_{\text{lpo}}$ is total on ground terms, i.e., for all $s, t \in T_{\Sigma}(\emptyset)$: $s >_{\text{lpo}} t \lor t >_{\text{lpo}} s \lor s = t$.

Proof:

By induction on |s| + |t| and case analysis.