
Recursive Path Orderings

Recapitulation:

Let Σ = (Ω,Π) be a finite signature, let > be a strict partial

ordering (“precedence”) on Ω. The lexicographic path ordering

>lpo on TΣ(X ) induced by > is defined by: s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si ≥lpo t for some i , or

(b) f > g and s >lpo tj for all j , or

(c) f = g , s >lpo tj for all j , and

(s1, . . . , sm) (>lpo)lex (t1, . . . , tn).

1



Recursive Path Orderings

There are several possibilities to compare subterms in (2)(c):

compare list of subterms lexicographically left-to-right

(“lexicographic path ordering (lpo)”, Kamin and Lévy)

compare list of subterms lexicographically right-to-left

(or according to some permutation π)

compare multiset of subterms using the multiset extension

(“multiset path ordering (mpo)”, Dershowitz)

to each function symbol f /n associate a

status ∈ {mul } ∪ { lexπ | π : {1, . . . , n} → {1, . . . , n} }
and compare according to that status

(“recursive path ordering (rpo) with status”)
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The Knuth-Bendix Ordering

Let Σ = (Ω,Π) be a finite signature,

let > be a strict partial ordering (“precedence”) on Ω,

let w : Ω ∪ X → R
+
0 be a weight function,

such that the following admissibility conditions are satisfied:

w(x) = w0 ∈ R
+ for all variables x ∈ X ;

w(c) ≥ w0 for all constants c/0 ∈ Ω.

If w(f ) = 0 for some f /1 ∈ Ω, then f ≥ g for all g ∈ Ω.

w can be extended to terms as follows:

w(t) =
∑

x∈Var(t)

w(x) ·#(x , t) +
∑

f∈Ω

w(f ) ·#(f , t).
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The Knuth-Bendix Ordering

The Knuth-Bendix ordering >kbo on TΣ(X ) induced by > and

w is defined by: s >kbo t iff

(1) #(x , s) ≥ #(x , t) for all variables x and w(s) > w(t), or

(2) #(x , s) ≥ #(x , t) for all variables x , w(s) = w(t), and

(a) t = x , s = f n(x) for some n ≥ 1, or

(b) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and f > g , or

(c) s = f (s1, . . . , sm), t = f (t1, . . . , tm), and

(s1, . . . , sm) (>kbo)lex (t1, . . . , tm).
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The Knuth-Bendix Ordering

Theorem:

The Knuth-Bendix ordering induced by > and w is a

simplification ordering on TΣ(X ).

Proof:

Baader and Nipkow, pages 125–129.
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6 Knuth-Bendix Completion
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Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an

equivalent convergent set R of rewrite rules.

How to ensure termination?

Fix a reduction ordering > and construct R in such a way

that →R ⊆ > (i. e., l > r for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.
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Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules

working on a set of equations E and a set of rules R:

E0,R0 ` E1,R1 ` E2,R2 ` . . .

At the beginning, E = E0 is the input set and R = R0 is empty.

At the end, E should be empty; then R is the result.

For each step E ,R ` E ′,R′, the equational theories of E ∪ R

and E ′ ∪ R′ agree: ≈E∪R = ≈E ′∪R′ .
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Knuth-Bendix Completion: Inference Rules

Notations:

The formula s
.≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.
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Knuth-Bendix Completion: Inference Rules

Orient:

E ∪ {s .≈ t}, R

E , R ∪ {s → t} if s > t

Note: There are equations s ≈ t that cannot be oriented,

i. e., neither s > t nor t > s.
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Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented – but we don’t need them

anyway:

Delete:

E ∪ {s ≈ s}, R

E , R
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Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional

equations:

Deduce:

E , R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ R then s ←R u →R t and hence R |= s ≈ t.
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Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary,

but very useful (e.g., to get rid of joinable critical pairs and

to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s .≈ t}, R

E ∪ {u ≈ t}, R
if s →R u.
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Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

E , R ∪ {s → t}
E , R ∪ {s → u} if t →R u.

Simplification of the left-hand side may influence orientability

and orientation. Therefore, it yields an equation:

L-Simplify-Rule:

E , R ∪ {s → t}
E ∪ {u ≈ t}, R

if s →R u using a rule l → r ∈ R
such that s A l (see next slide).
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Knuth-Bendix Completion: Inference Rules

For technical reasons, the lhs of s → t may only be simplified

using a rule l → r , if l → r cannot be simplified using s → t,

that is, if s A l , where the encompassment quasi-ordering A∼ is

defined by

s A∼ l if s/p = lσ for some p and σ

and A = A∼ \@∼ is the strict part of A∼.

Lemma:

A is a well-founded strict partial ordering.
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Knuth-Bendix Completion: Inference Rules

Lemma:

If E ,R ` E ′,R′, then ≈E∪R = ≈E ′∪R′ .

Lemma:

If E ,R ` E ′,R′ and →R ⊆ >, then →R′ ⊆ >.
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Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations,

different things can happen:

(1) We reach a state where no more inference rules are

applicable and E is not empty.

⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs

between the rules in the current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some

definitions.
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Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) E0,R0 ` E1,R1 ` E2,R2 ` . . .

with R0 = ∅ is called a run of the completion procedure

with input E0 and >.

For a run, E∞ =
⋃

i≥0 Ei and R∞ =
⋃

i≥0 Ri .

The sets of persistent equations or rules of the run are

E∗ =
⋃

i≥0

⋂
j≥i Ej and R∗ =

⋃
i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En,Rn,

then E∗ = En and R∗ = Rn.
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Knuth-Bendix Completion: Correctness Proof

A run is called fair, if CP(R∗) ⊆ E∞
(i. e., if every critical pair between persisting rules is computed

at some step of the derivation).

Goal:

Show: If a run is fair and E∗ is empty,

then R∗ is convergent and equivalent to E0.

In particular: If a run is fair and E∗ is empty,

then ≈E0 = ≈E∞∪R∞ =↔E∞∪R∞ = ↓R∗ .
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Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:

E0,R0 ` E1,R1 ` E2,R2 ` . . . is a fair run.

R0 and E∗ are empty.
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Knuth-Bendix Completion: Correctness Proof

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn)

such that s = s0, t = sn, and for all i ∈ {1, . . . , n}:
(1) si−1 ↔E∞ si , or

(2) si−1 →R∞ si , or

(3) si−1 ←R∞ si .

The pairs (si−1, si ) are called proof steps.

A proof is called a rewrite proof in R∗,
if there is a k ∈ {0, . . . , n} such that si−1 →R∗ si for 1 ≤ i ≤ k

and si−1 ←R∗ si for k + 1 ≤ i ≤ n
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Knuth-Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every

proof that is not a rewrite proof in R∗ there is an equivalent

smaller proof.

Consequence: For every proof there is an equivalent rewrite

proof in R∗.
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Knuth-Bendix Completion: Correctness Proof

We associate a cost c(si−1, si ) with every proof step as follows:

(1) If si−1 ↔E∞ si , then c(si−1, si ) = ({si−1, si},−,−),

where the first component is a multiset of terms and −
denotes an arbitrary (irrelevant) term.

(2) If si−1 →R∞ si using l → r , then c(si−1, si ) = ({si−1}, l , si ).
(3) If si−1 ←R∞ si using l → r , then c(si−1, si ) = ({si}, l , si−1).

Proof steps are compared using the lexicographic combination

of the multiset extension of reduction ordering >, the

encompassment ordering A, and the reduction ordering >.
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Knuth-Bendix Completion: Correctness Proof

The cost c(P) of a proof P is the multiset of the costs of its

proof steps.

The proof ordering >C compares the costs of proofs using the

multiset extension of the proof step ordering.

Lemma:

>C is a well-founded ordering.
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Knuth-Bendix Completion: Correctness Proof

Lemma:

Let P be a proof in E∞ ∪ R∞. If P is not a rewrite proof in R∗,
then there exists an equivalent proof P ′ in E∞ ∪ R∞ such that

P >C P ′.

Proof:

If P is not a rewrite proof in R∗, then it contains

(a) a proof step that is in E∞, or

(b) a proof step that is in R∞ \ R∗, or

(c) a subproof si−1 ←R∗ si →R∗ si+1 (peak).

We show that in all three cases the proof step or subproof can

be replaced by a smaller subproof:
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Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation s
.≈ t is in E∞.

This equation must be deleted during the run.

If s
.≈ t is deleted using Orient:

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ si . . .

If s
.≈ t is deleted using Delete:

. . . si−1 ↔E∞ si−1 . . . =⇒ . . . si−1 . . .

If s
.≈ t is deleted using Simplify-Eq:

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .
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Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule s → t is in R∞ \ R∗.
This rule must be deleted during the run.

If s → t is deleted using R-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ ←R∞ si . . .

If s → t is deleted using L-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .
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Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form si−1 ←R∗ si →R∗ si+1.

If there is no overlap or a non-critical overlap:

. . . si−1 ←R∗ si →R∗ si+1 . . . =⇒ . . . si−1 →∗
R∗ s′ ←∗

R∗ si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 ←R∗ si →R∗ si+1 . . . =⇒ . . . si−1 ↔E∞ si . . .

In all cases, checking that the replacement subproof is smaller

than the replaced subproof is routine.
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Knuth-Bendix Completion: Correctness Proof

Theorem:

Let E0,R0 ` E1,R1 ` E2,R2 ` . . . be a fair run and let R0 and

E∗ be empty. Then

(1) every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

(2) R∗ is equivalent to E0, and

(3) R∗ is convergent.
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Knuth-Bendix Completion: Correctness Proof

Proof:

(1) By well-founded induction on >C using the previous lemma.

(2) Clearly ≈E∞∪R∞ = ≈E0 .

Since R∗ ⊆ R∞, we get ≈R∗ ⊆ ≈E∞∪R∞ .

On the other hand, by (1), ≈E∞∪R∞ ⊆ ≈R∗ .

(3) Since →R∗ ⊆ >, R∗ is terminating.

By (1), R∗ is confluent.
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