Recursive Path Orderings

Recapitulation:

Let $\Sigma = (\Omega, \Pi)$ be a finite signature, let > be a strict partial ordering ("precedence") on Ω . The lexicographic path ordering >_{lpo} on $T_{\Sigma}(X)$ induced by > is defined by: $s >_{lpo} t$ iff

(1)
$$t \in Var(s)$$
 and $t \neq s$, or
(2) $s = f(s_1, ..., s_m)$, $t = g(t_1, ..., t_n)$, and
(a) $s_i \ge_{lpo} t$ for some *i*, or
(b) $f > g$ and $s >_{lpo} t_j$ for all *j*, or
(c) $f = g$, $s >_{lpo} t_j$ for all *j*, and
 $(s_1, ..., s_m) (>_{lpo})_{lex} (t_1, ..., t_n)$.

There are several possibilities to compare subterms in (2)(c):

- compare list of subterms lexicographically left-to-right ("lexicographic path ordering (lpo)", Kamin and Lévy)
- compare list of subterms lexicographically right-to-left (or according to some permutation π)
- compare multiset of subterms using the multiset extension ("multiset path ordering (mpo)", Dershowitz)

to each function symbol f/n associate a status $\in \{mul\} \cup \{lex_{\pi} \mid \pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}\}$ and compare according to that status ("recursive path ordering (rpo) with status") Let $\Sigma = (\Omega, \Pi)$ be a finite signature,

let > be a strict partial ordering ("precedence") on Ω , let $w : \Omega \cup X \to \mathbb{R}_0^+$ be a weight function, such that the following admissibility conditions are satisfied:

$$w(x) = w_0 \in \mathbb{R}^+$$
 for all variables $x \in X$;
 $w(c) \ge w_0$ for all constants $c/0 \in \Omega$.
If $w(f) = 0$ for some $f/1 \in \Omega$, then $f \ge g$ for all $g \in \Omega$.

w can be extended to terms as follows:

$$w(t) = \sum_{x \in Var(t)} w(x) \cdot \#(x, t) + \sum_{f \in \Omega} w(f) \cdot \#(f, t).$$

The Knuth-Bendix Ordering

The Knuth-Bendix ordering $>_{kbo}$ on $T_{\Sigma}(X)$ induced by > and w is defined by: $s >_{kbo} t$ iff

(1)
$$\#(x,s) \ge \#(x,t)$$
 for all variables x and $w(s) > w(t)$, or
(2) $\#(x,s) \ge \#(x,t)$ for all variables x, $w(s) = w(t)$, and
(a) $t = x, s = f^n(x)$ for some $n \ge 1$, or
(b) $s = f(s_1, ..., s_m), t = g(t_1, ..., t_n)$, and $f > g$, or
(c) $s = f(s_1, ..., s_m), t = f(t_1, ..., t_m)$, and
 $(s_1, ..., s_m) (>_{kbo})_{lex} (t_1, ..., t_m)$.

The Knuth-Bendix Ordering

Theorem:

The Knuth-Bendix ordering induced by > and w is a simplification ordering on $T_{\Sigma}(X)$.

Proof: Baader and Nipkow, pages 125–129.

Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.

How to ensure termination?

Fix a reduction ordering > and construct R in such a way that $\rightarrow_R \subseteq$ > (i.e., l > r for every $l \rightarrow r \in R$).

How to ensure confluence?

Check that all critical pairs are joinable.

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R: $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$

At the beginning, $E = E_0$ is the input set and $R = R_0$ is empty. At the end, *E* should be empty; then *R* is the result.

For each step $E, R \vdash E', R'$, the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Notations:

The formula $s \approx t$ denotes either $s \approx t$ or $t \approx s$.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

$$\frac{E \cup \{s \stackrel{.}{\approx} t\}, R}{E, R \cup \{s \rightarrow t\}} \quad \text{if } s > t$$

Note: There are equations $s \approx t$ that cannot be oriented, i.e., neither s > t nor t > s.

Trivial equations cannot be oriented – but we don't need them anyway:

Delete:

$$\frac{E \cup \{s \approx s\}, R}{E, R}$$

Critical pairs between rules in R are turned into additional equations:

Deduce:

$$\frac{E, R}{E \cup \{s \approx t\}, R} \quad \text{if } \langle s, t \rangle \in \mathsf{CP}(R).$$

Note: If $\langle s, t \rangle \in R$ then $s \leftarrow_R u \rightarrow_R t$ and hence $R \models s \approx t$.

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$\frac{E \cup \{s \approx t\}, R}{E \cup \{u \approx t\}, R} \quad \text{if } s \to_R u.$$

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule: $\frac{E, R \cup \{s \to t\}}{E, R \cup \{s \to u\}} \quad \text{if } t \to_R u.$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an *equation*:

L-Simplify-Rule:

 $\begin{array}{ll} \displaystyle \underbrace{E, \quad R \cup \{s \to t\}} \\ \displaystyle E \cup \{u \approx t\}, \quad R \end{array} & \mbox{if } s \to_R u \ \mbox{using a rule } I \to r \in R \\ \displaystyle \mbox{such that } s \sqsupset I \ \mbox{(see next slide)}. \end{array}$

For technical reasons, the lhs of $s \to t$ may only be simplified using a rule $I \to r$, if $I \to r$ cannot be simplified using $s \to t$, that is, if $s \sqsupset I$, where the encompassment quasi-ordering \sqsupset is defined by

$$s \supseteq I$$
 if $s/p = I\sigma$ for some p and σ

and $\Box = \bigcup_{\sim} \setminus \bigcup_{\sim}$ is the strict part of \bigcup_{\sim} .

Lemma:

 \square is a well-founded strict partial ordering.

Lemma:

If $E, R \vdash E', R'$, then $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Lemma:

If $E, R \vdash E', R' \text{ and } \rightarrow_R \subseteq >$, then $\rightarrow_{R'} \subseteq >$.

If we run the completion procedure on a set E of equations, different things can happen:

(1) We reach a state where no more inference rules are applicable and *E* is not empty. \Rightarrow Failure (try again with another ordering?)

- (2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
- (3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) E_0 , $R_0 \vdash E_1$, $R_1 \vdash E_2$, $R_2 \vdash \ldots$ with $R_0 = \emptyset$ is called a run of the completion procedure with input E_0 and >.

For a run,
$$E_{\infty} = \bigcup_{i \ge 0} E_i$$
 and $R_{\infty} = \bigcup_{i \ge 0} R_i$.

The sets of persistent equations or rules of the run are $E_* = \bigcup_{i \ge 0} \bigcap_{j \ge i} E_j$ and $R_* = \bigcup_{i \ge 0} \bigcap_{j \ge i} R_j$. Note: If the run is finite and ends with E_n , R_n , then $E_* = E_n$ and $R_* = R_n$.

A run is called fair, if $CP(R_*) \subseteq E_\infty$

(i.e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:

Show: If a run is fair and E_* is empty, then R_* is convergent and equivalent to E_0 . In particular: If a run is fair and E_* is empty,

then $\approx_{E_0} = \approx_{E_\infty \cup R_\infty} = \leftrightarrow_{E_\infty \cup R_\infty} = \downarrow_{R_*}$.

General assumptions from now on:

 $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$ is a fair run.

 R_0 and E_* are empty.

A proof of $s \approx t$ in $E_{\infty} \cup R_{\infty}$ is a finite sequence (s_0, \ldots, s_n) such that $s = s_0$, $t = s_n$, and for all $i \in \{1, \ldots, n\}$:

- (1) $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, or
- (2) $s_{i-1} \rightarrow_{R_{\infty}} s_i$, or
- (3) $s_{i-1} \leftarrow_{R_{\infty}} s_i$.

The pairs (s_{i-1}, s_i) are called proof steps.

A proof is called a rewrite proof in R_* , if there is a $k \in \{0, ..., n\}$ such that $s_{i-1} \rightarrow_{R_*} s_i$ for $1 \le i \le k$ and $s_{i-1} \leftarrow_{R_*} s_i$ for $k+1 \le i \le n$

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_* there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_* .

We associate a cost $c(s_{i-1}, s_i)$ with every proof step as follows:

(1) If $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, then $c(s_{i-1}, s_i) = (\{s_{i-1}, s_i\}, -, -)$, where the first component is a multiset of terms and denotes an arbitrary (irrelevant) term.

(2) If $s_{i-1} \to_{R_{\infty}} s_i$ using $l \to r$, then $c(s_{i-1}, s_i) = (\{s_{i-1}\}, l, s_i)$. (3) If $s_{i-1} \leftarrow_{R_{\infty}} s_i$ using $l \to r$, then $c(s_{i-1}, s_i) = (\{s_i\}, l, s_{i-1})$.

Proof steps are compared using the lexicographic combination of the multiset extension of reduction ordering >, the encompassment ordering \square , and the reduction ordering >.

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering $>_C$ compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma:

 $>_C$ is a well-founded ordering.

Lemma:

Let P be a proof in $E_{\infty} \cup R_{\infty}$. If P is not a rewrite proof in R_* , then there exists an equivalent proof P' in $E_{\infty} \cup R_{\infty}$ such that $P >_C P'$.

Proof:

If P is not a rewrite proof in R_* , then it contains

(a) a proof step that is in
$$E_{\infty}$$
, or
(b) a proof step that is in $R_{\infty} \setminus R_*$, or
(c) a subproof $s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof: Case (a): A proof step using an equation $s \approx t$ is in E_{∞} . This equation must be deleted during the run.

If $s \approx t$ is deleted using *Orient*:

 $\ldots S_{i-1} \leftrightarrow_{E_{\infty}} S_i \ldots \implies \ldots S_{i-1} \rightarrow_{R_{\infty}} S_i \ldots$

If $s \approx t$ is deleted using *Delete*:

 $\ldots S_{i-1} \leftrightarrow_{E_{\infty}} S_{i-1} \ldots \Longrightarrow \ldots S_{i-1} \ldots$

If $s \approx t$ is deleted using *Simplify-Eq*:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \ldots$

Case (b): A proof step using a rule $s \to t$ is in $R_{\infty} \setminus R_*$. This rule must be deleted during the run.

If
$$s \to t$$
 is deleted using *R*-Simplify-Rule:
 $\dots s_{i-1} \to_{R_{\infty}} s_i \dots \implies \dots s_{i-1} \to_{R_{\infty}} s' \leftarrow_{R_{\infty}} s_i \dots$

If $s \rightarrow t$ is deleted using *L-Simplify-Rule*:

 $\ldots s_{i-1} \rightarrow_{R_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \ldots$

Case (c): A subproof has the form $s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1}$.

If there is no overlap or a non-critical overlap:

$$\ldots s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \rightarrow^*_{R_*} s' \leftarrow^*_{R_*} s_{i+1} \ldots$$

If there is a critical pair that has been added using *Deduce*:

 $\ldots S_{i-1} \leftarrow_{R_*} S_i \rightarrow_{R_*} S_{i+1} \ldots \Longrightarrow \ldots S_{i-1} \leftrightarrow_{E_{\infty}} S_i \ldots$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine.

Theorem:

Let E_0 , $R_0 \vdash E_1$, $R_1 \vdash E_2$, $R_2 \vdash \ldots$ be a fair run and let R_0 and E_* be empty. Then

- (1) every proof in $E_\infty \cup R_\infty$ is equivalent to a rewrite proof in R_* ,
- (2) R_* is equivalent to E_0 , and
- (3) R_* is convergent.

Proof:

(1) By well-founded induction on $>_C$ using the previous lemma.

(2) Clearly $\approx_{E_{\infty}\cup R_{\infty}} = \approx_{E_{0}}$. Since $R_{*} \subseteq R_{\infty}$, we get $\approx_{R_{*}} \subseteq \approx_{E_{\infty}\cup R_{\infty}}$. On the other hand, by (1), $\approx_{E_{\infty}\cup R_{\infty}} \subseteq \approx_{R_{*}}$.

(3) Since $\rightarrow_{R_*} \subseteq >$, R_* is terminating. By (1), R_* is confluent.