
Simplification Orderings

The proper subterm ordering B is defined by s B t if and only if

s/p = t for some position p 6= ε of s.
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Simplification Orderings

A rewrite ordering > over TΣ(X ) is called simplification ordering,

if it has the subterm property:

s B t implies s > t for all s, t ∈ TΣ(X ).

Example:

Let Remb be the rewrite system

Remb = { f (x1, . . . , xn) → xi | f /n ∈ Ω, n ≥ 1, 1 ≤ i ≤ n }.
Define Bemb = →+

Remb
and Demb = →∗

Remb

(“homeomorphic embedding relation”).

Bemb is a simplification ordering.
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Simplification Orderings

Lemma:

If > is a simplification ordering, then s Bemb t implies s > t and

s Demb t implies s ≥ t.

Proof:

Since > is transitive and ≥ is transitive and reflexive, it suffices

to show that s →Remb
t implies s > t.

By definition, s →Remb
t if and only if s = s[lσ] and t = s[rσ]

for some rule l → r ∈ Remb.

Obviously, l B r for all rules in Remb, hence l > r .

Since > is a rewrite relation, s = s[lσ] > s[rσ] = t.
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Simplification Orderings

Goal:

Show that every simplification ordering is well-founded (and

therefore a reduction ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification

orderings and the definition of embedding have to be modified.
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Kruskal’s Theorem

A (usually not strict) partial ordering � on a set A is called

well-partial-ordering (wpo), if for every infinite sequence

a1, a2, a3, . . . there are indices i < j such that ai � aj .

Terminology:

An infinite sequence a1, a2, a3, . . . is called good, if there exist

i < j such that ai � aj ; otherwise it is called bad.

Therefore: � is a wpo iff every infinite sequence is good.
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Kruskal’s Theorem

Lemma:

If � is a wpo, then every infinite sequence a1, a2, a3, . . . has

an infinite ascending subsequence ai1 � ai2 � ai3 � . . . , where

i1 < i2 < i3 < . . . .

Proof:

Let a1, a2, a3, . . . be an infinite sequence. We call an index

m ≥ 1 terminal, if there is no n > m such that am � an.

There are only finitely many terminal indices m1,m2,m3, . . . ;

otherwise the sequence am1 , am2 , am3 , . . . would be bad.

Choose p > 1 such that all m ≥ p are not terminal; define

i1 = p; define recursively ij+1 such that ij+1 > ij and aij+1 � aij .
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Kruskal’s Theorem

Lemma:

If �1, . . . ,�n are wpo’s on A1, . . . ,An, then � defined by

(a1, . . . , an) � (a′
1, . . . , a

′
n) iff ai �i a′

i for all i

is a wpo on A1 × · · · × An.

Proof:

The case n = 1 is trivial.

Otherwise let (a
(1)
1 , . . . , a

(1)
n ), (a

(2)
1 , . . . , a

(2)
n ), . . . be an infinite

sequence. By the previous lemma, there are infinitely many

indices i1 < i2 < i3 < . . . such that a
(i1)
n � a

(i2)
n � a

(i3)
n � . . . .

By induction on n, there are k < l such that a
(ik )
1 � a

(il )
1 ∧ · · · ∧

a
(ik )
n−1 � a

(il )
n−1. Therefore (a

(ik )
1 , . . . , a

(ik )
n ) � (a

(il )
1 , . . . , a

(il )
n ).
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Kruskal’s Theorem

Theorem (“Kruskal’s Theorem”):

Let Σ be a finite signature, let X be a finite set of variables.

Then Demb is a wpo on TΣ(X ).

Proof:

Baader and Nipkow, page 114/115.
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Simplification Orderings

Theorem (Dershowitz):

If Σ is a finite signature, then every simplification ordering > on

TΣ(X ) is well-founded (and therefore a reduction ordering).

Proof:

Suppose that t1 > t2 > t3 > . . . is an infinite decreasing chain.

First assume that there is an x ∈ Var(ti+1) \ Var(ti ).

Let σ = {x 7→ ti}, then ti+1σ D xσ = ti and therefore

ti = tiσ > ti+1σ ≥ ti , contradicting reflexivity.

Consequently, Var(ti ) ⊇ Var(ti+1) and ti ∈ TΣ(V ) for all i ,

where V is the finite set Var(t1). By Kruskal’s Theorem, there

are i < j with ti Eemb tj . Hence ti ≤ tj , contradicting ti > tj .
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Simplification Orderings

There are reduction orderings that are not simplification

orderings and terminating TRSs that are not contained in any

simplification ordering.

Example:

Let R = {f (f (x)) → f (g(f (x)))}.
R terminates and →+

R is therefore a reduction ordering.

Assume that →R were contained in a simplification ordering �.

Then f (f (x)) →R f (g(f (x))) implies f (f (x)) � f (g(f (x))),

and f (g(f (x))) Demb f (f (x)) implies f (g(f (x))) � f (f (x)),

hence f (f (x)) � f (f (x)).
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Recursive Path Orderings

Let Σ = (Ω,Π) be a finite signature, let > be a strict partial

ordering (“precedence”) on Ω.

The lexicographic path ordering >lpo on TΣ(X ) induced by > is

defined by: s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si ≥lpo t for some i , or

(b) f > g and s >lpo tj for all j , or

(c) f = g , s >lpo tj for all j , and

(s1, . . . , sm) (>lpo)lex (t1, . . . , tn).
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Recursive Path Orderings

Lemma:

s >lpo t implies Var(s) ⊇ Var(t).

Proof:

By induction on |s|+ |t| and case analysis.

12



Recursive Path Orderings

Theorem:

>lpo is a simplification ordering on TΣ(X ).

Proof:

Show transitivity, subterm property, stability under substitutions,

compatibility with Σ-operations, and irreflexivity, usually by

induction on the sum of the term sizes and case analysis.

Details: Baader and Nipkow, page 119/120.
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Recursive Path Orderings

Theorem:

If the precedence > is total, then the lexicographic path ordering

>lpo is total on ground terms, i. e., for all s, t ∈ TΣ(∅):
s >lpo t ∨ t >lpo s ∨ s = t.

Proof:

By induction on |s|+ |t| and case analysis.
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