Recursive Path Orderings

Recapitulation:
Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let $>$ be a strict partial ordering ("precedence") on Ω. The lexicographic path ordering $>_{\text {Ipo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by $>$ is defined by: $s>_{\text {Ipo }} t$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(a) $s_{i} \geq_{\text {lpo }} t$ for some i, or
(b) $f>g$ and $s>_{\text {Ipo }} t_{j}$ for all j, or
(c) $f=g, s>_{\text {lpo }} t_{j}$ for all j, and $\left(s_{1}, \ldots, s_{m}\right)\left(>_{\text {Ipo }}\right)_{\text {lex }}\left(t_{1}, \ldots, t_{n}\right)$.

Recursive Path Orderings

There are several possibilities to compare subterms in (2)(c):
compare list of subterms lexicographically left-to-right ("lexicographic path ordering (lpo)", Kamin and Lévy) compare list of subterms lexicographically right-to-left (or according to some permutation π)
compare multiset of subterms using the multiset extension ("multiset path ordering (mpo)", Dershowitz)
to each function symbol f / n associate a
status $\in\{m u l\} \cup\left\{l e x_{\pi} \mid \pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}\right\}$
and compare according to that status
("recursive path ordering (rpo) with status")

The Knuth-Bendix Ordering

Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let $>$ be a strict partial ordering ("precedence") on Ω, let $w: \Omega \cup X \rightarrow \mathbb{R}_{0}^{+}$be a weight function, such that the following admissibility conditions are satisfied:
$w(x)=w_{0} \in \mathbb{R}^{+}$for all variables $x \in X ;$
$w(c) \geq w_{0}$ for all constants $c / 0 \in \Omega$.
If $w(f)=0$ for some $f / 1 \in \Omega$, then $f \geq g$ for all $g \in \Omega$.
w can be extended to terms as follows:

$$
w(t)=\sum_{x \in \operatorname{Var}(t)} w(x) \cdot \#(x, t)+\sum_{f \in \Omega} w(f) \cdot \#(f, t) .
$$

The Knuth-Bendix Ordering

The Knuth-Bendix ordering $>_{\text {kbo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by $>$ and w is defined by: $s>_{\text {kbo }} t$ iff
(1) $\#(x, s) \geq \#(x, t)$ for all variables x and $w(s)>w(t)$, or
(2) $\#(x, s) \geq \#(x, t)$ for all variables $x, w(s)=w(t)$, and
(a) $t=x, s=f^{n}(x)$ for some $n \geq 1$, or
(b) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and $f>g$, or
(c) $s=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right)$, and
$\left(s_{1}, \ldots, s_{m}\right)\left(>_{\mathrm{kbo}}\right)_{\mathrm{lex}}\left(t_{1}, \ldots, t_{m}\right)$.

The Knuth-Bendix Ordering

Theorem:
The Knuth-Bendix ordering induced by $>$ and w is a simplification ordering on $\mathrm{T}_{\Sigma}(X)$.

Proof:
Baader and Nipkow, pages 125-129.

6 Knuth-Bendix Completion

Knuth-Bendix Completion

Completion:
Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.

How to ensure termination?
Fix a reduction ordering $>$ and construct R in such a way that $\rightarrow_{R} \subseteq>$ (i.e., $I>r$ for every $I \rightarrow r \in R$).

How to ensure confluence?
Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R :
$E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$

At the beginning, $E=E_{0}$ is the input set and $R=R_{0}$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E^{\prime}, R^{\prime}$, the equational theories of $E \cup R$ and $E^{\prime} \cup R^{\prime}$ agree: $\approx_{E \cup R}=\approx_{E^{\prime} \cup R^{\prime}}$.

Knuth-Bendix Completion: Inference Rules

Notations:
The formula $s \dot{\approx} t$ denotes either $s \approx t$ or $t \approx s$.
$\mathrm{CP}(R)$ denotes the set of all critical pairs between rules in R.

Knuth-Bendix Completion: Inference Rules

Orient:

$$
\frac{E \cup\{s \dot{\approx} t\}, \quad R}{E, \quad R \cup\{s \rightarrow t\}} \quad \text { if } s>t
$$

Note: There are equations $s \approx t$ that cannot be oriented,
i. e., neither $s>t$ nor $t>s$.

Knuth-Bendix Completion: Inference Rules

Trivial equations cannot be oriented - but we don't need them anyway:

Delete:

$$
\frac{E \cup\{s \approx s\}, \quad R}{E, R}
$$

Knuth-Bendix Completion: Inference Rules

Critical pairs between rules in R are turned into additional equations:

Deduce:

$$
\frac{E, R}{E \cup\{s \approx t\}, \quad R} \quad \text { if }\langle s, t\rangle \in \mathrm{CP}(R) .
$$

Note: If $\langle s, t\rangle \in R$ then $s \leftarrow_{R} u \rightarrow_{R} t$ and hence $R \models s \approx t$.

Knuth-Bendix Completion: Inference Rules

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$
\frac{E \cup\{s \dot{\approx} t\}, \quad R}{E \cup\{u \approx t\}, \quad R} \quad \text { if } s \rightarrow_{R} u
$$

Knuth-Bendix Completion: Inference Rules

Simplification of the right-hand side of a rule is unproblematic.
R-Simplify-Rule:

$$
\begin{array}{ll}
E, & R \cup\{s \rightarrow t\} \\
E, & R \cup\{s \rightarrow u\}
\end{array} \quad \text { if } t \rightarrow_{R} u .
$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an equation:

L-Simplify-Rule:

$$
\frac{E, \quad R \cup\{s \rightarrow t\}}{E \cup\{u \approx t\}, \quad R}
$$

if $s \rightarrow_{R} u$ using a rule $I \rightarrow r \in R$ such that $s \sqsupset I$ (see next slide).

Knuth-Bendix Completion: Inference Rules

For technical reasons, the Ihs of $s \rightarrow t$ may only be simplified using a rule $I \rightarrow r$, if $I \rightarrow r$ cannot be simplified using $s \rightarrow t$, that is, if $s \sqsupset I$, where the encompassment quasi-ordering \sqsupset is defined by

$$
s \sqsupset I \text { if } s / p=I \sigma \text { for some } p \text { and } \sigma
$$

and $\sqsupset=\sqsupset \backslash \underset{\sim}{~ i s ~ t h e ~ s t r i c t ~ p a r t ~ o f ~} \sqsupset$.

Lemma:
\sqsupset is a well-founded strict partial ordering.

Knuth-Bendix Completion: Inference Rules

Lemma:
If $E, R \vdash E^{\prime}, R^{\prime}$, then $\approx_{E \cup R}=\approx_{E^{\prime} \cup R^{\prime}}$.
Lemma:
If $E, R \vdash E^{\prime}, R^{\prime}$ and $\rightarrow_{R} \subseteq>$, then $\rightarrow_{R^{\prime}} \subseteq>$.

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can happen:
(1) We reach a state where no more inference rules are applicable and E is not empty.
\Rightarrow Failure (try again with another ordering?)
(2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

Knuth-Bendix Completion: Correctness Proof

A (finite or infinite sequence) $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ with $R_{0}=\emptyset$ is called a run of the completion procedure with input E_{0} and $>$.

For a run, $E_{\infty}=\bigcup_{i \geq 0} E_{i}$ and $R_{\infty}=\bigcup_{i \geq 0} R_{i}$.
The sets of persistent equations or rules of the run are $E_{*}=\bigcup_{i \geq 0} \bigcap_{j \geq i} E_{j}$ and $R_{*}=\bigcup_{i \geq 0} \bigcap_{j \geq i} R_{j}$.
Note: If the run is finite and ends with E_{n}, R_{n}, then $E_{*}=E_{n}$ and $R_{*}=R_{n}$.

Knuth-Bendix Completion: Correctness Proof

A run is called fair, if $C P\left(R_{*}\right) \subseteq E_{\infty}$
(i.e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:
Show: If a run is fair and E_{*} is empty, then R_{*} is convergent and equivalent to E_{0}.

In particular: If a run is fair and E_{*} is empty, then $\approx_{E_{0}}=\approx_{E_{\infty} \cup R_{\infty}}=\leftrightarrow E_{\infty} \cup R_{\infty}=\downarrow_{R_{*}}$.

Knuth-Bendix Completion: Correctness Proof

General assumptions from now on:
$E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ is a fair run.
R_{0} and E_{*} are empty.

Knuth-Bendix Completion: Correctness Proof

A proof of $s \approx t$ in $E_{\infty} \cup R_{\infty}$ is a finite sequence $\left(s_{0}, \ldots, s_{n}\right)$ such that $s=s_{0}, t=s_{n}$, and for all $i \in\{1, \ldots, n\}$:
(1) $s_{i-1} \leftrightarrow E_{\infty} s_{i}$, or
(2) $s_{i-1} \rightarrow_{R_{\infty}} s_{i}$, or
(3) $s_{i-1} \leftarrow R_{\infty} s_{i}$.

The pairs $\left(s_{i-1}, s_{i}\right)$ are called proof steps.
A proof is called a rewrite proof in R_{*},
if there is a $k \in\{0, \ldots, n\}$ such that $s_{i-1} \rightarrow_{R_{*}} s_{i}$ for $1 \leq i \leq k$ and $s_{i-1} \leftarrow R_{*} s_{i}$ for $k+1 \leq i \leq n$

Knuth-Bendix Completion: Correctness Proof

Idea (Bachmair, Dershowitz, Hsiang):
Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_{*} there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_{*}.

Knuth-Bendix Completion: Correctness Proof

We associate a cost $c\left(s_{i-1}, s_{i}\right)$ with every proof step as follows:
(1) If $s_{i-1} \leftrightarrow E_{\infty} s_{i}$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i-1}, s_{i}\right\},-,-\right)$, where the first component is a multiset of terms and denotes an arbitrary (irrelevant) term.
(2) If $s_{i-1} \rightarrow R_{\infty} s_{i}$ using $l \rightarrow r$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i-1}\right\}, l, s_{i}\right)$.
(3) If $s_{i-1} \leftarrow R_{\infty} s_{i}$ using $l \rightarrow r$, then $c\left(s_{i-1}, s_{i}\right)=\left(\left\{s_{i}\right\}, l, s_{i-1}\right)$.

Proof steps are compared using the lexicographic combination of the multiset extension of reduction ordering $>$, the encompassment ordering \sqsupset, and the reduction ordering $>$.

Knuth-Bendix Completion: Correctness Proof

The cost $c(P)$ of a proof P is the multiset of the costs of its proof steps.

The proof ordering $>_{C}$ compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma:
$>_{C}$ is a well-founded ordering.

Knuth-Bendix Completion: Correctness Proof

Lemma:
Let P be a proof in $E_{\infty} \cup R_{\infty}$. If P is not a rewrite proof in R_{*}, then there exists an equivalent proof P^{\prime} in $E_{\infty} \cup R_{\infty}$ such that $P>_{c} P^{\prime}$.

Proof:
If P is not a rewrite proof in R_{*}, then it contains
(a) a proof step that is in E_{∞}, or
(b) a proof step that is in $R_{\infty} \backslash R_{*}$, or
(c) a subproof $s_{i-1} \leftarrow R_{*} s_{i} \rightarrow_{R_{*}} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof:

Knuth-Bendix Completion: Correctness Proof

Case (a): A proof step using an equation $s \dot{\sim} t$ is in E_{∞}. This equation must be deleted during the run.

If $s \dot{\approx} t$ is deleted using Orient:

$$
\ldots s_{i-1} \leftrightarrow E_{\infty} s_{i} \ldots \quad \ldots s_{i-1} \rightarrow_{R_{\infty}} s_{i} \ldots
$$

If $s \dot{\approx} t$ is deleted using Delete:

$$
\ldots s_{i-1} \leftrightarrow E_{\infty} s_{i-1} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \ldots
$$

If $s \dot{\sim} t$ is deleted using Simplify-Eq:

$$
\ldots s_{i-1} \leftrightarrow E_{\infty} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow R_{\infty} s^{\prime} \leftrightarrow E_{\infty} s_{i} \ldots
$$

Knuth-Bendix Completion: Correctness Proof

Case (b): A proof step using a rule $s \rightarrow t$ is in $R_{\infty} \backslash R_{*}$.
This rule must be deleted during the run.
If $s \rightarrow t$ is deleted using R-Simplify-Rule:

$$
\ldots s_{i-1} \rightarrow_{R_{\infty}} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow_{R_{\infty}} s^{\prime} \leftarrow R_{\infty} s_{i} \ldots
$$

If $s \rightarrow t$ is deleted using L-Simplify-Rule:

$$
\ldots s_{i-1} \rightarrow_{R_{\infty}} s_{i} \ldots \quad \Longrightarrow \quad \ldots s_{i-1} \rightarrow_{R_{\infty}} s^{\prime} \leftrightarrow E_{\infty} s_{i} \ldots
$$

Knuth-Bendix Completion: Correctness Proof

Case (c): A subproof has the form $s_{i-1} \leftarrow R_{*} s_{i} \rightarrow R_{*} s_{i+1}$.
If there is no overlap or a non-critical overlap:

$$
\ldots s_{i-1} \leftarrow R_{*} s_{i} \rightarrow_{R_{*}} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \rightarrow_{R_{*}}^{*} s^{\prime} \leftarrow_{R_{*}}^{*} s_{i+1} \ldots
$$

If there is a critical pair that has been added using Deduce:

$$
\ldots s_{i-1} \leftarrow R_{*} s_{i} \rightarrow R_{*} s_{i+1} \ldots \Longrightarrow \quad \ldots s_{i-1} \leftrightarrow E_{\infty} s_{i} \ldots
$$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine.

Knuth-Bendix Completion: Correctness Proof

Theorem:
Let $E_{0}, R_{0} \vdash E_{1}, R_{1} \vdash E_{2}, R_{2} \vdash \ldots$ be a fair run and let R_{0} and E_{*} be empty. Then
(1) every proof in $E_{\infty} \cup R_{\infty}$ is equivalent to a rewrite proof in R_{*},
(2) R_{*} is equivalent to E_{0}, and
(3) R_{*} is convergent.

Knuth-Bendix Completion: Correctness Proof

Proof:

(1) By well-founded induction on $>_{C}$ using the previous lemma.
(2) Clearly $\approx_{E_{\infty} \cup R_{\infty}}=\approx_{E_{0}}$.

Since $R_{*} \subseteq R_{\infty}$, we get $\approx_{R_{*}} \subseteq \approx_{E_{\infty} \cup R_{\infty}}$.
On the other hand, by (1), $\approx_{E_{\infty} \cup R_{\infty}} \subseteq \approx_{R_{*}}$.
(3) Since $\rightarrow_{R_{*}} \subseteq>, R_{*}$ is terminating.

By (1), R_{*} is confluent.

